
 48

Chapter 4

Design of Experiments

4.1 Introduction

In Chapter 3 we have considered the location of the data points fixed and studied how to
pass a good response surface through the given data. However, the choice of points
where experiments (whether numerical or physical) are performed has very large effect
on the accuracy of the response surface, and in this chapter we will explore methods for
selecting a good set of points for carrying out experiments. The selection of these points
is known as design of experiments.

 Design of experiments is inherently a multi-objective optimization problem. We
would like to select points so that we maximize the accuracy of the information that we
get from the experiments. We usually also would like to minimize the number of
experiments, because these are expensive. In some cases the objective of the
experiments is to estimate some physical characteristics, and in these cases, we would
like to maximize the accuracy of these characteristics. However, in the design
applications, which are of primary interest to us, we would like to construct a response
surface that could be used to predict the performance of other designs. In this case, our
primary goal is to choose the points for the experiments so as to maximize the predictive
capability of the model.

 A lot of work has been done on experimental designs in regular design domains.
Such domains occur when each design variable is bounded by simple lower and upper
limits, so that the design domain is box like. Occasionally, spherical domains are also
considered. Sometimes each design variable can take only two or three values, often
called levels. These levels are termed low, nominal and high. In other cases, the design
space is approximately box like, but it is possible to carry experiments with the design
variables taking values outside the box for the purpose of improving the properties of the
response surface. In the next section we will summarize briefly some of the properties of
experimental design in box-like domains, and present some of the more popular
experimental designs in such domains.

 For design optimization, however, it is common for us to try and create response
surfaces in irregularly shaped domains. In that case, we have to create our own
experimental design. Section 4.3 will discuss several techniques available for finding
good designs in an irregular shaped domain.

 49

4.2 Design of Experiments in Boxlike Domains

In this case the region of interest is defined by simple lower and upper limits on each of
the design variables

 ,,....,1 ,' nixxx iuiil  (4.2.1)

where ilx , and iux are the lower and upper limits, respectively, on the design variable '
ix .

The prime indicates that the design variable has not been normalized. For convenience
we normalize the design variable as

 ,
2 '

iliu

inili
i xx

xxx
x




 (4.2.2)

The normalized variables are then all bound in the cube
 ,11  ix (4.2.3)

4.2.1 Interpolation, extrapolation and prediction variance
The simplest experimental design for the cube is one experiment at each one of
the n2 vertices (Matlab ff2n). This design is called a 2-level full factorial design, where the
word `factorial' refers to 'factor', a synonym for design variable, rather than the factorial

function. For a small number of design variables, n2 may be a manageable number of
experiments. More general full-factorial designs may have different number of levels in
different directions (Matlab fullfact). However, for larger values of n, we usually cannot
afford even the two-level full factorial design. For example, for 10n , we

get .10242 n For high values of n we may consider fractional factorial designs, which do
not include all the vertices (see Matlab’s fracfact).
 If we want to fit a linear polynomial to the data, it certainly appears that we will

not need anywhere near n2 points for a good fit. For example, for n = 10, we have 11
coefficients to fit, and using 1024 experiments to fit these 11 coefficients may appear
excessive even if we could afford that many experiments. However, with fewer
experiments we lose an important property of using the response surface as an
interpolation tool rather than as a tool for extrapolation. To understand that we will first
define what we mean by interpolation and extrapolation.
 Intuitively, we say that our response surface will interpolate the data at a point, if
that point is `completely surrounded' by data points. In one dimensional space, this
means that there is a point to the right of the interpolated point, as well as a point to the
left of it. In two-dimensional space we would like the point to be surrounded by at least 3
points, so that it falls inside the triangle defined by these 3 points. Similarly, in three-
dimensional space, we would like the point to be surrounded by at least 4 points, that is
lie inside the tetrahedron defined by these 4 points. In n-dimensional space, we would
like the point to be surrounded by n+1 data points, or in other words, fit inside the
simplex defined by the n+1 points. A simplex is the generalization of a triangle and a

 50

tetrahedron; a shape in n dimensional space defined by n+ 1 linearly independent
points.
 Given a set of n + 1 points in n-dimensional space, 1 2 1, ,....., nx x x , the simplex

defined by these points includes all the points that can be obtained by a convex sum of
these points. That is, it includes any point x, which may be written as

1

1

,
n

i i
i






x x (4.2.4)

With

 





1

1

,1
n

i
i and ,0i ,1,,,,,,1  ni (4.2.5)

Given a set of yn data points, the set of points where the response surface performs

interpolation is the union of all of these simplexes, which is also called the convex hull of
the data points.
 One measure that we can use to estimate the loss of prediction accuracy
incurred when we use extrapolation is the prediction variance. Recall that the linear
regression model that we use may be written as

1

ˆ (),
n

i i
i

y b





 x (4.2.6)

Defining the vector ()mx by

 () (),m
i ix  x (4.2.7)

we can write Eq. 4.2.6 as

 ()ˆ ,m Ty  x b (4.2.8)

With noise in the data, b has some randomness to it, while ()mx is deterministic. Using

Eq. 3.2.29, it is easy to show that the variance (square of the standard deviation) of ŷ is
given as

   1() () 2 () ()ˆ[()] ,m T m m T T m
bVar y X X


  x x x x x (4.2.9)

with the standard deviation of ˆ()y x being the square root of this expression. If we use the

estimate̂ instead of , we get the standard error ys of ŷ

   1() ()ˆ m T T m
ys X X


 x x (4.2.10)

The standard error gives us an estimate of the sensitivity of the response surface
prediction at different points to errors in the data. We would like to select points so as to
make this error as small as possible everywhere in the domain where we would like to
estimate the response.
Intuitively, it appears that this would be helped if the standard error did not vary much
from one point to another. This property is called stability. The following example
demonstrates the effect of using extrapolation on the stability of the standard error.

 51

Example 4.2.1
Consider the problem of fitting a linear polynomial 23121 xbxbby  to data in the square

11 ,11 21  xx . Compare the maximum value of the prediction variance for two cases;

(a) Full factorial design (points at all 4 vertices). (b) A fractional design including 3 vertices,
obtained by omitting the vertex (1, 1).

Full factorial design: We number the points as        1,1,1,1,1,1,1,1 4321  TTTT xxxx .

For this case we have

1 1 1
1 0 0

1 1 1
, 4 0 1 0

1 1 1
0 0 1

1 1 1

TX X X

  
         
    

 

, (4.2.11)

Also


















2

1
)(

1

x

xx m ,  ),1(25.0 2
2

2
1

)(1)(xxxXXx mTTm 


 (4.2.12)

Using Eq. 4.2.10, we see that the standard error of the response varies between ˆ 2ys  at the

origin and ˆ3 2ys  at the vertices. This case represents a fairly stable variation of the error of

only 3 between the smallest and highest value in the domain of interest.

Fractional factorial design: This time we have

 ,

3 1- 1

1- 3 1

1- 1 3

 ,

1 1 1

1 1 1

1 1 1











































 XXX T (4.2.13)

and

  1
2 1 1

0.25 1 2 1 ,

1 1 2

TX X


 
   
  

    1() () 2 2
1 2 1 2 1 20.5 1 ,m T T mX X x x x x x x


     x x (4.2.14)

At the origin the standard error is still ˆ 2ys  , at the three vertices we get ˆys  . This is

expected, as with only 3 data points the response surface passes through the data, so that the
error at the data points should be measurement error. However, at the fourth vertex (1,1), where

the response surface represents extrapolation, we get ˆ3ys  . By setting the derivatives of

the prediction error to zero, we easily find that the minimum error is at the centroid of the three

data points, at)31,31( . At the centroid ˆ 3ys  .Now the ratio between the smallest and

highest standard errors is 5.2, with the highest errors in the region of extrapolation.

 52

It can be checked that when we use a full factorial design for a linear polynomial in n

variables, we get ,2 IXX nT  , where I is a unit of order n+ 1. This will give us

 2 2 2
1 22

ˆ
1

2y nn
s x x x


     (4.2.15)

so that the maximum prediction error (achieved at any vertex) is  ˆ 1 / 2 .nn  That is

the quality of the fit becomes very good with increasing n. This reflects the fact that we

use n2 points to calculate n + 1 coefficients, so that we average out the effect of noise.
This estimate is misleading in actual situations, because rarely do we have a true linear
model. When the response we measure is not linear, we will have modeling errors, also
called bias errors which are not averaged out.

If on the other hand, we take only enough measurements to calculate the
coefficients, that is a saturated design with n + 1 coefficients, the error gets progressively
bigger, because the portion of design space covered by the simplex containing the data
points becomes progressively smaller. For example, for Example 4.2.1 the three points
used for the saturated design form a triangle covering half of the design domain. For a
three dimensional cube, 4 vertices will span a tetrahedron with a volume of one sixth of
the volume of the enclosing cube. For the n dimensional case, the full-factorial design is

the vertices of a cube of volume n2 , while n + 1 vertices obtained by perturbing one

variable at a time from one vertex span a simplex of volume !.2 nn For example, for three

dimensions, the maximum prediction error with a full-factorial design is 5.0 , while the
maximum prediction error for the saturated 4-point fractional factorial design

is 7 (Exercise 1).

4.2.2 Designs for linear response surfaces
For fitting linear response surfaces, we typically use designs with only two levels for
each design variable, and the most popular fractional designs are the so called
orthogonal designs. An orthogonal design is one where the matrix XTX is diagonal, and
the popularity of these designs is partly based on the following theorem (see Myers and
Montgomery, 1995 p. 284):
For the first-order model (linear polynomial) and a fixed sample size. If all variables lie
between -1 and 1, then the variance of the coefficients is minimized if the design is
orthogonal, and all the variables are at their outer positive or negative limits (i.e., -1 or
+1).

It is easy to check that the full factorial design is orthogonal, but it is not trivial to
produce orthogonal designs with smaller number of measurements. Various orthogonal
designs can be found in books on design of experiments (see Myers and Montgomery,
1995). To demonstrate the beneficial properties of orthogonal designs we will consider
the two-dimensional case that we have studied in the previous example. In that example
we fitted a two-variable linear polynomial first with a full factorial design and then with
only 3 points. Fitting a linear polynomial in n variables on the basis of n+1 points requires
the points to be linearly independent, so that they form a simplex. There is no
redundancy in the design, in that the number of points is equal to the number of
coefficients, and this is called a saturated design. In order to get an orthogonal design in
this case, we have to give up on having the variables be only at the 1 levels, and
instead opt for a perfect simplex, with the distance between all points being the same.

 53

Example 4.2.2
Consider the equilateral triangle which results in a scalar matrix (a scalar matrix is a scalar

multiple of the unit matrix) XX T . It includes the points (21,23 ), (21,23 ),

(0, 2). Check for the stability of the prediction variance and its maximum value in the unit

square for the linear model 23121 xbxbby  .

We have





















2 0 1

21- 23- 1

21- 23 1

X ,


















3 0 0

0 3 0

0 0 3

XX T . (4.2.16)

Also

    1() () () 2 2
1 1 2

2

1
1

, 1 .
3

m m T T mx X X x x

x


 
     
 
 

x x x (4.2.17)

Using Eq. 4.2.10, we see that the standard error of the response varies between ˆ 3ys  at

the origin and ˆys  at the vertices. This is an improvement, both in terms of stability and

maximum standard error as compared to using 3 vertices of the unit square. However, this has
come at the price of doing the measurements outside the unit square. As we will see later, this
reduces the variance error, but increases the so called bias error. Bias error is the error
introduced when the model that we try to fit is different from the true function. For example, if the
model is linear and the true function is quadratic, the simplex model that we have used in this
example is likely to increase the error rather than decrease it.

4.2.3 Designs for quadratic response surfaces

Quadratic polynomials in n variables have (n+1)(n+2)/2 coefficients. To fit quadratic
response surfaces we need at least that many points, and at least three levels for each
design variable. For n > 3 it is possible to have the requisite number of points with only
two levels. For example, a quadratic polynomial in 4 variables has 15 coefficients, and a
full factorial design in two levels has 16 points. However, if we let only one design
variable vary at a time, we can easily check that we are left with 3 coefficients and we
need three different levels of that design variable.

We can use a full-factorial 3-level design for the quadratic response surface, and

this design will have n3 points. In most cases we cannot afford such designs even for

fairly small values of n. For example, for n = 6, we require 72936  experiments. A
popular compromise which reduces the number of experiments to close to the 2-level full
factorial design is the central composite design (CCD) (Matlab ccdesign).

 54

 The central composite design is composed of the n2 points of the full-
factorial two-level design, with all the variables at their extremes, plus a number of
repetitions cn of the nominal design, plus the 2n points obtained by changing one design

variable at a time by an amount .
Figures 4.1 and 4.2 show the central composite design for n = 2 and n = 3. The

value of chosen in the figures are such that all the points outside the origin are of the
same distance from the origin, so that we have a spherical design. This placement of the
points is at the higher end of the typical choice for . A more popular choice is based on
the concept of rotatability. The property of rotatability requires that the prediction
variance be dependent only on the distance from the origin and not on the orientation
with respect to the coordinate axes.

 55

It can be shown that for the central composite design the rotatability requirement will be
satisfied for

 42n (4.2.18)

This equation gives 2 for n = 2, which is the same as the spherical design,

however, for n = 3 we get 682.1 , which is slightly smaller than 3 .
With either a spherical design or a rotatable one, we find that we need a number

of replicate center points (points at the origin) to obtain good prediction variance stability.
Figures 4.3 and 4.4 show contours of prediction variance with one central point and five
central points, respectively. It is obvious that the stability of the latter is much better than
the former. This need of central points with rotatable central composite designs is a
possible problem with numerical experiments that give exactly the same answer when
the experiment is repeated at the same point. Fortunately, however, with 1 there is no
need for repeated central points. The case of 1 , which is called the face centered
central composite design (FCCCD), is very attractive in a lot of applications, because it
does not require using any other levels except (-1,0,1). Figure 4.5 shows contours of the
prediction variance for the unit square with a single central point. It is seen that while the
design is not rotatable, the stability is quite good.

 56

 57

 For high dimensional spaces, the central composite design is no longer practical,
because the number of points increases too fast. One possible solution is to keep the 2n
runs which perturb a single variable, but to have an fractional factorial design to replace

the n2 vertices. However, while the number of vertices increases as n2 , the number of
polynomial coefficients increases as (n + 1)(n + 2)/2. Consequently, the type of fractional
design used has to be modified as n increases. Instead there is a block design (Matlab
bbdesign), first introduced by Box and Behnken (1960), where the number of
experiments increases at the same rate as the number of polynomial coefficients. The
two-variable block design is based on perturbing only two variables from the nominal

value. That is, at each point, we have a pair (I, j), such hat ,1 ,1  ji xx and 0kx for

all jkik  , . The two variables are perturbed in all four combination of 1 . For
example, for n = 3 (the lowest dimension for which this design makes sense) we will
have the following design points

 58

 321 xxx

 -1 -1 0
 -1 1 0
 1 -1 0
 1 1 0
 -1 0 -1
 -1 0 1 (4.2.19)
 1 0 -1
 1 0 1
 0 -1 -1
 0 -1 1
 0 1 -1
 0 1 1
 0 0 0

where the last point is the central point, which may be repeated. Figure 4.6 shows this
design. For the general case, we can select 2 variables out of n in 2)1(nn ways. For
each such combination of two variables we have four design points, with each one of the
variables taking the values of 1 . The total number of points in this block design
is)1(2  nnnc . For large values of n this tends asymptotically to 4 times larger than the

number of coefficients that we need to fit. However, this happens for very large values of
n. For example, for n = 10 the number of coefficients is 66, while the number of points in
the block design with one center point is 181 (for comparison, the number of points in
the central composite design is 1045).

 59

.
 Block designs are spherical, in that all the points are at the same distance from
the origin. For example, all the two-variable block design points are at a distance

of 2 from the origin. For large values of n , this distance can be much smaller than the

distance of the vertices (which is n). Therefore, extrapolating to the vertices on the
basis of the block design may be risky.

4.3 Optimal Point Selection

The special experimental designs that we considered so far, as well as other
experimental designs available in the literature will satisfy our needs most of the time
when we have a box-like domain. Often, however, we will not operate in a box-like
domain because of various design constraints. In fact, it is desirable to invoke as many
constraints as we can to reduce the volume of the design domain, because this typically
increases the accuracy of the response surface. With an irregular design domain, the
standard experimental designs are of no use to us. In fact, even with a box-like domain
we may want to perform a number of experiments that does not correspond to any of the
standard designs. In these cases we have to create our own experimental design, that is
select an optimum set of design points.

4.3.1 Minimum variance designs
 The common approach to optimum point selection treats it as a combinatorial
problem. We start by creating a pool of candidate points where we could possibly
evaluate the response. We will assume that we can afford yn evaluations of the design,

so that out of the pool we would like to select the `best' ny points.
 There are various criteria as to what is the best set of points, and the most
popular ones attempt to select the points so as to minimize the variance of the
coefficients of the response surface. A key to that variance is the moment matrix

y

T

n

XX
M  (4.3.1)

The determinant of the moment matrix

T

n
y

X X
M

n 
 (4.3.2)

can be shown to be directly related to confidence region of the coefficients of the
response surface (a confidence region for a coefficient is the region where the coefficient
will lie with a given probability). In fact, it is inversely proportional to the square of the
volume of the confidence region of the coefficients. So maximizing the determinant
increases our confidence in the coefficients. This criterion is called D-optimality, and it is
implemented in several software packages.

Finding the D-optimal set of points from a given set of points is often a difficult
combinatorial problem. For example, if we need to find 10 D-optimal points out of 50, we

can have 1010
50

10









possible combinations. So the number of combinations becomes

huge even for moderate size problems. Solution algorithms can rarely find the D-optimal

 60

set, and usually settle on a suboptimal but good set. Some solution algorithms are based
on replacing one point at a time and taking advantage of inexpensive expressions for
updating the determinant when one points is changed. Genetic algorithms have also
been used to find a good design based on D-optimality.

Matlab has several functions that can be used for generating D-optimal designs.
For box-like domain and linear and quadratic polynomials, one can use cordexch (name
comes from using a coordinate exchange algorithm for searching for the D-optimal
design).

Example 4.3.1:

We want to fit a quadratic polynomial in 2 variables (6 coefficients) and we want to see the effect
of the number of points on the design and the determinant of the moment matrix. Using cordexch
we start with the default 3 levels and compare using the minimum number of six points to using
10 points.
With six points:
>> ny=6;nbeta=6;
>> [dce,x]=cordexch(2,ny,'quadratic');
>> dce'
ans =
 1 1 -1 -1 0 1
 -1 1 1 -1 -1 0
>> det(x'*x)/ny^nbeta
ans = 0.0055

With 12 points:
>> ny=12;
>> [dce,x]=cordexch(2,ny,'quadratic');
>> dce'
ans =
 -1 1 -1 0 1 0 1 -1 1 0 -1 1
 1 -1 -1 -1 1 1 -1 -1 0 0 0 1
>> det(x'*x)/ny^nbeta
ans =0.0102

We note that the points are selected on the boundary and that for 12 points with only three levels,
inevitably some points are duplicated. We can increase the number of levels to try and avoid
duplication. Increasing the number of levels to five, we insert additional points without eliminating
any of the previous levels.

>> [dce,x]=cordexch(2,ny,'quadratic','levels',[5 5]);
>> dce'
ans =
 -1 -1 0 -1 1 -1 -1 0 1 1 0 0
 1 1 1 -1 -1 -1 0 -1 1 0 0 0
>> det(x'*x)/ny^nbeta
ans =0.0087

The routine still selected only the previous 3 levels, but because the problem of optimizing the
design became more complex, an inferior solution was found. This can be remedied by letting the
algorithm multiple tries from random starts.

>> [dce,x]=cordexch(2,ny,'quadratic','levels',[5 5],'tries',10);
>> dce'
ans =

 61

 -1 1 0 0 1 -1 1 0 1 1 -1 -1
 1 -1 -1 1 1 -1 -1 0 1 0 1 0
>> det(x'*x)/ny^nbeta
ans =0.0102

With six levels we can force it to use other points

>> [dce,x]=cordexch(2,ny,'quadratic','levels',[6 6],'tries',10);
>> dce'
ans =
 -1.0 1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 -0.2 0.2 -1.0 -0.2
 -1.0 -1.0 1.0 0.2 -1.0 0.2 -1.0 1.0 -1.0 -0.2 1.0 1.0
>> det(x'*x)/ny^nbeta
ans = 0.0094

But we sacrifice accuracy.

 When the design domain is not box-like, we can produce candidate points with
any method we like and then choose among them a D-optimal subset (Matlab function
candexch1). For example, we may produce a full-factorial design in a box that contains
our design domain, and then prune any points that fall outside. Of course, the number of
levels needs to be sufficiently high to ensure that we are left with sufficient number of
points.

Another criterion is called A-optimality. It is based on the fact that the individual
variances of the coefficients of the response surface are proportional to the diagonal

elements of 1M . A-optimality seeks to minimize the sum of these elements, that is the
trace of 1M .
 Instead of focusing on minimizing the variance of the coefficients, it may be more
reasonable to minimize the prediction variance. We first define the scaled prediction
variance

 mTmT
y

y xXXxn
xyVarn

x 1
2

^

)(
)(

)(


 (4.3.3)

A criterion that seeks to minimize the maximum value of)(x in the domain defined by
thedata is called G-optimality. It can be shown that under the standard statistical
assumptions about the error that the maximum prediction variance in the domain defined
by the data points is always larger or equal to the number of terms in the response
surface, n , (see Myers and Montogemery, 1995, p. 367). Therefore, with G-optimality

we have a target to shoot for. We would like to seek a set of points that will bring the
maximum close to n . This value is achieved by a two-level full-factorial design for a

linear model, see Example 4.2.1.

4.3.2 Minimum bias designs
 Variance based optimality criteria do not cater to errors due to the fact that is not
possible to fit accurately the true response by the model used in the response surface.
This error is called modeling error by engineers and bias error by statisticians. To
consider this errors we need to introduce the concepts of design moments. Denote by R

1 To avoid having duplicate points, Matlab suggests to find the comment “Find maximum change in the
determinant” and insert immediately after dd(rowlist(rowlist>0)) = -Inf;

 62

the region of interest to us in terms of predicting the response, and denote by i the first

moments of the domain, that is

 ,,,,,,1 ,
1

nidRx
V R ii   (4.3.4)

where V is the volume of the domain, that is

  R
dRV , (4.3.5)

Similarly, we denote second moments as ij where

 
R jiij dRxx

V
,

1 (4.3.6)

and so on. Repeated indices are used to define powers, so that, for example

  
R ji nidRxx

V
n,,,,,,1,j ,,,,,,1 ,

1
1112 (4.3.7)

We can similarly define the moments associated with the data points. Denoting by ikx the

ith coordinate of the kth data point, we define

 n,,,,,,1,i ,
1

1

 


yn

k
ik

y
i x

n
m (4.3.8)

with similar definition for higher moments. For example

 ,
1

2
1

3
11112 k

n

k
k

y

xx
n

m
y




 (4.3.9)

Now consider the possibility that we use one model, but suspect that the response may

be described by a higher order model. Denote the vectors mx associated with the first

model and second models by mx1 and mx2 , respectively. Then the matrix mTm xx 21 defines a
matrix of products of the functions (usually monomials used in the two models). The
integral of this matrix is a matrix of moments

 
R

mTm dRxx
V

M ,
1

2112
 (4.3.10)

Similarly, the matrix can be averaged over the data points

  



yn

k
k

mTm

y

xx
n

M
1

2112 ,
1

 (4.3.11)

For a minimum bias design we need for the matrices to be the same (Myers and
Montgomery, p. 411). That is

 , and , 12121111
 MMMM  (4.3.12)

In contrast to the minimum variance designs that tend to put points in the periphery of
the design domain, minimum bias design tend to bring them closer to the centroid.

 63

Minimum bias designs often also have low prediction variance, but the reverse is not
true. That is, minimum variance designs tend to have large bias errors. Compromise

designs, in which 11M and 12M are slightly larger than 
11M , and 

12M , respectively, are
occasionally used.

Example 4.3.2

We want to fit a linear model to a function in the unit square based on four measurements, while
we know that the exact function may be quadratic. Construct a 4-point minimum bias design and

compare it to the full factorial design for fitting the function .2
2

2
1 xxy 

.
For the linear model and quadratic model we have

   2 2
1 1 2 2 1 2 1 1 2 21, , , 1, , , , , ,

TTm mx x x x x x x x    x x (4.3.13)

so that

2 2
1 2 1 1 2 2

2 3 2 2
1 2 1 1 1 2 1 1 2 1 2

2 2 2 3
2 1 2 2 1 2 1 2 2

1

 ,

m mT

x x x x x x

x x x x x x x x x

x x x x x x x x x

 
 

  
 
 

x x (4.3.14)

For the unit square we have

 ,4
1

1

21

1

1

 


dxdxV (4.3.15)

And

 ,

0 0 0
3

1
 0 0

0 0 0 0
3

1
 0

3

1
 0

3

1
 0 0 1

1
21

1

1

21

1

1

12

























 


dxdxxx
V

M mTm (4.3.16)

Note that because of the symmetry of the domain, all the integrals with odd powers of

either 1x or 2x are zero. Because mx1 is a subset of mx2 , we do not need to take care of 
11M , and it

is enough to satisfy the condition .1212 MM 

If we pick 4 points that are symmetric with respect to both the 1x axis and the 2x axis, then

the sums involving odd powers will vanish, so that all the zeros in 12M will match the zeroes

in 
12M . There are two possible choices: One is the set of points  ,0,r  r,0 where r is a

constant. The second is the set  rr  , , with a different r than the first set. The value of r is

calculated by setting the nonzero integrals in 
12M equal to the corresponding sums. That is,

 



4

1

2
2

4

1

2
1 .

3

1

4

1
 ,

3

1

4

1

i
i

i
i xx (4.3.17)

For the first set these equations gives us

   .8165.0or ,
3

1

4

1 22  rrr (4.3.18)

For the second set we get instead

 64

   .5774.0or ,
3

1

4

1 2222  rrrrr (4.3.19)

The two possible minimum-bias designs are  0,8165.0 ,  8165.0,0  or  5774.0,5774.0  .

 Now let us compare these two sets to the full factorial design  1,1  for fitting the

function 2
2

2
1 xx  . For either set, the value of the function at each point is  32 so that the

response surface is also  32
^

y . For the full factorial design the value of the function at each

point is 2, so that 2
^

y . Obviously the minimum bias design gives a better fit.

To appreciate that the fit is optimal, consider fitting the function by a general linear
polynomial. Because of the double symmetry of the function, all the linear terms should vanish, so

that the response surface should indeed be of the form by 
^

. The mean square error over the

region is then

   


1

1

2
21

22
2

2
1

1

1

2 .
3

4

45

28

4

1
bbdxdxbxxerms (4.3.20)

Differentiating the error with respect to b and setting to zero, confirms the fact that b = 2/3 gives

the minimum error, .4582 rmse In contrast, b = 2 gives 45882 rmse .

If this example appears impressive, note that we did not have any noise at all in the
function, and the example was selected to make the minimum bias design look good. In
other cases the results may be less dramatic, and a compromise between minimum bias
and minimum variance may be called for.

4.4 Space Filling Designs

Variance minimizing designs are targeted at problems where noise in the data is the
main problem. When bias errors are of main concern, there is an intuitive appeal to
designs that leave the smallest holes in the design space. There are several popular
methods that attempt to achieve this goal.
 Latin hypercube sampling (LHS) designs start with the principle that if we have ny
data points, then we should strive to have each variable have ny levels. This can be
done by dividing the range of each variable into ny equal intervals and requiring that the
variable has a level in each. Alternately, we can divide the range into ny-1 intervals and
require that the variable has a value at the ny boundaries. This can still leave out large
holes in the design space. So normally, LHS design is accompanied by a procedure that
will optimize it to avoid large holes. Figure 4.4.4 compares three designs with 9 points.

 65

Figure 4.4.1 Designs with 9 poinnts. The leftmost design is full factorial design with three levels. The
middle one is a random LHS design, and the rightmost one is an LHS design optimized for maximum
minimum distance between points.
The full factorial design has only three levels for each variable, the random LHS design
has substantial empty regions on the top right and bottom left areas while the optimized
LHS design has more uniform coverage.
 It is not clear that for this particular case the LHS design is better than the full
factorial design, because with a small rotation of the coordinate axes the full-factorial
design would look better. Consequently, this is still a matter of controversy. However,
optimal LHS designs allow us to specify any number of points, instead of being limited to
special numbers associated with full-factorial or most of the other designs discussed
earlier.
 Matlab’s lhsdesign function produces LHS design with choice of two optimization
strategies. One maximizes the minimum distance and the other minimizes a measure of
the correlation between the variables.

Example 4.4.1:

Generate two 7-point LHS designs in two dimensions using the two criteria and
compare.

>> x=lhsdesign(7,2,'criterion','correlation','iterations',1000)
x1=x(:,1);
>> x2=x(:,2);
>> plot(x1,x2,'r+')
>> x=lhsdesign(7,2,'criterion','maximin','iterations',1000);
>> hold on
>> x2b=x(:,2);
>> x1b=x(:,1);
>> plot(x1b,x2b,'o')

 66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4.21: LHS designs. Plus symbols denote minimized correlation design and circles denote
maximum minimum distance design.
It can be seen from the figure that there is not a great deal of difference between the
designs. The minimum distance between the plus symbols (minimized correlation) is
obviously somewhat smaller than between the circles (maximized minimum distance).
The change in correlation between x1 and x2 is less obvious. It is -0.0714 for the pluses
and -0.0777 for the circles.

4.5 Exercises

1. Find the maximum prediction variance in the unit cube for a linear polynomial, when
the data is given in the four points (-1,-1,-1), (-1,-1,1), (-1,1,-1), (1,-1,-1).
2. Find the three points in the unit square that will minimize the maximum prediction
variance in the unit square for a linear response surface.
3. For Example 4.3.1, find the maximum prediction variance for the minimum bias
designs and compare it to that of the full factorial design.
4(*). Construct a minimum-bias central composite design. You may need to replace the
central point with 4 points near the origin.

