EML 2322L Quiz 10 (10/29/19)

Answer the following questions based on the information presented in class. You can use **your** notes but do not speak with others.

What is the equation governing maximum peripheral tool velocity as a function of tool size?

 $V = \pi \times __ \times __$

What is the purpose and benefit of peck drilling? peck drilling help chips ______

so they don't collect inside the hole and cause the drill bit to ______, seize and break

What is the limiting factor for how fast a drill or endmill can rotate in a particular material?

- A. maximum speed of machine spindle
- B. type of taper/collet used to hold tool
- C. number of flutes on the cutter
- D. heat generated in the cutting zone
- E. other: _____

What is the limiting factor for how fast a drill or endmill can feed (or advance) thru any material?

- A. maximum speed of machine spindle
- B. operator courage
- C. phase of the moon at that particular hour
- D. size / strength of cutting edges / lips
- E. other: _____

What is the limiting factor for how deep to cut (per pass) with an endmill in a particular material (assuming sufficient flute length)? the limiting factor is cutting tool / workpiece / machine _________ (which must resist the cutting forces and subsequent vibrations)

Select six factors that affect optimum cutting speed for drilling and milling:

- 1. strength & thermal conductivity of material
- 2. depth of hole
- 3. presence and efficiency of cutting fluid
- 4. type, condition & stiffness of cutting machine
- 5. stiffness of workpiece, fixture and tooling
- 6. quality of holes desired
- 7. whether you pay for replacement tools \bigcirc

Name:

Lab Period:	T5-6 / T7-8 / T9-10
(circle one)	W2-3 / W4-5 / W7-8 / W9-10
	R2-3 / R4-5 / R7-8 / R9-10

Based on lecture notes, circle the conditions under which you would use lower cutting speeds:

- 1. <u>heavy (roughing) / light (finishing)</u> cuts
- 2. when cutting stronger / weaker materials
- 3. to minimize / maximize tool life
- 4. when cutting <u>flexible / rigid</u> workpieces

Calculate the spindle speed [rpm] and feedrate [in/min] for a ½ inch HSS drill bit in mild steel (0.2-0.3 C) when using a manual milling machine:

from Table 1: $V \approx _____ ft/min$ $N = 12 in/ft \times V ft/min / (\pi \times D in/rev)$ $N = 12 in/ft \times ____ ft/min / (\pi \times ___ in/rev)$ $N = ____ rpm$ from Table 2: $f_r \approx ____ in/rev$ $f = N rev/min \times f_r in/rev$ $f = 764 rev/min \times ___ in/rev = ___ in/min$ scale back 60%: $N \approx 460 rpm$, $f \approx 3.7 in/min$

Calculate the spindle speed [rpm] and feedrate [in/min] used when milling an aluminum part with a 1/2 inch diameter, 2 flute HSS endmill on a manual milling machine in lab.

from Table 1: $V \approx ____ft/min$ $N = 12 \text{ in/ft} \times V \text{ ft/min / } (\pi \times D \text{ in/rev})$ $N = 12 \text{ in/ft} \times ____ft/min / (\pi \times _____in/rev)$ $N = ____rpm$

from Table 3: $f_t \approx \underline{\qquad}$ in/rev $f = N \text{ rev/min} \times f_t \text{ in/tooth} \times m \text{ teeth/rev}$ $f = 1910 \text{ rev/min} \times \underline{\qquad}$ in/tooth $\times \underline{\qquad}$ teeth/rev $f = \underline{\qquad}$ in/min scale back 60%: $N \approx 1150 \text{ rpm}, f \approx 9.2 \text{ in/min}$

What size clearance hole would you specify for a mounting bracket that uses M6x1.0 fasteners in (A) aluminum using loose tolerances or (B) steel using more precise tolerances?

- A. _____
- B. _____