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Abstract  

Recently, there has been an increase in interest in flapping wing micro air vehicles as they are capable of hover and 

forward flight with high maneuverability. Flapping wing flight is difficult to simulate accurately as it is a much 

more complex phenomena than fixed wing or rotorcraft. Consequently the optimization of flapping wing based on 

simulation is challenging and, therefore, we have elected to optimize a wing experimentally. Specifically, we use 

experimental data to optimize the flapping wing structure for maximum thrust production in hover mode. The 

flapping wing has a quarter-ellipse planform made of a nylon membrane (Capran 1200 Matte) with unidirectional 

carbon fiber battens making unique structural patterns. Experimental optimization is hampered by noisy data, 

which for our wing is due to manufacturing variability and testing/measurement errors. These uncertainties need to 

be reduced to an acceptable level, and this requires us to quantify them. Multiple wings with identical nominal 

geometry are constructed to quantify manufacturing uncertainty and multiple tests on the same wing are conducted 

to quantify testing uncertainty. Then improvements in manufacturing and testing procedure are undertaken in 

order to reduce the noise. Another challenge is to reduce the number of experiments performed as it is time 

consuming and expensive to manufacture and test wings. This is done by using surrogates or meta-models to 

approximate the response (in this case, thrust) of the wing based on an initial design of experiments. In order to 

take into account the uncertainty or noise in the response we use gaussian process surrogates with noise and 2
nd

 

order polynomial response surface. Then a surrogate-based optimization algorithm called Efficient Global 

Optimization is used with different sampling criteria and multiple surrogates. This enables us to select multiple 

points per optimization cycle which is especially useful in this case as it is more time efficient to manufacture 

multiple wings at once. In this study, we have selected aspect ratio, leading edge stiffness and batten 

configurations as the design variables based on prior experience. 

Keywords: Experimental optimization, Uncertainty quantification, Surrogate based optimization, Flapping wing 

MAV, Reasonable design space. 

1. Introduction 

Flapping wing micro air vehicles (FWMAVs) are garnering interest because of its high maneuverability with 

the ability to hover as well as forward flight. Flapping wings were also found to produce more lift especially for 

smaller size micro air vehicles (MAVs) [1], [2]. Numerous studies have been performed on the mechanics and 

aerodynamics of flapping wings. A widespread approach in development of FWMAV has been to mimic natural 

species [3]-[7] which has led to in-depth research in the study of dragonflies [8]-[12], Manduca sexta [13]-[17], 

hummingbirds [3], [18] and other flying creatures.  

Previous works dealt with simulating the flapping wing kinematics [2], [19] and the effect of wing geometries 

[20]. There are also some studies on the optimization of flapping wing based on simulation models [20], [22]. 

However, it is difficult to calculate accurately the aerodynamic loads generated by a flapping wing, as it requires 

three dimensional transient CFD at low Reynolds numbers. Therefore, experimental optimization may be a 

reasonable alternative. In this work we undertake to find the optimum configuration of a flapping wing structure to 

maximize thrust. The collection of thrust data for flapping wing structure is done using an experimental set-up 

[21]. Experimental optimization of similar type was also undertaken by Viana et al. in optimization of a paper 

helicopter design [23]. 

A major challenge dealt with here is the analysis of data for quantifying multiple uncertainties due 

manufacturing and testing. Reliable uncertainty quantification allows us to decide on measures needed to reduce 

the uncertainty with an answer to whether to target the testing or the manufacturing process or both. Quantifying 
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the uncertainty also leads to more effective optimization. 

An additional challenge we face in experimental optimization is to reduce the number of experiments 

performed as it is time consuming and expensive to manufacture and test wings. This is done by using surrogates to 

approximate the response (in this case, thrust) of the wing based on an initial design of experiments. The surrogates 

used in this work are Gaussian Process (GP) with noise and 2
nd

 order Polynomial Response Surface (PRS) which 

can handle noise in experimental data. A surrogate-based Efficient Global Optimization (EGO) [24]-[26] 

algorithm is employed with different sampling criteria and two surrogates. This enables us to select multiple points 

per optimization cycle which is advantageous as it is more time efficient to manufacture multiple wings at once. 

The human effort associated with manufacturing and performing the experiment dictates that we test multiple 

designs per cycle. It also serves as an insurance against some failed designs. For this work we have selected: (a) 

aspect ratio; (b) leading edge stiffness; and (c) batten configuration, as the design variables based on prior 

experience. 

The remainder of the paper is arranged as follows. Section 2 provides details concerning the experimental 

set-up and manufacturing process. Section 3 explains and compares some methods of uncertainty quantification 

for limited data. Section 4 provides the necessary information about selection of points by EGO. Section 5 presents 

results and discussion. Concluding remarks and future work for this research are included in Section 7. 

2. Manufacturing and Experimental Set-up 

The manufacturing of the wing should be as repeatable as possible which led to the use of CNC to mill a Delrin 

(Acetal Resin) frame [21]. A pre-cured commercially available carbon fiber circular rod is attached in a trough on 

the leading edge to increase its stiffness while keeping the weight of the wing to a minimum. To establish a strong 

bond between the frame and rod, rubber toughened cyanoacrylate glue was applied. The completed frame is then 

glued to a nylon membrane, 14 micron thick sheet created by Honeywell, called Capran 1200 Matte. 

The flapping mechanism secures the wings at a triangular plate in the corner where root and leading edge meet. 

A DC rotary motor (EC16 Maxon) drives the mechanism, while an EPOS 24/1 controller is used to dictate the 

flapping frequency with the help of a built-in encoder at the rear of the motor. The wings are flapped at 30 Hz with 

a flapping angle of ± 48°. The mechanism is mounted on a 6 axis force and torque sensor (Nano17 from ATI 

automation) which is read by a 16-bit DAQ device (NI USB-6251). Both the controller and sensor are managed 

with separate LabVIEW virtual instruments. A photograph of the set-up can be seen in Figure 1. 

This experimental and manufacturing set-up evolved to bring the manufacturing and testing uncertainties 

under an acceptable level (<5%) for starting the optimization process. The method of quantification of these 

uncertainties is described in the next section. 

 
Figure 1. Flapping wing experimental set-up 

3. Uncertainty Quantification of manufacturing and testing uncertainties 

Two major sources of uncertainty are present in this experimental process: manufacturing and testing. Both 

uncertainties need to be quantified based on limited data. The uncertainty in the manufacturing process is mostly 

due to the tolerance of the machine as well as human error, while the testing uncertainty is present due to the sensor 

and testing conditions. Multiple replicates of wings with identical nominal geometry are constructed to quantify 

manufacturing uncertainty, and multiple tests on the same wing are conducted to quantify testing uncertainty. It is 

assumed that the uncertainties are defined by normal distribution.  

Then we looked at the linear correlation coefficient between thrust data and individual standard deviations or 

coefficient of variations (CV) of both uncertainties. For testing uncertainty, we used 33 flapping wings (detailed 

description in Section 5.1) with 10 measurements for each of them. For manufacturing uncertainty, we used 4 

replicates of 5 of these wings. For both testing and manufacturing uncertainties the correlation coefficient between 

individual standard deviations and thrust was higher, as shown in Table 1, indicating that the error scales with the 
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magnitude of thrust. Therefore, the decision was made to use normal distributions with fixed coefficient of 

variation for both testing (CVtest) and manufacturing (CVmfg) uncertainties. 

Table 1. Correlation between thrust and standard deviations or coefficient of variation of flapping wing data 

Type of Uncertainty 
Correlation Coefficient 

Standard deviations and thrust Coefficient of variations and thrust 

Testing Uncertainty 0.52 -0.20 

Manufacturing Uncertainty 0.94 0.79 

3.1. Estimate using unbiased root mean square approach 

The root mean square approach for individual coefficient of variations [28], [29] instead of arithmetic mean is 

used to quantify the testing and manufacturing uncertainties. This is implemented by getting the coefficient of 

variations of set of data for each design, squaring them, taking the mean, and then taking the square root of the 

mean. 

3.1.1. Correcting Bias 

The commonly used Bessel correction rectifies the bias in the estimate of sample variance for n samples as, 
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However, for small sample sizes, the process of taking the square root of the variance to obtain the standard 

deviation introduces a bias in the standard deviation estimate [30]. The expected bias in general is a function of a 

process distribution which in this case is assumed to be normal. Therefore, a simple bias correction can be done for 

normal distributions using a correction factor (c4(n)) that depends on the sample size[30]. Equation (2) is used to 

get an unbiased estimate of the standard deviation, sunbiased. This unbiased estimate of standard deviation can now 

be used to compute the unbiased coefficient of variation. 
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Table 2. List of correction factors for different sample sizes [30] 

Sample size Correction Factor, c4(n) 

4 0.9213 

10 0.9727 

3.1.2. Quantifying testing uncertainty 

To quantify testing uncertainty, unbiased coefficient of variation (CVti) of 10 measurements of each wing is 

found. Then the root mean squared approach is used with the unbiased CVti to find CVtest as shown in Equation (3)

. d is the total number of designs for which testing data is available. 
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3.1.3. Quantifying manufacturing uncertainty 

To compute CVmfg, the means of 10 measurements for each replicated design was found (sampled 

manufactured means). Then the unbiased coefficient of variation in the manufactured means (CVmj) for each 

design with root mean squared approach is used to quantify CVmfg as given by Equation (4). Implementation of the 

method can be seen in Figure 2. N is the number of designs for which replicates are available. 

 
Figure 2. Process of quantifying manufactured uncertainty 

Design 1: 

Replicate 1: 10 measurements – Manufactured Mean 1 

Replicate 2: 10 measurements – Manufactured Mean 2  CV in manufactured means for 1
st
 design (CVmf1) 

Replicate 3: 10 measurements – Manufactured Mean 3 

Replicate 4: 10 measurements – Manufactured Mean 4 

Design 2: 

Replicate 1: 10 measurements – Manufactured Mean 1 

Replicate 2: 10 measurements – Manufactured Mean 2  CV in manufactured means for 2
nd

 design (CVmf2) 

Replicate 3: 10 measurements – Manufactured Mean 3 

Replicate 4: 10 measurements – Manufactured Mean 4 

---- N designs that are replicated. 

CV in manufactured means for 1
st
 design (CVm1) 

CV in manufactured means for 2
nd

 design (CVm
2
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3.2. Results for a test case 

In order to analyze the accuracy of the method, an artificial test case with 10 different designs is created with 

true mean thrust values, manufacturing and testing uncertainties, and number of replications as shown in Table 3. 

First CVmfg is used with respective true mean thrusts to create manufactured means for each of the replicated 

designs indicated. In case of designs 6-10, there is just 1 design which is generated using CVmfg and true mean 

thrust to create one manufactured mean. Then CVtest is used to generate raw data comprising of 10 measurements 

for each case of manufactured mean. There are 4 replicates of designs 1-5 and 1 design for designs 6-10 (5*4+5*1 

= 25 cases in total). All 25 cases are used for quantifying testing uncertainty, and replicates of designs 1-5 are used 

to quantify manufacturing uncertainty. In order to reduce the randomness in comparison, the process was repeated 

10 times. 

Table 3. Parameters for creating artificial test case 

Design 

Number 

True mean 

thrust (g) 

Number of replications of 

identical nominal geometry 

Coefficient of Variation 

True Testing 

uncertainty, CVtest 

True Manufacturing 

uncertainty, CVmfg 

1. 3.5 

4 

3.5% 3% 

2. 5.0 

3. 4.2 

4. 6.5 

5. 8.0 

6. 9.5 

1 

7. 2.8 

8. 5.5 

9. 3.7 

10. 8.5 

The correction factors (c4(n)) for testing uncertainty for a sample size n=10 (10 measurements for each design), 

and for manufacturing uncertainty for a sample size n= 4 (number of replicates of each design) are taken from 

Table 2. 

The results obtained as a mean of 10 different test cases generated using the parameters in Table 3 are given in 

Table 4. The estimate using unbiased root mean square approach is compared to the case of just taking arithmetic 

mean of individual unbiased coefficient of variations. It can be seen that the estimates using unbiased root mean 

square approach are conservative but very close to the true values as compared to the unconservative estimate 

using the arithmetic mean. 

Table 4. Estimated manufacturing and testing uncertainty presented as mean of 10 test cases 

Method 
Testing Uncertainty, CVtest Manufacturing Uncertainty, CVmfg 

Mean Standard deviation Mean Standard deviation 

Estimate using unbiased root 

mean square approach 
3.56% 0.2 3.15% 0.4 

Arithmetic mean of unbiased 

coefficient of variations 
3.48% 0.2 2.96% 0.5 

True values 3.5% -- 3% -- 

4. Background: Efficient Global Optimization 

A brief description of the Efficient Global Optimization (EGO) algorithm developed by Jones et al.[24], [25] is 

provided followed by a description of multi-point selection per optimization cycle. 

4.1. EGO 

                                                                                                                   

                                                                                                                

maximizing the expected improvement (EI) or probability of targeted Improvement (PI) and refitting the 

surrogate. Figure 3 illustrates the EGO algorithm with maximizing PI for a given target using a Kriging surrogate 

for a one dimensional function without noise at the data points. After adding the new point to the existing data set, 
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the Kriging model is updated and the process continues until a stopping criterion is met (usually number of cycles). 

Commonly Kriging is used for EGO, but any surrogate that provides an uncertainty estimate can be used. In this 

work Gaussian Process (GP) with noise and 2
nd

 order Polynomial Response Surface (PRS) are used as the 

surrogates as they can account for noise in the experimental data. For simplicity, we fit the mean of the collected 

data for each design. EGO and its sampling criteria are explained based on a minimization problem. Therefore here 

we minimize the negative of thrust values which is equivalent to maximizing the thrust. 

4.2. Probability of targeted Improvement (PI) 

The probability of improving the objective beyond a target, y
Target

, at a point x is given by Equation (5) [25], 

[26], [27].  

 

arg (̂ )
P ( )

( )
T ety y x

I x
s x

 (5)

 

where, Φ (.) is the cumulative density function of a normal distribution,      is the surrogate prediction, s(x) is the 

prediction standard deviation (square root of the prediction variance). EGO-PI easily provides multiple new design 

points per optimization cycle [26], [27] which is especially useful in this case as it is more time efficient to 

manufacture multiple wings at once. 

4.3. Expected Improvement (EI) 

Another way of selecting points is to maximize the expected improvement [24], [25] upon the Present Best 

Solution (PBS), yPBS. In this case yPBS is given by the lowest mean of the collected data. The Expected 

Improvement (EI) is given by Equation (6). 
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where, ϕ(.) is the probability density function of a normal distribution. 

4.4. Selecting multiple points per cycle 

As it is more time efficient to manufacture and test multiple wings at a time, 22 new designs were generated 

using EGO and two different surrogates, namely, Gaussian Process (GP) and Polynomial response surface of 2nd 

order (PRS), along with different infill criteria (PI and EI) as shown in Table 5. 

Table 5. 22 new points found using EGO with different surrogates and different infill criteria 

Type of Surrogate Infill Criteria for EGO 
Number of points added per 

EGO cycle 

Gaussian Process with noise 

PI with 10% initial Target of 

Improvement 

5 

PI with 25% initial Target of 

Improvement 

5 

EI 1 

2
nd

 order Polynomial Response 

Surface 

PI with 10% initial Target of 

Improvement 

5 

PI with 25% initial Target of 

Improvement 

5 

EI 1 

Out of 22, the unique designs are found and then, a constraint on the distance between new designs and already 

present designs was introduced to exclude any design that falls within an exclusion radius given by, 

  
3

1

4

3
budget

eps

d


  (7) 

where, dbudget = 100 in this case and represents the number of designs we expect to test. 
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5. Results and Discussion 

In this work we optimize with a small number of variables, 3, in order to understand the issues faced while 

doing experimental optimization. The constant features of the wing geometry include a batten at the root at 90  
from the horizontal (as shown in orange in Figure 4) and one other batten starting at the intersection of root and 

leading edge. The additional batten can be set at different angles. The three design variables which define the wing 

structure, were selected based on prior experience and are described in Table 6. The initial design of experiment 

(DOE) of 20 design points was created using Latin hypercube sampling [31] while maximizing the minimum 

distance between the points.  

 Length of carbon rod (Stiffness percentage)*(Length of leading edge)  (8) 

Table 6. Design variables 

Design 

Variable 
Description 

Lower 

Bound 

Upper 

Bound 

Aspect Ratio 

Number 

Manufacturing constraints force us to restrict aspect ratio to 6 different 

choices between 3 and 14. A particular number is assigned to each of the 

aspect ratios and called aspect ratio number (Table 7) which makes it easier 

to deal with the discrete variable in optimization. All wings have same 

planform area as normalization criteria. 

1 6 

Stiffness 

Percentage 

Stiffness of leading edge in terms of the length of the cylindrical rod added to 

the plastic wing. This is determined as a percentage of the leading edge 

length. This is shown by the green solid line in Figure 4. The length of the 

carbon rod to be glued is given by Equation (8). 

25 % 100 % 

Angle of 

Batten 

This defines the angle of the batten starting at the intersection of root and 

leading edge. The angle is measured in a clockwise direction from the 

horizontal (shown by blue dashed line in Figure 4). This is a discrete variable 

with only integers possible owing to our manufacturing precision. 

1  
80  

 
Figure 3.One cycle of EGO using PI for a one dimensional test function [y(x) = (6x-2)

2
sin(12x-4)] with initial 

data set as x = [0 0.5 0.68 1]
T
. The uncertainty (amplified amplitude of 2*s(x)) associated with the kriging is 

plotted in orange. The target, yTarget is set below PBS. 
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Figure 4. Design variables: Angle of batten (blue dashed line) and stiffness percentage of the leading edge (green)  

Table 7. Definition of wing geometries corresponding to 6 choices of aspect ratio (all wings have similar area with 

some rounding-off error) 

Aspect Ratio 

Number 

Leading Edge 

length, 
 

 
 (mm) 

Root length (mm) Area, S Aspect Ratio, 
  

 
 

1 47 39.89 2945 3.0 

2 55 34.09 2945 4.1 

3 75 25.00 2945 7.6 

4 82 22.87 2946 9.1 

5 91 20.60 2945 11.3 

6 101 18.56 2945 13.9 

5.1. Revised Design Space 

From the results of the initial 20 designs it became clear that some regions of the design space had small thrust 

values or unstable designs which failed during testing. One of the designs failed due to manufacturing issues. The 

major contributors in failed designs were found to be the stiffness percentage and the angle of batten from an initial 

inspection of the data. The thrust values also for lower values of both these variables showed poor performance as 

shown in Figure 5. So it was decided to change the range of the variables. 

 
Figure 5. Results for the initial DOE showing different levels of thrust and failed designs w.r.t. stiffness percentage 

and angle of batten 

In order to decide on the reduction of the design space, a Gaussian Process (GP) surrogate was fitted to data 

with the quantified testing and manufacturing noise. All the data available from the first 20 designs were used 

except 2, whose testing was inconclusive. The surrogate has high error percentage (root mean squared cross 

validation error [32] ~ 27%). However, we considered it good enough to identify regions with very bad designs. 

Figure 6 summarizes the predictions by showing slices of design space with respect to stiffness percentage and 

angle of batten. 
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     (a)            (b) 

Figure 6. Surrogate predictions using for slices of design space to show thrust variation according to (a) Stiffness 

percentage, (b) Angle of batten 

Figure 6(a) indicates that a stiffness percentage below 40% produces thrusts of less than 3g. Therefore, the 

lower bound of stiffness percentage was raised to 40%. Figure 6(b) did not provide clear indication on the lower 

bound of the batten angle, so the bound was raised from 1  to 10  as at lower angles the flapping motion was 

unstable owing to high flexibility and there was substantial damage to the wing. 

It was also noticed that the highest values of thrust were obtained at the higher aspect ratios. So two higher 

aspect ratios were added as shown in Table 8. But after testing 3 designs for aspect ratio number of 7 and 8 each it 

was found that those designs failed either due to unstable structure or very high power consumption. So the range 

of aspect ratio was kept the same as before. The revised range for design space is given in Table 9. A new DOE of 

20 design points was generated in the revised design space using Latin hypercube sampling. 13 designs from the 

initial DOE also fell in the revised range and that provided a total of 33 designs for analysis. 

Table 8. Details for Aspect Ratio Numbers 7 and 8 

Aspect Ratio 

Number 

Leading Edge 

length, 
 

 
 (mm) 

Root length (mm) Area, S Aspect Ratio, 
  

 
 

7 105 17.9 2946 14.9 

8 115 16.3 2944 18 

Table 9. Revised range for design space 

Design Variable Lower Bound Upper Bound 

Aspect Ratio Number 1 6 

Stiffness Percentage 40 % 100 % 

Angle of Batten 10  
80  

5.2. Uncertainty quantification for FWMAV 

The uncertainties associated with the FWMAV data are shown in Table 10. The 33 designs from the initial and 

revised DOE are measured 10 times each to account for testing uncertainty. 5 of those designs with noticeably 

different thrust productions and different geometries are replicated 4 times to account for manufacturing 

uncertainty. Table 10 shows that the estimate using unbiased root mean square approach is more conservative. It 

can be seen that the testing and manufacturing uncertainty are 3.55% and 3.15% respectively which are acceptable 

for starting optimization (<5%). 

Table 10. Estimated manufacturing and testing uncertainty for FWMAV data 

Method 
Testing Uncertainty, 

CVtest 

Manufacturing 

Uncertainty, CVmfg 

Estimate using unbiased root mean square approach 3.55% 3.15% 

Arithmetic mean of unbiased coefficient of variations 2.14% 3.04% 

5.3. Experimental optimization results 

For fitting surrogates, 33 data points are used. The root mean squared cross validation errors are 7.7% and 9.1% 

for GP and PRS, respectively. Number of designs (out of 33) with thrust>5g are 18, 3g<thrust≤5g are 11 and 

thrust≤3g are 4. The highest mean thrust in this data set is 11.1g. 
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22 new potentially optimum designs are generated using EGO as described in Section 4.4. There are 15 out of 

22 distinct designs. After introducing the constraint on the minimum distance between the designs we are left with 

6 new designs, shown in Table 11. The table also shows the mean thrust values of 10 measurements at 30Hz when 

these designs were tested. Wing 47 suffered structural damage during experimentation and testing of Wing 50 was 

not possible due to its high power consumption. Wings 49 and 51 improved our previous best solution of 11.1g by 

around 7%. The results also indicate that the optimum is pushing the upper limit boundary of both aspect ratio 

number and stiffness percentage. 

Table 11. New designs left after implementing the distance constraint. 

Wing 

No. 

Aspect Ratio 

Number 

Stiffness 

percentage  

Angle of Batten 

(degrees) 

Experimental mean 

thrust value (g) 
47.      6    91.7241    10 -- 

49.      6    95.8621    20 11.8 

50.      6   100.0000    10 -- 

51.      6   100.0000    29 11.9 

52.      6   100.0000    40 10.4 

53.      6   100.0000    50 10.6 

6. Conclusions and Future Work 

We performed experimental optimization of flapping wing structure for an MAV along with a technique to 

quantify multiple sources of uncertainty. In order to deal with the expensive nature of the experiment surrogate 

based optimization technique of EGO was utilized. A summary of our work is given below. 

 We presented a method to quantify multiple sources of uncertainty from testing and manufacturing from 

limited samples using an unbiased root mean square approach for coefficient of variation. Application of 

the method to a few test cases showed that it is a very good and slightly conservative predictor. 

 The initial design space was revised on the basis of an initial surrogate. 

 EGO was used with multiple surrogates (GP and PRS) with different infill sampling criteria in order to 

generate multiple designs (22) per optimization cycle and a distance constraint based on available budget 

was applied on that to get new designs. First cycle of optimization was able to improve the initial best 

design by ~7%. 

The process of manufacturing and testing a set of wings took 2-3 weeks. So this entire process took us around 

4 months.  A few more optimization cycles will be undertaken in the future to see if other interesting areas of 

design space crop up. After identifying the promising area with initial cycles of optimization Aspect Ratio will be 

made a continuous variable in that region to find the optimum design. Further improvements to the manufacturing 

and testing procedures will also help in development of the flapping wing structure. 
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