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Chapter 4 
 
 

Design of Experiments 
 
 

4.1 Introduction 
 
 
In Chapter 3 we have considered the location of the data points fixed and studied how to 
pass a good response surface through the given data. However, the choice of points 
where experiments (whether numerical or physical) are performed has very large effect 
on the accuracy of the response surface, and in this chapter we will explore methods for 
selecting a good set of points for carrying out experiments. The selection of these points 
is known as design of experiments. 
 
       Design of experiments is inherently a multi-objective optimization problem. We 
would like to select points so that we maximize the accuracy of the information that we 
get from the experiments. We usually also would like to minimize the number of 
experiments, because these are expensive. In some cases the objective of the 
experiments is to estimate some physical characteristics, and in these cases, we would 
like to maximize the accuracy of these characteristics. However, in the design 
applications, which are of primary interest to us, we would like to construct a response 
surface that could be used to predict the performance of other designs. In this case, our 
primary goal is to choose the points for the experiments so as to maximize the predictive 
capability of the model. 
 
      A lot of work has been done on experimental designs in regular design domains. 
Such domains occur when each design variable is bounded by simple lower and upper 
limits, so that the design domain is box like. Occasionally, spherical domains are also 
considered. Sometimes each design variable can take only two or three values, often 
called levels. These levels are termed low, nominal and high. In other cases, the design 
space is approximately box like, but it is possible to carry experiments with the design 
variables taking values outside the box for the purpose of improving the properties of the 
response surface. In the next section we will summarize briefly some of the properties of 
experimental design in box-like domains, and present some of the more popular 
experimental designs in such domains.  
 
      For design optimization, however, it is common for us to try and create response 
surfaces in irregularly shaped domains. In that case, we have to create our own 
experimental design. Section 4.3 will discuss several techniques available for finding 
good designs in an irregular shaped domain. 
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4.2 Design of Experiments in Boxlike Domains 
 
In this case the region of interest is defined by simple lower and upper limits on each of 
the design variables 

   ,,....,1   ,' nixxx iuiil                   (4.2.1) 

 

where ilx , and iux are the lower and upper limits, respectively, on the design variable '
ix . 

The prime indicates that the design variable has not been normalized. For convenience 
we normalize the design variable as 
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The normalized variables are then all bound in the cube 
   ,11  ix         (4.2.3) 

 
4.2.1 Interpolation, extrapolation and prediction variance 
The simplest experimental design for the cube is one experiment at each one of 
the n2 vertices (Matlab ff2n). This design is called a 2-level full factorial design, where the 
word `factorial' refers to 'factor', a synonym for design variable, rather than the factorial 

function. For a small number of design variables, n2 may be a manageable number of 
experiments. More general full-factorial designs may have different number of levels in 
different directions (Matlab fullfact). However, for larger values of n, we usually cannot 
afford even the two-level full factorial design. For example, for 10n , we 

get .10242 n For high values of n we may consider fractional factorial designs, which do 
not include all the vertices (see Matlab’s fracfact). 
 If we want to fit a linear polynomial to the data, it certainly appears that we will 

not need anywhere near n2 points for a good fit. For example, for n = 10, we have 11 
coefficients to fit, and using 1024 experiments to fit these 11 coefficients may appear 
excessive even if we could afford that many experiments. However, with fewer 
experiments we lose an important property of using the response surface as an 
interpolation tool rather than as a tool for extrapolation. To understand that we will first 
define what we mean by interpolation and extrapolation.  
 Intuitively, we say that our response surface will interpolate the data at a point, if 
that point is `completely surrounded' by data points. In one dimensional space, this 
means that there is a point to the right of the interpolated point, as well as a point to the 
left of it. In two-dimensional space we would like the point to be surrounded by at least 3 
points, so that it falls inside the triangle defined by these 3 points. Similarly, in three-
dimensional space, we would like the point to be surrounded by at least 4 points, that is 
lie inside the tetrahedron defined by these 4 points. In n-dimensional space, we would 
like the point to be surrounded by n+1 data points, or in other words, fit inside the 
simplex defined by the n+1 points. A simplex is the generalization of a triangle and a 
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tetrahedron; a shape in n dimensional space defined by n+ 1 linearly independent 
points. 
 Given a set of n + 1 points in n-dimensional space, 1 2 1, ,....., nx x x , the simplex 

defined by  these points includes all the points that can be obtained by a convex sum of 
these points. That is, it includes any point x, which may be written as 
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Given a set of yn data points, the set of points where the response surface performs 

interpolation is the union of all of these simplexes, which is also called the convex hull of 
the data points. 
 One measure that we can use to estimate the loss of prediction accuracy 
incurred when we use extrapolation is the prediction variance. Recall that the linear 
regression model that we use may be written as 
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Defining the vector ( )mx by 

   ( ) ( ),m
i ix  x                    (4.2.7) 

we can write Eq. 4.2.6 as 

   ( )ˆ ,m Ty  x b                    (4.2.8) 

With noise in the data, b has some randomness to it, while ( )mx is deterministic. Using 

Eq. 3.2.29, it is easy to show that the variance (square of the standard deviation) of ŷ is 
given as 

   1( ) ( ) 2 ( ) ( )ˆ[ ( )] ,m T m m T T m
bVar y X X


  x x x x x                 (4.2.9) 

with the standard deviation of ˆ( )y x being the square root of this expression. If we use the 

estimate̂ instead of , we get the standard error ys of ŷ  

     1( ) ( )ˆ m T T m
ys X X


 x x                (4.2.10) 

The standard error gives us an estimate of the sensitivity of the response surface 
prediction at different points to errors in the data. We would like to select points so as to 
make this error as small as possible everywhere in the domain where we would like to 
estimate the response. 
Intuitively, it appears that this would be helped if the standard error did not vary much 
from one point to another. This property is called stability. The following example 
demonstrates the effect of using extrapolation on the stability of the standard error. 
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Example 4.2.1 
Consider the problem of fitting a linear polynomial 23121 xbxbby  to data in the square 

11 ,11 21  xx . Compare the maximum value of the prediction variance for two cases; 

(a) Full factorial design (points at all 4 vertices). (b) A fractional design including 3 vertices, 
obtained by omitting the vertex (1, 1). 

Full factorial design: We number the points as        1,1,1,1,1,1,1,1 4321  TTTT xxxx . 

For this case we have 
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             (4.2.12)  

Using Eq. 4.2.10, we see that the standard error of the response varies between ˆ 2ys  at the 

origin and ˆ3 2ys  at the vertices. This case represents a fairly stable variation of the error of 

only 3  between the smallest and highest value in the domain of interest. 
 
Fractional factorial design: This time we have 

   ,

3    1-  1

1-  3    1

1-  1    3

  ,

1  1    1

1    1  1

1  1  1











































 XXX T                (4.2.13) 

and 
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At the origin the standard error is still ˆ 2ys  , at the three vertices we get ˆys  . This is 

expected, as with only 3 data points the response surface passes through the data, so that the 
error at the data points should be measurement error. However, at the fourth vertex (1,1), where 

the response surface represents extrapolation, we get ˆ3ys  . By setting the derivatives of 

the prediction error to zero, we easily find that the minimum error is at the centroid of the three 

data points, at )31,31(  . At the centroid ˆ 3ys  .Now the ratio between the smallest and 

highest standard errors is 5.2, with the highest errors in the region of extrapolation. 
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It can be checked that when we use a full factorial design for a linear polynomial in n 

variables, we get ,2 IXX nT  , where I is a unit of order n+ 1. This will give us 

  2 2 2
1 22

ˆ
1 ....

2y nn
s x x x


                     (4.2.15) 

so that the maximum prediction error (achieved at any vertex) is  ˆ 1 / 2 .nn   That is 

the quality of the fit becomes very good with increasing n. This reflects the fact that we 

use n2 points to calculate n + 1 coefficients, so that we average out the effect of noise. 
This estimate is misleading in actual situations, because rarely do we have a true linear 
model. When the response we measure is not linear, we will have modeling errors, also 
called bias errors which are not averaged out. 

If on the other hand, we take only enough measurements to calculate the 
coefficients, that is a saturated design with n + 1 coefficients, the error gets progressively 
bigger, because the portion of design space covered by the simplex containing the data 
points becomes progressively smaller. For example, for Example 4.2.1 the three points 
used for the saturated design form a triangle covering half of the design domain. For a 
three dimensional cube, 4 vertices will span a tetrahedron with a volume of one sixth of 
the volume of the enclosing cube. For the n dimensional case, the full-factorial design is 

the vertices of a cube of volume n2 , while n + 1 vertices obtained by perturbing one 

variable at a time from one vertex span a simplex of volume !.2 nn For example, for three 

dimensions, the maximum prediction error with a full-factorial design is 5.0 , while the 
maximum prediction error for the saturated 4-point fractional factorial design 

is 7 (Exercise 1). 
 
4.2.2 Designs for linear response surfaces 
For fitting linear response surfaces, we typically use designs with only two levels for 
each design variable, and the most popular fractional designs are the so called 
orthogonal designs. An orthogonal design is one where the matrix XTX is diagonal, and 
the popularity of these designs is partly based on the following theorem (see Myers and 
Montgomery, 1995 p. 284): 
For the first-order model (linear polynomial) and a fixed sample size. If all variables lie 
between -1 and 1, then the variance of the coefficients is minimized if the design is 
orthogonal, and all the variables are at their outer positive or negative limits (i.e., -1 or 
+1). 

It is easy to check that the full factorial design is orthogonal, but it is not trivial to 
produce orthogonal designs with smaller number of measurements. Various orthogonal 
designs can be found in books on design of experiments (see Myers and Montgomery, 
1995). To demonstrate the beneficial properties of orthogonal designs we will consider 
the two-dimensional case that we have studied in the previous example. In that example 
we fitted a two-variable linear polynomial first with a full factorial design and then with 
only 3 points. Fitting a linear polynomial in n variables on the basis of n+1 points requires 
the points to be linearly independent, so that they form a simplex. There is no 
redundancy in the design, in that the number of points is equal to the number of 
coefficients, and this is called a saturated design. In order to get an orthogonal design in 
this case, we have to give up on having the variables be only at the 1 levels, and 
instead opt for a perfect simplex, with the distance between all points being the same. 
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Example 4.2.2 
Consider the equilateral triangle which results in a scalar matrix (a scalar matrix is a scalar 

multiple of the unit matrix) XX T . It includes the points ( 21,23  ), ( 21,23  ), 

(0, 2 ). Check for the stability of the prediction variance and its maximum value in the unit 

square for the linear model 23121 xbxbby  . 

We have 
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Also 
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Using Eq. 4.2.10, we see that the standard error of the response varies between ˆ 3ys  at 

the origin and ˆys  at the vertices. This is an improvement, both in terms of stability and 

maximum standard error as compared to using 3 vertices of the unit square. However, this has 
come at the price of doing the measurements outside the unit square. As we will see later, this 
reduces the variance error, but increases the so called bias error. Bias error is the error 
introduced when the model that we try to fit is different from the true function. For example, if the 
model is linear and the true function is quadratic, the simplex model that we have used in this 
example is likely to increase the error rather than decrease it. 
 
4.2.3 Designs for quadratic response surfaces 
 
Quadratic polynomials in n variables have (n+1)(n+2)/2 coefficients. To fit quadratic 
response  surfaces we need at least that many points, and at least three levels for each 
design variable. For n > 3 it is possible to have the requisite number of points with only 
two levels. For example, a quadratic polynomial in 4 variables has 15 coefficients, and a 
full factorial design in two levels has 16 points. However, if we let only one design 
variable vary at a time, we can easily check that we are left with 3 coefficients and we 
need three different levels of that design variable. 

We can use a full-factorial 3-level design for the quadratic response surface, and 

this design will have n3 points. In most cases we cannot afford such designs even for 

fairly small values of n. For example, for n = 6, we require 72936  experiments. A 
popular compromise which reduces the number of experiments to close to the 2-level full 
factorial design is the central composite design (CCD) (Matlab ccdesign). 
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  The central composite design is composed of the n2 points of the full-
factorial two-level design, with all the variables at their extremes, plus a number of 
repetitions cn of the nominal design, plus the 2n points obtained by changing one design 

variable at a time by an amount . 
Figures 4.1 and 4.2 show the central composite design for n = 2 and n = 3. The 

value of  chosen in the figures are such that all the points outside the origin are of the 
same distance from the origin, so that we have a spherical design. This placement of the 
points is at the higher end of the typical choice for . A more popular choice is based on 
the concept of rotatability. The property of rotatability requires that the prediction 
variance be dependent only on the distance from the origin and not on the orientation 
with respect to the coordinate axes. 
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It can be shown that for the central composite design the rotatability requirement will be 
satisfied for 

   42n                (4.2.18) 

This equation gives 2 for n = 2, which is the same as the spherical design, 

however, for n = 3 we get 682.1 , which is slightly smaller than 3 . 
With either a spherical design or a rotatable one, we find that we need a number 

of replicate center points (points at the origin) to obtain good prediction variance stability. 
Figures 4.3 and 4.4 show contours of prediction variance with one central point and five 
central points, respectively. It is obvious that the stability of the latter is much better than 
the former. This need of central points with rotatable central composite designs is a 
possible problem with numerical experiments that give exactly the same answer when 
the experiment is repeated at the same point. Fortunately, however, with 1 there is no 
need for repeated central points. The case of 1 , which is called the face centered 
central composite design (FCCCD), is very attractive in a lot of applications, because it 
does not require using any other levels except (-1,0,1). Figure 4.5 shows contours of the 
prediction variance for the unit square with a single central point. It is seen that while the 
design is not rotatable, the stability is quite good. 
 



 56

 
 

 
  



 57

 
 For high dimensional spaces, the central composite design is no longer practical, 
because the number of points increases too fast. One possible solution is to keep the 2n 
runs which perturb a single variable, but to have an fractional factorial design to replace 

the n2 vertices. However, while the number of vertices increases as n2 , the number of 
polynomial coefficients increases as (n + 1)(n + 2)/2. Consequently, the type of fractional 
design used has to be modified as n increases. Instead there is a block design (Matlab 
bbdesign), first introduced by Box and Behnken (1960), where the number of 
experiments increases at the same rate as the number of polynomial coefficients. The 
two-variable block design is based on perturbing only two variables from the nominal 

value. That is, at each point, we have a pair (I, j), such hat ,1 ,1  ji xx and 0kx for 

all jkik  , . The two variables are perturbed in all four combination of 1 . For 
example, for n = 3 (the lowest dimension for which this design makes sense) we will 
have the following design points 
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    321     xxx  

    -1   -1   0 
    -1    1   0 
     1   -1   0 
     1    1   0 
    -1    0  -1 
    -1    0   1      (4.2.19) 
     1    0  -1 
     1    0   1 
     0   -1  -1 
     0   -1   1 
     0    1  -1 
     0    1   1 
     0    0   0 
 
where the last point is the central point, which may be repeated. Figure 4.6 shows this 
design. For the general case, we can select 2 variables out of n in 2)1( nn ways. For 
each such combination of two variables we have four design points, with each one of the 
variables taking the values of 1 . The total number of points in this block design 
is )1(2  nnnc . For large values of n this tends asymptotically to 4 times larger than the 

number of coefficients that we need to fit. However, this happens for very large values of 
n. For example, for n = 10 the number of coefficients is 66, while the number of points in 
the block design with one center point is 181 (for comparison, the number of points in 
the central composite design is 1045). 
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. 
 Block designs are spherical, in that all the points are at the same distance from 
the origin. For example, all the two-variable block design points are at a distance 

of 2 from the origin. For large values of n , this distance can be much smaller than the 

distance of the vertices (which is n ). Therefore, extrapolating to the vertices on the 
basis of the block design may be risky. 
 

4.3 Optimal Point Selection 
 
The special experimental designs that we considered so far, as well as other 
experimental designs available in the literature will satisfy our needs most of the time 
when we have a box-like domain. Often, however, we will not operate in a box-like 
domain because of various design constraints. In fact, it is desirable to invoke as many 
constraints as we can to reduce the volume of the design domain, because this typically 
increases the accuracy of the response surface. With an irregular design domain, the 
standard experimental designs are of no use to us. In fact, even with a box-like domain 
we may want to perform a number of experiments that does not correspond to any of the 
standard designs. In these cases we have to create our own experimental design, that is 
select an optimum set of design points. 
 
4.3.1 Minimum variance designs 
 The common approach to optimum point selection treats it as a combinatorial 
problem. We start by creating a pool of candidate points where we could possibly 
evaluate the response. We will assume that we can afford yn evaluations of the design, 

so that out of the pool we would like to select the `best' ny points. 
 There are various criteria as to what is the best set of points, and the most 
popular ones attempt to select the points so as to minimize the variance of the 
coefficients of the response surface. A key to that variance is the moment matrix 
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The determinant of the moment matrix 
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can be shown to be directly related to confidence region of the coefficients of the 
response surface (a confidence region for a coefficient is the region where the coefficient 
will lie with a given probability). In fact, it is inversely proportional to the square of the 
volume of the confidence region of the coefficients. So maximizing the determinant 
increases our confidence in the coefficients. This criterion is called D-optimality, and it is 
implemented in several software packages. 

Finding the D-optimal set of points from a given set of points is often a difficult 
combinatorial problem. For example, if we need to find 10 D-optimal points out of 50, we 

can have 1010
50

10









possible combinations. So the number of combinations becomes 

huge even for moderate size problems. Solution algorithms can rarely find the D-optimal 
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set, and usually settle on a suboptimal but good set. Some solution algorithms are based 
on replacing one point at a time and taking advantage of inexpensive expressions for 
updating the determinant when one points is changed. Genetic algorithms have also 
been used to find a good design based on D-optimality.  

Matlab has several functions that can be used for generating D-optimal designs. 
For box-like domain and linear and quadratic polynomials, one can use cordexch (name 
comes from using a coordinate exchange algorithm for searching for the D-optimal 
design).  
 
Example 4.3.1:  
------------------------------------------------------------------------------------------------------------------- 
We want to fit a quadratic polynomial in 2 variables (6 coefficients) and we want to see the effect 
of the number of points on the design and  the determinant of the moment matrix. Using cordexch 
we start with the default 3 levels and compare using the minimum number of six points to using 
10 points. 
With six points: 
>> ny=6;nbeta=6; 
>> [dce,x]=cordexch(2,ny,'quadratic'); 
>> dce' 
ans = 
     1     1    -1    -1     0     1 
    -1     1     1    -1    -1     0 
>> det(x'*x)/ny^nbeta 
ans = 0.0055 
 
With 12 points: 
>> ny=12; 
>> [dce,x]=cordexch(2,ny,'quadratic'); 
>> dce' 
ans = 
    -1     1    -1     0     1     0     1    -1     1     0    -1     1 
     1    -1    -1    -1     1     1    -1    -1     0     0     0     1 
>> det(x'*x)/ny^nbeta 
ans =0.0102 
 
We note that the points are selected on the boundary and that for 12 points with only three levels, 
inevitably some points are duplicated. We can increase the number of levels to try and avoid 
duplication. Increasing the number of levels to five, we insert additional points without eliminating 
any of the previous levels. 
 
>> [dce,x]=cordexch(2,ny,'quadratic','levels',[5 5]); 
>> dce' 
ans = 
    -1    -1     0    -1     1    -1    -1     0     1     1     0     0 
     1     1     1    -1    -1    -1     0    -1     1     0     0     0 
>> det(x'*x)/ny^nbeta 
ans =0.0087 
 
The routine still selected only the previous 3 levels, but because the problem of optimizing the 
design became more complex, an inferior solution was found. This can be remedied by letting the 
algorithm multiple tries from random starts. 
 
>> [dce,x]=cordexch(2,ny,'quadratic','levels',[5 5],'tries',10); 
>> dce' 
ans = 
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    -1     1     0     0     1    -1     1     0     1     1    -1    -1 
     1    -1    -1     1     1    -1    -1     0     1     0     1     0 
>> det(x'*x)/ny^nbeta 
ans =0.0102 
 
With six levels we can force it to use other points 
 
>> [dce,x]=cordexch(2,ny,'quadratic','levels',[6 6],'tries',10); 
>> dce' 
ans = 
     -1.0    1.0    1.0   -1.0    1.0    1.0   -1.0    1.0   -0.2    0.2   -1.0   -0.2 
     -1.0   -1.0    1.0    0.2   -1.0    0.2   -1.0    1.0   -1.0   -0.2    1.0    1.0      
>> det(x'*x)/ny^nbeta 
ans = 0.0094 
 
But we sacrifice accuracy. 
--------------------------------------------------------------------------------------------------------------------- 
 When the design domain is not box-like, we can produce candidate points with 
any method we like and then choose among them a D-optimal subset (Matlab function 
candexch1). For example, we may produce a full-factorial design in a box that contains 
our design domain, and then prune any points that fall outside. Of course, the number of 
levels needs to be sufficiently high to ensure that we are left with sufficient number of 
points. 

Another criterion is called A-optimality. It is based on the fact that the individual 
variances of the coefficients of the response surface are proportional to the diagonal 

elements of 1M . A-optimality seeks to minimize the sum of these elements, that is the 
trace of 1M . 
 Instead of focusing on minimizing the variance of the coefficients, it may be more 
reasonable to minimize the prediction variance. We first define the scaled prediction 
variance 
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A criterion that seeks to minimize the maximum value of )(x in the domain defined by 
thedata is called G-optimality. It can be shown that under the standard statistical 
assumptions about the error that the maximum prediction variance in the domain defined 
by the data points is always larger or equal to the number of terms in the response 
surface, n , (see Myers and Montogemery, 1995, p. 367). Therefore, with G-optimality 

we have a target to shoot for. We would like to seek a set of points that will bring the 
maximum close to n . This value is achieved by a two-level full-factorial design for a 

linear model, see Example 4.2.1. 
 
4.3.2 Minimum bias designs 
 Variance based optimality criteria do not cater to errors due to the fact that is not 
possible to fit accurately the true response by the model used in the response surface. 
This error is called modeling error by engineers and bias error by statisticians. To 
consider this errors we need to introduce the concepts of design moments. Denote by R 

                                                 
1 To avoid having duplicate points, Matlab suggests to find the comment “Find maximum change in the 
determinant” and insert immediately after  dd(rowlist(rowlist>0)) = -Inf; 
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the region of interest to us in terms of predicting the response, and denote by i the first 

moments of the domain, that is 

   ,,,,,,1   ,
1

nidRx
V R ii         (4.3.4) 

 
where V is the volume of the domain, that is 

    R
dRV ,         (4.3.5) 

 
Similarly, we denote second moments as ij where 

   
R jiij dRxx

V
,

1         (4.3.6) 

 
and so on. Repeated indices are used to define powers, so that, for example 
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R ji nidRxx

V
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We can similarly define the moments associated with the data points. Denoting by ikx the 

ith coordinate of the kth data point, we define 
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with similar definition for higher moments. For example 
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Now consider the possibility that we use one model, but suspect that the response may 

be described by a higher order model. Denote the vectors mx associated with the first 

model and second models by mx1 and mx2 , respectively. Then the matrix mTm xx 21 defines a 
matrix of products of the functions (usually monomials used in the two models). The 
integral of this matrix is a matrix of moments 
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Similarly, the matrix can be averaged over the data points 
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              (4.3.11) 

 
For a minimum bias design we need for the matrices to be the same (Myers and 
Montgomery, p. 411). That is 
 

   ,  and   , 12121111
 MMMM               (4.3.12) 

 
In contrast to the minimum variance designs that tend to put points in the periphery of 
the design domain, minimum bias design tend to bring them closer to the centroid. 
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Minimum bias designs often also have low prediction variance, but the reverse is not 
true. That is, minimum variance designs tend to have large bias errors. Compromise 

designs, in which 11M and 12M are  slightly larger than 
11M , and 

12M  , respectively, are 
occasionally used. 
 
Example 4.3.2 
 
We want to fit a linear model to a function in the unit square based on four measurements, while 
we know that the exact function may be quadratic. Construct a 4-point minimum bias design and 

compare it to the full factorial design for fitting the function .2
2

2
1 xxy   

. 
For the linear model and quadratic model we have 

    2 2
1 1 2 2 1 2 1 1 2 21, , ,    1, , , , , ,

TTm mx x x x x x x x    x x                (4.3.13) 

so that 
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For the unit square we have 
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And 
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Note that because of the symmetry of the domain, all the integrals with odd powers of 

either 1x or 2x are zero. Because mx1 is a subset of mx2 , we do not need to take care of 
11M , and it 

is enough to satisfy the condition .1212 MM   

If we pick 4 points that are symmetric with respect to both the 1x axis and the 2x axis, then 

the sums involving odd powers will vanish, so that all the zeros in 12M will match the zeroes 

in 
12M  . There are two possible choices: One is the set of points  ,0,r  r,0 where r is a 

constant. The second is the set  rr  , , with a different r than the first set. The value of r is 

calculated by setting the nonzero integrals in 
12M equal to the corresponding sums. That is, 
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For the first set these equations gives us 

          .8165.0or            ,
3

1

4

1 22  rrr     (4.3.18) 

For the second set we get instead 
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    .5774.0or              ,
3

1

4

1 2222  rrrrr     (4.3.19) 

The two possible minimum-bias designs are  0,8165.0 ,  8165.0,0  or  5774.0,5774.0  . 

 Now let us compare these two sets to the full factorial design  1,1  for fitting the 

function 2
2

2
1 xx  . For either set, the value of the function at each point is  32 so that the 

response surface is also  32
^

y . For the full factorial design the value of the function at each 

point is 2, so that 2
^

y . Obviously the minimum bias design gives a better fit. 

To appreciate that the fit is optimal, consider fitting the function by a general linear 
polynomial. Because of the double symmetry of the function, all the linear terms should vanish, so 

that the response surface should indeed be of the form by 
^

. The mean square error over the 

region is  then  
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Differentiating the error with respect to b and setting to zero, confirms the fact that b = 2/3 gives 

the minimum error, .4582 rmse In contrast, b = 2 gives 45882 rmse . 

 
If this example appears impressive, note that we did not have any noise at all in the 
function, and the example was selected to make the minimum bias design look good. In 
other cases the results may be less dramatic, and a compromise between minimum bias 
and minimum variance may be called for. 
 

4.4 Space Filling Designs 
 
Variance minimizing designs are targeted at problems where noise in the data is the 
main problem. When bias errors are of main concern, there is an intuitive appeal to 
designs that leave the smallest holes in the design space. There are several popular 
methods that attempt to achieve this goal. 
 Latin hypercube sampling (LHS) designs start with the principle that if we have ny 
data points, then we should strive to have each variable have ny levels. This can be 
done by dividing the range of each variable into ny equal intervals and requiring that the 
variable has a level in each. Alternately, we can divide the range into ny-1 intervals and 
require that the variable has a value at the ny boundaries.  This can still leave out large 
holes in the design space. So normally, LHS design is accompanied by a procedure that 
will optimize it to avoid large holes. Figure 4.4.4 compares three  designs with 9 points. 
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Figure 4.4.1 Designs with 9 poinnts. The leftmost design is full factorial design with three levels. The 
middle one is a random LHS design, and the rightmost one is an LHS design optimized for maximum 
minimum distance between points. 
The full factorial design has only three levels for each variable, the random LHS design 
has substantial empty regions on the top right and bottom left areas while the optimized 
LHS design has more  uniform coverage. 
 It is not clear that for this particular case the LHS design is better than the full 
factorial design, because with a small rotation of the coordinate axes the full-factorial 
design would look better. Consequently, this is still a matter of controversy. However, 
optimal LHS designs allow us to specify any number of points, instead of being limited to 
special numbers associated with full-factorial or most of the other designs discussed 
earlier. 
 Matlab’s lhsdesign function produces LHS design with choice of two optimization 
strategies. One maximizes the minimum distance and the other minimizes a measure of 
the correlation between the variables. 
 
Example 4.4.1: 
 
Generate two 7-point LHS designs in two dimensions using the two criteria and 
compare.  
 
>> x=lhsdesign(7,2,'criterion','correlation','iterations',1000) 
x1=x(:,1); 
>> x2=x(:,2); 
>> plot(x1,x2,'r+') 
>> x=lhsdesign(7,2,'criterion','maximin','iterations',1000); 
>> hold on 
>> x2b=x(:,2); 
>> x1b=x(:,1); 
>> plot(x1b,x2b,'o') 
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Figure 4.4.21: LHS designs. Plus symbols denote minimized correlation design and circles denote 
maximum minimum distance design. 
It can be seen from the figure that there is not a great deal of difference between the 
designs. The minimum distance between the plus symbols (minimized correlation) is 
obviously somewhat smaller than between the circles (maximized minimum distance). 
The change in correlation between x1 and x2 is less obvious. It is -0.0714 for the pluses 
and -0.0777 for the circles. 

4.5 Exercises 
 
1. Find the maximum prediction variance in the unit cube for a linear polynomial, when 
the data is given in the four points (-1,-1,-1), (-1,-1,1), (-1,1,-1), (1,-1,-1). 
2. Find the three points in the unit square that will minimize the maximum prediction 
variance in the unit square for a linear response surface. 
3. For Example 4.3.1, find the maximum prediction variance for the minimum bias 
designs and compare it to that of the full factorial design. 
4(*). Construct a minimum-bias central composite design. You may need to replace the 
central point with 4 points near the origin. 


