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Several parameters have been used to correlate fatigue crack growth rates under mixed-mode condi-
tions such as equivalent stress intensity factors, equivalent strain intensity factors, strain energy density,
and the J-integral. Fatigue cracks can also deflect in new directions and branch into multiple cracks under
mixed-mode loading conditions. References 2 and 3 discuss these complex fatigue crack growth issues
in detail.
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11.5 Design Optimization

Nam Ho Kim

Introduction

The design of a structural system has two categories: designing a new structure and improving the existing
structure to perform better. The design engineer’s experience and creative ideas are required in the
development of a new structure, since it is difficult to quantify a new design using mathematical measures.
Recently, limited inroads have been made in the creative work of the structural design using mathematical
tools.! However, the latter evolutionary process is encountered much more frequently in engineering
designs. For example, how many times does an automotive company design a new car using a completely
different concept? The majority of a design engineer’s work concentrates on improving the existing vehicle
so that the new car can be more comfortable, more durable, and safer. In this section, we will focus on
a design’s evolutionary process by using mathematical models and computational tools.

Structural design is a procedure for improving or enhancing the performance of a structure by changing
its parameters. A performance measure, which can be quite general in engineering fields, can include the
following: the weight, stiffness, and compliance of a structure; the fatigue life of a mechanical component;
the noise in the passenger compartment; the vibration level; the safety of a vehicle in a crash, and so
forth. However, this does not address such aesthetic measures as whether a car or a structural design is
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attractive to customers. All performance measures are presumed to be measurable quantities. System
parameters are variables that a design engineer can change during the design process. For example, the
thickness of a vehicle body panel can be changed to improve vehicle performance. The cross section of
a beam can be changed in designing bridge structures. System parameters that can be changed during
the design process are called design variables, even including the geometry of the structure.

Great strides have been made during the past decade in computer-aided design (CAD) and computer-
aided engineering (CAE) tools for mechanical system development. Discipline-oriented simulation capa-
bilities in structures, mechanical system dynamics, aerodynamics, control systems, and numerous related
fields are now being used to support a broad range of mechanical system design applications. Integration
of these tools to create a robust simulation-based design capability, however, remains a challenge. Based
on their extensive survey of the automotive industry in the mid-1980s, Clark and Fujimoto? concluded
that simulation tools in support of vehicle development were on the horizon but not yet ready for
pervasive application. The explosion in computer, software, and modeling and simulation technology
that has occurred since the mid-1980s suggests that high-fidelity tools for simulation-based design are
now at hand. Properly integrated, they can resolve uncertainties and significantly affect mechanical system
design.

Modern developments of structural design are closely related to concurrent engineering environments
by which multidisciplinary simulation, design, and manufacturing are possible. Even though concurrent
engineering is not the focus of this section, we want to emphasize structural design as a component of
concurrent engineering. An important feature of the concurrent engineering is database management
using the CAD tool. Structural modeling and most interfaces are achieved using the CAD tool. Thus,
design parameterization and structural model updates have to be carried out within the CAD model.
Through the design parameterization, CAD, CAE, and CAM procedures are interrelated to form a
concurrent engineering environment.

The structural engineering design in the simulation-based process consists of structural modeling,
design parameterization, structural analysis, design problem definition, design sensitivity analysis, and
design optimization. Figure 11.5.1 is a flowchart of the structural design process in which computational
analysis and mathematical programming play essential roles in the design. The success of the system-
level, simulation-based design process strongly depends on a consistent design parameterization, an
accurate structural and design sensitivity analysis, and an efficient mathematical programming algorithm.

A design engineer simplifies the physical engineering problem into a mathematical model that can
represent the physical problem up to the desired level of accuracy. A mathematical model has parameters
that are related to the system parameters of the physical problem. A design engineer identifies those
design variables to be used during the design process. Design parameterization, which allows the design
engineer to define the geometric properties for each design component of the structural system being
designed, is one of the most important steps in the structural design process. The principal role of design
parameterization is to define the geometric parameters that characterize the structural model and to
collect a subset of the geometric parameters as design variables. Design parameterization forces engi-
neering teams in design, analysis, and manufacturing to interact at an early design stage, and supports
a unified design variable set to be used as the common ground to carry out all analysis, design, and
manufacturing processes. Only proper design parameterization will yield a good optimum design, since
the optimization algorithm will search within a design space that is defined for the design problem. The
design space is defined by the type, number, and range of design variables. Depending on whether it is
a concept or detailed design, selected design variables could be non-CAD based parameters. An example
of such a design variable is a tire’s stiffness characteristic in vehicle dynamics during an early vehicle
design stage.

Structural analysis can be carried out using experiments in actual or reduced scale, which is a straight-
forward and still prevalent method for industrial applications. However, the expense and inefficiency
involved in fabricating prototypes make this approach difficult to apply. The analytical method may
resolve these difficulties, since it approximates the structural problem as a mathematical model and solves



Engineering Design 11-47

Physical engineering
problem

|
Structural modeling ]
|
[ Design parameterization ]
I
Performance definition
(cost, constraints)

e

|
<

Structural analysis
(FEM, BEM, CFD...)
]

Design sensitivity
analysis

Structural model

Optimized?

( Stop )

FIGURE 11.5.1  Structural design process.

it in a simplified form. The mathematical model can be used to evaluate the performance measures of
a structural problem. However, the analytical method has limitations even for simple structural problems.

With the emergence of various computational capabilities, most analytical approaches to mathematical
problems have been converted to numerical approaches, which are able to solve very complicated, real
engineering applications. Finite element analysis (FEA), boundary element analysis (BEA), and mesh-
free analysis are a short list of mathematical tools used in structural analysis. The development of FEA
is one of the most remarkable successes in structural analysis. The governing differential equation of the
structural problem is converted to its integral form and then solved using FEA. Vast amounts of literature
are published regarding FEA; for example, refer to reference 3 and the references therein. The complex
structural domain is discretized by a set of nonoverlapping, simple-shaped finite elements, and an
equilibrium condition is imposed on each element. By solving a linear system of matrix equations, we
can compute the performance measures of a structure in the approximated domain. The accuracy of the
approximated solution can be improved by reducing the size of finite elements and/or increasing the
order of approximation within an element.

Selection of a design space and an analysis method must be carefully determined since the analysis,
both in terms of accuracy and efficiency, must be able to handle all possible designs in the chosen design
space. That is, the larger the design space, the more sophisticated the analysis capability must be. For
example, if larger shape design changes are expected during design optimization, mesh distortion in FEA
could be a serious problem and a finite element model that can handle large shape design changes must
be used.

A performance measure in a simulation-based design is the result of structural analysis. Based on the
evaluation of analysis results, such engineering concerns as high stress, clearance, natural frequency, or
mass can be identified as performance measures for design improvement. Typical examples of perfor-
mance measures are mass, volume, displacement, stress, compliance, buckling, natural frequency, noise,
fatigue life, and crashworthiness. A definition of performance measures permits the design engineer to
specify the structural performance from which the sensitivity information can be computed.
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Cost and constraints can be defined by combining certain performance measures with appropriate
constraint bounds for interactive design optimization. The cost function, sometimes called the objective
function, is minimized (or maximized) during optimization. Selection of a proper cost function is an
important decision in the design process. A valid cost function has to be influenced by the design variables
of the problem; otherwise, it is not possible to reduce the cost by changing the design. In many situations,
an obvious cost function can be identified. In other situations, the cost function is a combination of
different structural performance measures. This is called a multiobjective cost function.

Constraint functions are the criteria that the system has to satisfy for each feasible design. Among all
design ranges, those that satisfy the constraint functions are candidates for the optimum design. For
example, a design engineer may want to design a bridge whose weight is minimized and whose maximum
stress is less than the yield stress. In this case, the cost function, or weight, is the most important criterion
to be minimized. However, as long as stress, or constraint, is less than the yield stress, the stress level is
not important.

Design sensitivity analysis is used to compute the sensitivity of performance measures with respect to
design variables. This is one of the most expensive and complicated procedures in the structural opti-
mization process. Structural design sensitivity analysis is concerned with the relationship between design
variables available to the engineer and the structural response determined by the laws of mechanics.
Design sensitivity information provides a quantitative estimate of desirable design change, even if a
systematic design optimization method is not used. Based on the design sensitivity results, a design
engineer can decide on the direction and amount of design change needed to improve the performance
measures. In addition, design sensitivity information can provide answers to “what if” questions by
predicting performance measure perturbations when the perturbations of design variables are provided.

Substantial literature has emerged in the field of structural design sensitivity analysis.* Design sensitivity
analysis of structural systems and machine components has emerged as a much-needed design tool, not
only because of its role in optimization algorithms but also because design sensitivity information can
be used in a computer-aided engineering environment for early product trade-off in a concurrent design
process.

Recently, the advent of powerful graphics-based engineering workstations with increasing computa-
tional power has created an ideal environment for making interactive design optimization a viable
alternative to more monolithic batch-based design optimization. This environment integrates design
processes by letting the design engineer create a geometrical model, build a finite element model,
parameterize the geometric model, perform FEA, visualize FEA results, characterize performance mea-
sures, and carry out design sensitivity analysis and optimization.

Design sensitivity information can be used during a postprocessing of the interactive design process.
The principal objective of the postprocessing design stage is to utilize the design sensitivity information
to improve the design. Figure 11.5.2 shows the four-step interactive design process: (1) to visually display
design sensitivity information, (2) to carry out what-if studies, (3) to make trade-off determinations,
and (4) to execute interactive design optimization. The first three design steps, which are interactive
modes of the design process, help the design engineer improve the design by providing structural behavior
information at the current design stage. The last design step, which could be either interactive or a batch
mode of the design process, launches a mathematical programming algorithm to perform design opti-
mization. Depending on the design problem, the design engineer could use some or all of the four design
steps to improve the design at each iterative step. As a result, new designs could be obtained from what-
if, trade-off, or interactive optimization design steps.

For the purposes of design optimization, a mathematical programming technique is often used to find
an optimum design that can best improve the cost function within a feasible region. Mathematical
programming generates a set of design variables that require performance values from structural analysis
and sensitivity information from design sensitivity analysis to find an optimum design. Thus, the struc-
tural model has to be updated for a different set of design variables supplied by mathematical program-
ming. If the cost function reaches a minimum with all constraint requirements satisfied, then an optimum
design is obtained.



Engineering Design 11-49

'I Structural Analysis |

)

Design Sensitivity
Analysis
I

v

|Sensitivity Displayl |What-|f studyl | Trade-Off | | Design Optimization |
— g

Yes

Y
Interactive Design Mode

I Update Structural Model
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FIGURE 11.5.3 Parameters defining circular cross-sectional cantilever beam.

Structural Design Parameterization

In structural modeling, the physical problem is represented by mathematical expressions, which contain
parameters for defining that problem. For example, the cantilever beam in Figure 11.5.3 has parameters
that include the length I/, the radius of cross section r, and Young’s modulus E. These parameters, which
define the system, are called design variables. If design variables are determined, then the structural
problem can be analyzed. Obviously, different design variable values usually yield different analysis results.
The aim of the structural design process is to find the values of design variables that satisfy all requirements.

All design variables must satisfy the physical requirements of the problem. For example, length [ of
the cantilever beam in Figure 11.5.3 cannot have a negative value. Physical requirements define the design
variable bounds. Valid design variables may have to take into account various manufacturing require-
ments. For example, the radius of a cantilever beam satisfies its physical requirement if r is a positive
number. However, in real applications, the circular cross-sectional beam may not be manufactured if its
radius is bigger than r°. Thus, the range of feasible design can be stated as 0 < r < r%. In addition, the
design engineer may want to impose certain design constraints on the problem. For example, the
maximum stress of the beam may not exceed 6° and the maximum tip displacement of the beam must
not be greater than z° A set of design variables that satisfy the constraints is called a feasible design,
whereas a set that does not satisfy constraints is called an infeasible design. It is difficult to determine
whether a current design is feasible unless the structural problem is analyzed. For complicated structural
problems, it may not be simple to choose the appropriate design constraints so that the feasible region
is not empty.

There are two types of design variables: continuous and discrete. Many design optimization algorithms
consider design variables to be continuous. In this section, we presume that all design variables are

'In general, the bounds of design variables are denoted as r! < r < rV where rl is called the lower bound and rY
is called the upper bound, respectively.
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continuous within their lower- and upper-bound limits. However, discrete design problems often appear
in real engineering problems. For example, due to manufacturing limitations, the structural components
of many engineering systems are only available in fixed shapes and sizes. Discrete design variables can
be thought of as continuous design variables with constraints. As a result, it is more expensive to obtain
an optimum design for a problem with discrete design variables. It is possible, however, to solve the
problem assuming continuous design variables. After obtaining an optimum solution for the design
problem, the nearest discrete values of the optimum design variables can be tested for feasibility. If the
nearest discrete design variables are not feasible, then several iterations can be carried out to find the
nearest feasible design.

It is convenient to classify design variables according to their characteristics. In the design of structural
systems made of truss, beam, membrane, shell, and elastic solid members, there are five kinds of design
variables: material property design variables such as Young’s modulus; sizing design variables such as
thickness and cross-sectional area; shape design variables such as length and geometric shape; configu-
ration design variables such as orientation and location of structural components; and topological design
variables.

The Material Property Design Variable

In structural modeling, the material property is used as a parameter of the structural problem. Young’s
modulus and Poisson’s ratio, for example, are required in the linear elastic problem. If these material
properties are subject to change, then they are called material property design variables. These kinds of
design variables do not appear in regular design problems, since in most cases material properties are
presumed to be constant. Analysis using such a constant material property is called the deterministic
approach. Another approach uses probability and assumes that material properties are not constant but
distributed within certain ranges. This is called the probabilistic approach and is more practical, since a
number of experiments will usually yield a number of different test results. In this case, material properties
are no longer considered to be constant and can therefore be used as design variables.

The Sizing Design Variable

The sizing design variable is related to the geometric parameter of the structure, and it is often called a
parametric design variable. For example, most automotive and airplane parts are made from plate/shell
components. It is natural that a design engineer wants to change the thickness (or gauge) of the plate/shell
structure in order to reduce the weight of the vehicle. For a structural model, plate thickness is considered
a parameter. However, the global geometry of the structure does not change. Plate thickness can be
considered a sizing design variable. The sizing design variable is similar to the material property design
variable in the sense that both variables change the parameters of the structural problem.

Another important type of sizing design variable is the cross-sectional geometry of the beam and truss.
Figure 11.5.4 provides some examples of the shapes and parameters that define these cross sections. In
the structural analysis of truss, for example, the cross-sectional area is required as a parameter of the
problem. If a rectangular cross section is used, then the area would be defined as A = b X h. Thus, without
any loss of generality, b and / can be considered design variables of the design problem.

ol | q 3N

A e
FIGURE 11.5.4 Sizing design variables for cross-sectional areas of truss and beam. (a) solid circular; (b) rectangular;
(c) circular tube; (d) rectangular tube; (e) I-section.
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In this section, several possible design parameterizations, such as constant and linear designs as
described in Figure 11.5.5, are introduced for the line and surface design components. These are not at
all the only possible design parameters, and other more complicated design parameterizations can be
used. However, the method presented in this section can be extended to other complicated design
parameterizations. One important thing to consider when more complicated design parameterizations
are used is that the finite element model must be sophisticated enough to support the design parame-
terization method used. Geometric parameters can be defined at the end grid points of a line, or at the
corner points of a surface. A bilinear thickness distribution can be used to characterize a surface design
component, as shown in Figure 11.5.5(b). Note that each dimension that defines the cross-sectional
shape, such as width and height in Figure 11.5.5(a), can be treated as a design variable, and be allowed
to vary to the same degree as the corresponding variable at the other end (constant parameterization),
or to a different degree (linear parameterization). Moreover, in order to maintain design continuity for
a symmetric design, or to reduce the number of design variables, design variables can change either
independently of, or proportionally to, certain variables across design components through design vari-
able linking, as shown in Figure 11.5.6.

Line Design Components

A three-dimensional line component can be used for truss or beam design components. A truss design
component can handle tensile and compressive load and may be composed of several truss finite elements.
A beam design component can handle tensile, compressive, and bending load. A linearly tapered cross-
sectional shape can be considered within the design component. There are three cross-section types for
this design component: symmetric, un-symmetric, and general. Figure 11.5.7 illustrates the geometry of
a line design component.
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FIGURE 11.5.7 Line design component.

Material properties, such as mass density and Young’s modulus, and geometric parameters that define
the cross-sectional shape can be taken as design variables along the axial axis x;. All material property
design variables are assumed to be constant along the design component’s axial axis.

The geometric design variables that can linearly vary along the axis of the design component are the
dimensions of each cross-section, that is, r for a solid and hollow circular cross section, and b and h for
other cross sections, as shown in Table 11.5.1 and Table 11.5.2.

TABLE 11.5.1 Symmetric Cross Sections

Design Variable®
Cross-Sectional Shape 1 2 3 4 5 6
r
Solid circular r E p — — —
a b A
A
Solid rectangular h b E p -
h
Y
r
Hollow circular r t E P [
Nt
t | b
¥ [
Hollow rectangular KN I-, h b t w E p
7777

. A
I-section h h b t w E p

¢ E is Young’s modulus and p is the mass density.
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TABLE 11.5.2 Unsymmetric Cross Sections

Design Variable
Cross-Sectional Shape 1 2 3 4 5 6 7
t b
* 7772
EN7
Channel 4 h h b t w E p —
(/7772
N |<— w

T-section

~of e

L]

by
_+_|‘—’|

*
Unsymmetric I-section

Proportionality can be used between two geometric design variables within a design component
through design variable linking. Such proportional design variables are used to meet local buckling
requirements for a structural design specification, to maintain geometric proportionality, or to reduce
the number of design variables. The pairs of geometric design variables that may be considered for
proportionality purposes are (£,b) and (w;h) for a hollow rectangle, an I-section, (b,h) for a solid rectangle,
and (t,r) for a hollow circle.

The symmetric cross section has two perpendicular axes of symmetry, as shown in Table 11.5.1. These
two axes are the principal axes of the cross section, and are usually taken as two component coordinates.
The component’s axial axis is assumed to be the same as the centroidal axis. Solid and hollow circles,
solid and hollow rectangles, and the I-section are all placed in this category.

The unsymmetric cross section has either only one axis of symmetry, or no symmetry with some shape
regularity, as shown in Table 11.5.2. The channel, angle, T-section, and unsymmetric I-section all fit into
this category. The component coordinates x, and x; may be different from the principal axes x,, and x,;,
respectively. The centroidal axis is assumed to coincide with the axial axis x, of the truss design component.

The general cross section has no regular shape and may be composed of several thin-walled segments,
as shown in Table 11.5.3.
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TABLE 11.5.3 General Cross Sections

Design Variable
General Cross-Sectional Shape 1 2 3 2n+1 2n+2
So.
sy, b S In 5, f, s, E p
S3, I3

X
X3 R h(xq,%)
AN
hy
1

& /\
X / J
(Triangular option)
X3

FIGURE 11.5.8 Surface design component.

Surface Design Components

A membrane component can handle both an in-plane tensile and a compressive load. A shell component
can handle an in-plane tensile, compressive, and bending load. The design component may be composed
of several membrane/shell finite elements. Figure 11.5.8 illustrates the geometry of a membrane/shell
design component.

Surface component design variables include thickness, mass density, and Young’s modulus. Surface
thickness is parameterized using a bilinear shape function. Four geometric design variables are defined
for each surface design component: thickness h;, h, hy, and h; at grid points I, J, K, and L, respectively,
as shown in Figure 11.5.8 and Table 11.5.4.

The four-node quadrilateral surface component can be reduced to a triangular surface component by
defining duplicate node numbers for the third and fourth (K and L) node locations. If node L is not
defined, then it defaults to node K. The design component thickness is assumed to vary bi-linearly inside
the design component.

TABLE 11.5.4 Design Variables of Surface
Design Component

Design Variables
1 2 3 4 5 6

E p hy hy he by
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FIGURE 11.5.9 Shape design variables.

The Shape Design Variable

While material property and the sizing design variables are related to the parameters of the structural
problem, the shape design variable is related to the structure’s geometry. The shape of the structure does
not explicitly appear as a parameter in the structural formulation. Although the design variables in Figure
11.5.4 determine the cross-sectional shape, they are not shape design variables, since these cross-sectional
shapes are considered parameters in the structural problem. However, the length of the truss or beam
should be treated as a shape design variable. Usually, the shape design variable defines the domain of
integration in structural analysis. Thus, it is not possible to extract shape design variables from a structural
model and to use them as sizing design variables.

Consider a rectangular block with a slot, as presented in Figure 11.5.9. The location and size of the
slot is determined by the geometric values of C,, C,D,r, and r,, which are shape design variables.
Different values of shape design variables yield different structural shapes. However, these shape design
variables do not explicitly appear in the structural problem. If the finite element method is used to
perform structural analysis, then integration is carried out over the structural domain (the gray area),
which is the shape design variable. Since shape design variables do not explicitly appear in the structural
problem, the shape design problem is more difficult to solve than the sizing design problem.

Shape design parameterization, which describes the boundary shape of a structure as a function of
the design variables, is an essential step in the shape design process. Inappropriate parameterization can
lead to unacceptable shapes.>® To parameterize the structural boundaries and to achieve optimum shape
design, boundary shape can be described in three ways: (1) by using boundary nodal coordinates, (2) by
using polynomials, or (3) by using spline blending functions. However, it is important to point out that
there are many methods of parameterization and that the methods presented in this section are only a
few of them, including complicated parameterization methods developed in commercial CAD tools. One
important aspect of shape design parameterization is the connection of the design parameterization to
the computation of the design velocity field.

In the first method, boundary nodal coordinates of the finite element model are used as shape design
variables. Although the method is simple and easy to use, it has the following drawbacks: (1) the number
of design variables tends to become very large, which may lead to high computational costs and optimi-
zation problems that are difficult to solve; (2) the first derivative of the design boundary is not continuous
across boundary nodes, which may lead to an unacceptable or impractical design; and (3) computational
accuracy is not ensured, since it is difficult to maintain an adequate finite element mesh during the
optimization process. One can use coordinates of selected master nodes as shape design variables and
employ an isoparametric mapping to generate a finite element mesh.

Several methods have been developed to parameterize the design boundary with polynomials. Bhavikatti
and Ramakrishnan’ used a 5th-degree polynomial, with the coefficients taken as design variables, to
parameterize the boundary shape of a rotating disk. Prasad and Emerson® used a similar approach to
optimize an engine connecting rod. In a more general approach, such as that used by Kristensen and
Madsen’ and Pedersen and Laursen,!* the boundary is parameterized using a linear combination of shape
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functions, with the coefficients as design variables. The total number of shape design variables can be
reduced using polynomials for shape representation. However, using high-order polynomials to represent
the boundary shape may result in oscillating boundaries.

Splines eliminate the problem of oscillating boundaries since they are composed of low-order poly-
nomial segments that are combined to maximize the smoothness of the boundaries. Yang and Choi,!!
Luchi et al.,'? and Weck and Steinke'® used a cubic spline to define the boundary geometry. The spline
representation was shown to yield better sensitivity accuracy than a piecewise linear representation of
the boundary.! Braibant et al.* used Bezier and B-spline blending functions to describe the design
boundary. Blending functions provide great flexibility for geometrical description. Using B-splines,
Braibant and Fleury'® optimized a beam in bending, a fillet, and a hole in a plate. Finally, Yao and Choi!*!®
used a Bezier surface to optimize an engine bearing cap and an arch dam.

The shape design parameterization method presented in this section deals with geometric features. A
geometric feature is a subset of the geometric boundaries of a structural component. For example, a fillet
or a circular hole is a geometric feature that contains characteristics associated with it and is likely to be
chosen as a design variable. A geometric feature whose design variables are defined is known as a
parameterized geometric feature, and is treated as a single entity in the shape design process. For example,
a circular hole with its radius and center location defined as design variables is a parameterized geometric
feature. Such a parameterized circular hole can be moved around in the structure with a varied size due
to design changes. However, the shape of the circular hole itself remains constant.

Two steps are involved in the design parameterization process: geometric modeling and defining the
design variables. A geometric model is first generated in the modeling process, with all its dimensions
defined. Geometric features that can be varied in the design process need to be identified by both design
and manufacturing engineers at the beginning of the design process. The design engineer then param-
eterizes the geometric model, using the geometric feature that is consistent with both engineering
requirements and manufacturing limitations. The design parameterization developed in this section is
based on the assumption that the geometric model has already been created and its dimensions defined.

In general, structural shape design problems can be classified into four types, in terms of the charac-
teristics of the design boundary. In the first type, the shape of an arbitrary open or closed boundary is
determined, such as a fillet! or a dam surface.!® In the second type, the dimensions of predefined shapes
are determined, such as the radius of a circular hole, the major and minor axes of an elliptic hole, the
dimensions of a slot, the length of a rectangular membrane, or the radius of a rounded corner. In the
third type, the design boundary location is determined, such as the center location of a circular hole, an
elliptic hole, an arbitrarily shaped hole, or a slot. In the final type, a rotation angle of the design boundary,
either arbitrary or predefined, is treated as the design variable. In this section, shape design parameter-
ization of the first three types of design problems is considered.

In general, geometric entities can be represented using parametric cubic (PC) lines, patches (surfaces),
and hyperpatches (solids). A parametric cubic line is represented by three functions:

x=x(u)
y=yu) (11.5.1)
z=2z(u)

where u is the parametric direction of the line with domain.! Each of these functions is, at most, a cubic
polynomial of the form

z(u)=53u3+52uz+slu+s0 (11.5.2)

The first and second derivatives of Equation 11.5.2 can be written as
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z)u(u)=353uz+252u+s1 (11.5.3)

z,,(u)=6s,u+2s, (11.5.4)

From Equation 11.5.3 and Equation 11.5.4, note that the slope of the cubic line can change its sign
only twice, and that the curve can have only one inflection point. PC entities such as PC
lines and PC patches minimize the possibility of yielding oscillating boundaries during the design
process.® However, geometric entities with predefined or sophisticated shapes, such as a circular hole,
cannot be represented by a single cubic curve. To minimize modeling errors, such a boundary can be
broken into small pieces. These pieces are then “glued” together in the design process as one geometric
feature by appropriately linking design variables. For shape design, planar parametric cubic lines and
spatial parametric bicubic patches are utilized to represent the design boundaries of two-dimensional
and three-dimensional structural components, respectively.

There are a number of methods for creating geometric entities, for example, defining four control
points to create a Bezier curve, or constructing four edge curves to create a surface. Although geometric
entities have different characteristics depending on the way they are created, they are nevertheless always
represented by polynomials with the same order regardless of the way they are created. Consequently, a
single geometric entity can be created using a variety of methods. For example, the planar curve shown
in Figure 11.5.10(a) is created by defining four distinct points in the plane, and is thus called a four-
point curve.

The mathematical expression of the four-point curve is given as

x(u)=3u
(11.5.5)
y(u)=9u>—13.5u" +6.5u

The same curve shown in Figure 11.5.10(b) can also be created by giving the position and slope at
the endpoints, referred to as geometric coefficients:

p, =[0,0]

p,=[32]

1365 (11.5.6)
py =I3,6.

p; =[3,6.5]

Py

p3=p(1)=(3,2)

Py = p(1/3) = (1,1)
po = p(2/3) = (2,1)

y y
Po = p(0) = (0.0) X X

(@) (b)

FIGURE 11.5.10 Planar parametric cubic curves (a) curve created by four points; (b) curve created by geometric
coefficients.
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FIGURE 11.5.11 Shape design parameterization of features (a) overall design parameterization process; (b) param-
eterization for a user-defined feature; (c) parameterization for a predefined feature.

Therefore, one curve can be represented using different methods. However, these representations of
curves and patches are mathematically equivalent, and one can be transformed into another by using
certain linear transformations. For example, the geometric coefficients of a curve can be transformed
into a four-point format, so the shape of the curve can be controlled according to the position of the
four points. In fact, geometric coefficients are selected as unified geometric data, independent of the
methods used to create geometric entities. Because design parameterization has the versatility of repre-
senting the same geometric entity in different ways, it can be systematically developed to provide the
design engineer with sufficient resources for solving a wide variety of shape design problems.

The design parameterization method presented in this section is a three-step process, as illustrated in
Figure 11.5.11. The first step is to create a geometric feature by grouping a number of interconnected
geometric entities together, and by defining the type of geometric feature. The design engineer identifies
the geometric entities that form the geometric features.

The second step is to define the design variables within each geometric feature. Geometric features
that are frequently used in the construction of structural components can be put in the library of
predefined geometric features. The design engineer can then parameterize these predefined features
simply by selecting associated predefined shape design variables. To demonstrate the use of the library,
two predefined geometric features have been defined, a circular hole and a tapered slot, as shown in
Figure 11.5.12. For the circular hole, which is formed by connecting a number of circular arcs end to
end with the same center point and radius, both the radius and center point of the circle can be defined
as shape design variables. For the tapered slot, which is formed by connecting a number of straight lines
and circular arcs, length dp3, radii dp4 and dp5, and center point dpl and dp2 can all be defined as
shape design variables. The design parameterization flow for the predefined geometric feature is illus-
trated in Figure 11.5.11(c).



Engineering Design 11-59

dp4
A
dp3
(dp1Tdp2) dp3
(dp1, dp2)

\

t y dp5

X
(a) (b)

FIGURE 11.5.12 Predefined geometric features (a) circular hole; (b) tapered slot.
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FIGURE 11.5.13 Parameterization of a cantilever beam (a) cantilever beam; (b) geometric feature of the beam.

A geometric feature that is not included in the library can be seen as a user-defined feature. To generate
the latter, the design engineer can define the design variable by using geometric entities, and can then
link these variables across the entities. For example, suppose a cantilever beam is to be parameterized
such that its length H can be varied, as shown in Figure 11.5.13(a). To parameterize the beam, the
following procedure can be used:

1. Identify lines #101, #102, and #103 to form the geometric feature, that is, the edges of the beam,
as shown in Figure 11.5.13(b).

2. Define line #102 as a straight line and define the x-coordinate at end 1 of line 102, that is, grid
#3, as the free design variable dpl, and the x-coordinate at end 2 of line #102, i.e., grid #2, to be
proportional to dpl with a proportionality of 1.0.

3. Define lines #101 and #103 as straight lines, and define the x-coordinate at end 2 of lines #101
and #103, that is, grids #2 and #3, as the free design variables dp2 and dp3, respectively.

4. Link dp2 and dp3 to dpl, with a proportionality of 1.0.
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FIGURE 11.5.15 Hierarchy of shape design parameterization.

After design variable linking, only one design variable, dpl, the beam length represented by the
x-coordinate of grid #3 in line #102, is allowed to vary independently. The parameterization flow for the
user-defined feature is shown in Figure 11.5.11(b).

The shape design parameterization procedure for a user-defined geometric feature, as illustrated above,
is summarized as follows:

1. Identify the types of geometric entities that are to be used to construct the user-defined geometric
feature.

2. Parameterize the geometric entities by defining free and proportional design variables in each
geometric entity.

3. Generate the parameterized geometric feature by linking free design variables across geometric
entities.

Each predefined geometric feature that can be included in the feature library, such as the circular hole
and tapered slot, is preconstructed by using this procedure.

If necessary, the third step is designed to link design variables across geometric features. For example,
a cantilever beam with a circular hole, as shown in Figure 11.5.14, is to be parameterized so that the
position of the hole is proportional to the beam length. The x-coordinate of the circular hole H, can be
parameterized by using the predefined parameterization process, as described in Figure 11.5.12(a). The
length of beam H,, can be parameterized as a user-defined feature, as illustrated in Figure 11.5.13. With
the two parameterized features, the x-coordinate of the hole can be linked to the beam length.

As described here, fundamental shape design parameterization is defined within geometric entities,
and the parameterized features are created by using geometric entities. A hierarchy of the design
parameterization method to build a parameterized geometric model is shown in Figure 11.5.15.
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FIGURE 11.5.16 Curve format transformations for two-dimensional shape design (a) transformations from B to
G; (b) transformations from G to B; (¢) transformations from B to A.

Curve Design Parameterization

For a two-dimensional shape design, the boundaries are planar curves. In general, there are eight degrees
of freedom for a planar cubic curve, as expressed in Equation 11.5.1 and Equation 11.5.2, with z(u)
serving as the constant. Planar curves with eight degrees of freedom are designated as basic curves, while
predefined curves that are constrained, such as a circular arc, are designated as specialized curves. A
specialized curve has fewer degrees of freedom since some of the basic degrees of freedom are linked
(constrained) in order to define the required characteristics of the curve.

From a computational point of view, algebraic and geometric curves are the most interesting among
the six basic types of curves. All parametric cubic entities can be transformed into various other formats
by using certain linear transformations. For shape design, three major transformations are necessary:
(1) from the geometric coefficient matrix B to the design variable matrix G to compute design variable
values; (2) from matrix G to matrix B to update geometric entities for a perturbed design shape; and
(3) from matrix G to the algebraic coefficient matrix A to compute the boundary velocity field. For the
basic curves, the transformation from matrix G to matrix B for each curve format can be described by
their corresponding 4 X 4 constant matrices. The curve format transformations are summarized in Figure
11.5.16.

Surface Design Parameterization

For three-dimensional shape design, design boundaries are surfaces in space. In general, there are 48
degrees of freedom for a parametric bicubic surface. For a parametric bicubic surface, the x-, y-, and
z-components can be expressed using the three functions, as

x=x(u,w)
y=yu,w) (11.5.7)

z=2z(u,w)
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where 1 and w are the parametric directions of the geometric entity, and (u, w) € [0,1] x [0,1]. Each of
these functions is, at most, a bicubic function of the form

2(u,W) = Ay’ W’ + asu’w? +a; i’ w + asu’
2 2.2 2 2
+ Ay W + AW + @yt W+ aygu
1 1,2 1.1
+ au'w’ +au'w? +ayu'w' +agu (11.5.8)

3 2
+ apw” +apw +agw+ay,

3

= E au'w’

i,j=0

Surfaces with 48 degrees of freedom are defined as basic surfaces, whereas specialized surfaces are
constrained to represent predefined conditions. As with the specialized curve, the specialized surface has
fewer degrees of freedom. There are four basic surfaces — algebraic, geometric, 16-point, and Bezier —
and there are also four specialized surfaces — plane, cylindrical, ruled, and surface of revolution, which
have been developed to handle three-dimensional shape design problems. The B-spline surface is not
recommended for three-dimensional shape design since, in contrast to the B-spline curve, the control
points at the edges of the polyhedron are not on the B-spline surface. Therefore, the physical surface
boundary does not closely resemble the characteristic polyhedron, and consequently, it is difficult to use
in geometric modeling and design.

Similar to the basic types of curves, transformations between matrices G, A, and B of the basic surface
can be used to obtain shape design variables, to update geometric entities, and to compute the boundary
velocity field. The various surface format transformations are categorized in Figure 11.5.17.

The Configuration Design Variable

For those built-up structures made of truss, beam, and shell components, there is another type of design
variable in addition to shape design; it’s called the configuration design variable, and it is related to the
structural component’s orientation. These components have local coordinate systems fixed on the body
of the structure, and state variables of the problem are described in local coordinate systems. If several
components are connected together for the built-up structure, the state variables described in the local
coordinate system are transformed to the global coordinate system. If the structural components change

Sixteen-Point Surface

Geometric Coefficients < G=K'BKT
@) B Bezier Surface

G=Q 'mMBMTQ T

Sixteen-Point Surface B=GKG'
G . |Geometric Coefficients
(b) Bezier Surface B=mM'aGQ'mT o B
G

Geometric Coefficients | A= MBM' _ [ Algebraic Coefficients
© B v A

(Compute Boundary Velocity)

FIGURE 11.5.17 Surface format transformations for three-dimensional shape design (a) transformations from B
to G; (b) transformations from G to B; (c¢) transformations from B to A.
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their orientation in space, the transformation between the local and global coordinates also changes.
Thus, this transformation can be considered the configuration design variable. Since configuration design
variables are defined for built-up structures, they are inherently coupled with shape design variables.
That is, in order to allow one member of the built-up structure to rotate, another member’s shape needs
to be changed. The configuration design variable is not applicable to solid components in which all
rotations can be expressed in terms of shape changes.

The Topology Design Variable

If shape and configuration design variables represent changes in structural geometry and orientation,
then topology design determines the structure’s layout. For example, in Figure 11.5.9, shape design can
change the size and location of the slot within the block. However, shape design cannot completely
remove the slot from the block, or introduce a new slot. Topology design determines whether the slot
can be removed or an additional slot is required.

The choice of the topology design variable is nontrivial compared to other design variables. Which
parameter is capable of representing the birth or death of the structural layout? Early developments in
topology design focused on truss structures. For a given set of points in space, design engineers tried to
connect these points using truss structures, in order to find the best layout to support the largest load.
Thus, the on-off types of topology design variables are used. These kinds of designs, however, could turn
out to be discontinuous and unstable.

Recent developments in topology design are strongly related to FEA. The candidate design domain is
modeled using finite elements, and then the material property of each element is controlled. If it is
necessary to remove a certain region, then the material property value (e.g., Young’s modulus) will
approach zero, such that there will be no structural contribution from the removed region. Thus, material
property design variables could be used for the purpose of topology design variables. The on-off type of
design variable can be approximated by using continuous polynomials in order to remove the difficulties
associated with discrete design variables.

In many applications, topology design is used at the concept design stage such that the layout of the
structure is determined. After the layout is determined, sizing and shape designs are used to determine
the detailed geometry of the structure.

A final comment on design parameterization: it is desirable to have a linearly independent set of design
variables. If one does not, then relations between design variables must be imposed as constraints, which
may make the design optimization process expensive, as the number of design variables and constraints
increase. Furthermore, if design variable constraints are not properly established, meaningless design
results will be obtained after an extensive amount of computational effort. As mentioned before, this
problem is strongly related to structural modeling, since a well-defined structural model should have an
independent set of parameters to define the entire system. Even if defining a good model is not an easy
task for a complicated design problem, the design engineer nevertheless has to define a proper and
independent set of parameters as much as possible in the structural modeling stage.

Design Variable Linking across Geometric Entities

There are three methods for categorizing the shape design problem: (1) identifying the arbitrary boundary
shape, (2) determining the dimensions of the predefined shape, and (3) finding the locations of the
boundaries. A design variable linking process is discussed in this section in order to support and ensure
continuity between boundaries, as well as to retain predefined boundary shapes. For a geometric feature
that is formed by a set of B-spline curves, C?-continuity across curves is naturally retained.

As described in the previous sections, for the first type of shape design boundary any basic curve or
surface can be utilized for parameterization. If constrained boundary shapes are required for two-
dimensional structures, such as a straight edge or circular arc, then that specific type of curve must be
used. For three-dimensional structures, the constrained boundaries can be predefined, such as a plane,
cylinder, ball, or surface of revolution. If the geometric feature is composed of more than one curve or
surface, continuity across curves or surfaces must be retained by linking shape design variables at the joint
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point or curve. As mentioned before, C°-, C!-, and C2-continuities can be retained for two-dimensional
structures by using the appropriate curve type and design variable linking. For three-dimensional prob-
lems, C*-continuity is difficult to maintain. The following three examples illustrate how the design
variable linking process can be used to support the three types of shape design problems.

Type One Problems — Identifying the Arbitrary Boundary Shape
A two-dimensional beam with arbitrarily shaped holes, shown in Figure 11.5.18(a), illustrates a design
variable linking process that supports the first type of shape design problem.

Figure 11.5.18(b) shows that hole A is formed by three curves. To parameterize this hole, the curves
are defined as geometric curves. The endpoints and tangent vectors at the endpoints of these connected
curves are linked to retain C°- and C'-continuities, respectively.

The shape of the hole can be changed due to endpoint movement, length, or the direction of the
tangent vector, as shown in Figure 11.5.19. Hole shape change due to movement ddp, of grid 3 in the
negative y-direction is shown in Figure 11.5.19(a), such that the tangent vectors of lines 1 and 3 at grid
3 are kept the same. Moreover, hole shape change due to scaling the tangent vector of line 3 at grid 3 by
ddp,, shown in Figure 11.5.19(b), is such that the location of grid 3 and the direction of the tangent
vector are kept the same. Finally, hole shape change due to change 8dp; in the tangent vector direction
of lines 1 and 3 is shown in Figure 11.5.19(c).

To avoid meaningless designs, for example, a hole that penetrates the boundary edges of a beam, the
geometric boundaries can be displayed after the design change. Furthermore, numerical limits can be
defined for design variables in order to restrict the degree of design perturbation.

Type Two Problems — Determining the Dimensions of a Predefined Shape

For the second type of shape design problem, specialized curves and surfaces are used to parameterize
geometric entities. In addition, design variable linking may be carried out in the design process to group
curves and surfaces that define the geometric feature.

The design variable linking method for parameterizing the second type of shape design boundary can
be described using an elliptic hole formed by four conic curves, as shown in Figure 11.5.20. Each conic
curve has three points to control its shape; however, relative altitude p is kept constant.

To vary the major axis, the x-coordinate of point p, is defined as the independent design variable
dpl. Points p, and p; are linked to dpl, with a proportionality of 1.0. In addition, the x-coordinates of
points 1, 2, and 3 are linked to dp1 with a proportionality of —1.0. The elliptic hole varies in shape when
the major axis is perturbed by ddpl, as shown in Figure 11.5.21(a). Similarly, for a design change in the
minor axis, the y-coordinate of point p, is defined as the independent design variable dp2. Points p, and
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FIGURE 11.5.19  Shape variation of Hole A (a) grid point movement; (b) length of tangent vector change; (c) y-
component of tangent vector change.
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FIGURE 11.5.20 Parameterization of an elliptic hole.

FIGURE 11.5.21 Shape variation of an elliptic hole (a) variation of major axis; (b) variation of minor axis.

Ps are linked to dp2, with a proportionality of 1.0. Also, the y-coordinates of points ps, ps, and p; are
linked to dp2, with a proportionality of —1.0. Shape change due to the perturbation ddp2 of the minor
axis is shown in Figure 11.5.21(b).
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FIGURE 11.5.23  Shape variation of a tapered semicylindrical surface (a) shape variation due to ddp1; (b) shape
variation due to ddp2.

For three-dimensional problems, this type of shape design can be the radius of a ball, a shell, or a
cylindrical hole. For example, the tapered semicylindrical surface shown in Figure 11.5.22 can be param-
eterized by linking the design variables defined in the two ruled surfaces that form the tapered semi-
cylindrical surface. The first ruled surface p,p,p.ps is created using circular arcs p,p, and p,p;. The other
ruled surface p,p;p;ps is created using circular arcs p,p; and psp,.

To vary the radius R, the radius of arc p,p, is defined as the independent design variable dp1, and
the radius of arc p,p; is linked to dpl with a proportionality of 1.0. Similarly, the design variable dp2
can be defined for radius R,. The shape of the tapered semicylindrical surface is defined by the shape
design variables dpl and dp2, as shown in Figure 11.5.23(a) and Figure 11.5.23(b), respectively.

Type Three Problems — Finding the Locations of the Boundaries

To support the third type of shape design problem, such geometric entities as curves or surfaces that
form the geometric feature are linked together so that only x-, y-, and z-movements of the parameterized
geometric feature are allowed. For example, the x-coordinate of points p, to p; of the elliptic hole shown
in Figure 11.5.22 can be linked, with a proportionality of 1.0, so that the four conic curves can be moved
together to form an elliptic hole.
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Design Sensitivity Analysis

Design sensitivity analysis computes the rate of performance measure change with respect to design
variable changes. With the structural analysis, the design sensitivity analysis generates a critical information,
gradient, for design optimization. Obviously, the performance measure is presumed to be a differentiable
function of the design, at least in the neighborhood of the current design point. For complex engineering
applications, it is not simple to prove a performance measure’s differentiability with respect to the design.
For most problems in this section, one can assume that the performance measure is continuously
differentiable with respect to the design.

In general, a structural performance measure depends on the design. For example, a change in the
cross-sectional area of a beam would affect the structural weight. This type of dependence is simple if
the expression of weight in terms of the design variables is known. For example, the weight of a straight
beam with a circular cross-section can be expressed as

W(r)=mrl

where u = r is the radius and / is the length of the beam. If the radius is a design variable, then the design
sensitivity of W with respect to r would be

aw._ 2mrl
dr

This type of function is explicitly dependent on the design, since the function can be explicitly written
in terms of that design. Consequently, only algebraic manipulation is involved, and no FEA is required
to obtain the design sensitivity of an explicitly dependent performance measure.

However, in most cases, a structural performance measure does not explicitly depend on the design.
For example, when the stress of a beam is considered as a performance measure, there is no simple way
to express the design sensitivity of stress explicitly in terms of the design variable r. In the linear elastic
problem, the stress of the structure is determined from the displacement, which is a solution to the FEA.
Thus, the sensitivity of stress 6(z) can be written as

T

do_do dz (115.9)

dr dz dr
where z is the displacement of the beam. Since the expression of stress as a function of displacement is
known, do/dz can be easily obtained. The only difficulty is the computation of dz/dr, which is the state
variable (displacement) sensitivity with respect to the design variable r.

When a design engineer wants to compute the design sensitivity of performance measures such as

stress 6(z) in Equation 11.5.9, structural analysis (FEA, for example) has presumably already been carried
out. Assume that the structural problem is governed by the following linear algebraic equation:

K(u)z =£(u) (11.5.10)

Equation 11.5.10 is a matrix equation of finite elements if K and f are understood to be the stiffness
matrix and load vector, respectively. Suppose the explicit expressions of K(u) and f(u) are known and
differentiable with respect to u. Since the stiffness matrix K(u) and load vector f(u) depend on the design
u, solution z also depends on the design u. However, it is important to note that this dependency is
implicit, which is why we need to develop a design sensitivity analysis methodology. As shown in Equation
11.5.9, dz/du must be computed using the governing equation of Equation 11.5.10. This can be achieved
by differentiating Equation 11.5.10 with respect to u, as

Ku)y—=—-—z (11.5.11)
u
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Assuming that the explicit expressions of K(u) and f(u) are known, dK/du and df/du can be evaluated.
Thus, if solution z in Equation 11.5.10 is known, then dz/du can be computed from Equation 11.5.11,
which can then be substituted into Equation 11.5.9 to compute do/du. Note that the stress performance
measure is implicitly dependent on the design through state variable z.

In this text, it is assumed that the general performance measure y depends on the design explicitly
and implicitly. That is, the performance measure y is presumed to be a function of design u, and state
variable z(u), as

v =y (z(uw),u) (11.5.12)
The sensitivity of y can thus be expressed as
T
oy

oz

dy(z(w),u) _ oy
du ou

dz (11.5.13)

z=const u=const

The only unknown term in Equation 11.5.13 is dz/du. Various computational methods to obtain dz/du
are introduced in the following subsections.

Methods of Structural Design Sensitivity Analysis

Various methods employed in design sensitivity analysis are listed in Figure 11.5.24. Four approaches are
used to obtain the design sensitivity: the finite difference, discrete, continuum, and computational
derivatives. In the finite difference approach, design sensitivity is obtained by either the forward finite
difference or the central finite difference method. In the discrete method, design sensitivity is obtained by
taking design derivatives of the discrete governing equation. For this process, it is necessary to take the
design derivative of the stiffness matrix. If this derivative is obtained analytically using the explicit
expression of the stiffness matrix with respect to the design variable, it is an analytical method, since the
analytical expressions of K(u) and f(u) are used. However, if the derivative is obtained using a finite
difference method, the method is called a semianalytical method. In the continuum approach, the design
derivative of the variational equation is taken before it is discretized. If the structural problem and
sensitivity equations are solved as a continuum problem, then it is called the continuum-continuum
method. However, only very simple, classical problems can be solved analytically. Thus, the continuum
sensitivity equation is solved by discretization in the same way that structural problems are solved. Since
differentiation is taken at the continuum domain and is then followed by discretization, this method is

Forward Finite Difference
Finite Difference
Central Finite Difference

Semi—Analytical Method
Discrete Derivative
Analytical Method

Continuum-Discrete Method
Continuum Derivative
Continuum—Continuum Method

Source Code Transformation
Computational Derivative

ANVANVARA

Operator Overloading

FIGURE 11.5.24 Approaches to design sensitivity analysis.
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called the continuum-discrete method. Finally, computational, algorithmic or automatic differentiation
refers to a differentiation of the computer code itself.

Except for the finite differences option, the other three come in direct and adjoint methods (called
the reverse mode for computational derivative). In the direct method, one obtains the derivatives of the
entire structural response, and often of intermediate quantities as well. The sensitivities of performance
measures can then be obtained from the chain rule of differentiation. In the adjoint method, one defines
an adjoint problem, which depends on the performance measure. The sensitivities of performance
measures can then be obtained using the structural and adjoint responses. Thus, all of the system response
sensitivities are not required, which is particularly an advantage in cases with many design variables,
though few performance measures of interest.

The Global Finite Difference Method

The easiest way to compute sensitivity information of the performance measure is by using the finite
difference method. Different designs yield different analysis results and, thus, different performance
values. The finite difference method actually computes design sensitivity of performance by evaluating
performance measures at different stages in the design process. If u is the current design, then the analysis
results provide the value of performance measure y(u). In addition, if the design is perturbed to u+Au,
where Au represents a small change in the design, then the sensitivity of y(u) can be approximated as

diw - v+ Au)—y(u)

(11.5.14)
du Au

Equation 11.5.14 is called the forward difference method since the design is perturbed in the direction
of +Au. If —Au is substituted in Equation 11.5.14 for Au, then the equation is defined as the backward
difference method. Additionally, if the design is perturbed in both directions, such that the design sensi-
tivity is approximated by

d7\|1 Yt Auw) - y(u—Au)
du 2Au

(11.5.15)

then the equation is defined as the central difference method.

The advantage of the finite difference method is obvious. If structural analysis can be performed and
the performance measure can be obtained as a result of structural analysis, then the expressions in
Equation 11.5.14 and Equation 11.5.15 are virtually independent of the problem types considered.
Consequently, this method is still popular in engineering design.

However, sensitivity computation costs become the dominant concern in the design process. If n
represents the number of designs, then n+1 number of analyses have to be carried out for either forward
or backward difference method, and 2n+1 analyses are required for the central difference method. For
modern, practical engineering applications, the cost of structural analysis is rather expensive. Thus, this
method is not feasible for large-scale problems containing many design variables.

Another major disadvantage of the finite difference method is the accuracy of its sensitivity results. In
Equation 11.5.14, accurate results can be expected when Au approaches zero. Figure 11.5.25 shows some
sensitivity results using the finite difference method. The tangential slope of the curve at u, is the exact
sensitivity value. Depending on perturbation size, we can see that sensitivity results are quite different.
For a mildly nonlinear performance measure, relatively large perturbation provides a reasonable estima-
tion of sensitivity results. However, for highly nonlinear performances, a large perturbation yields com-
pletely inaccurate results. Thus, the determination of perturbation size greatly affects the sensitivity result.
And even though it may be necessary to choose a very small perturbation, numerical noise becomes
dominant for a too small perturbation size. That is, with a too small perturbation, no reliable difference
can be found in the analysis results. The most obvious source of this type of errors is computational
errors associated with arithmetic with finite number of digits and possibly ill-conditioning in the problem.
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FIGURE 11.5.25 Influence of step-size in forward finite difference method.

For example, if up to five digits of significant numbers are valid in a structural analysis, then any design
perturbation in the finite difference that is smaller than the first five significant digits cannot provide
meaningful results. As a result, it is difficult to determine design perturbation sizes that work for all
problems. Other potential sources are the discretization of both the spatial and the temporal domain. A
typical example could be numerical noise induced by re-meshing.

Computational efficiency, accuracy and consistency, and implementation effort for global finite dif-
ferences depend to a large extent on the type of solvers used for the linear system of Equation 11.5.10.
The main issue is whether computational investments associated with solving the equations for the
nominal structure can help reduce the effort associated with solving these equations for a perturbed
structure.

When direct solvers are used for the solution, so that the matrix K has been factored, there is an array
of methods that provide fast re-analysis of the perturbed structure. A disadvantage of many of these
techniques is that accuracy is generally compromised, that is, certain inaccuracies will be introduced.
When the perturbation leads to a low-rank modification of K— for example, because only a single finite
element is modified — then an exact analysis of the perturbed structure can be performed using the
Sherman-Morrison-Woodbury formulas.’ The main computational cost of this approach is the solution
of Equation 11.5.10 for a number of right-hand sides equal to the rank of the perturbation in K. Akgiin
et al.? discuss several variants of this approach, including the method of virtual distortions. When the
perturbation in the matrix is more extensive, as in shape variation, it is still possible to use a binomial
series solution??! or a similar approximation of the inverse of K using a Neuman series.?>?

The Discrete Method

A structural problem is often discretized in finite dimensional space in order to solve complex problems.
The discrete method computes the performance design sensitivity of the discretized problem, where the
governing equation is a system of linear equations, as in Equation 11.5.10. If the explicit form of the
stiffness matrix K(u) and the load vector f(u) are known, and if solution z of matrix equation K(u)z =
f(u) is obtained, then the design sensitivity of the displacement vector can also be obtained, from Equation
11.5.11, as

K(u)@zp (11.5.16)
du
where the pseudo-load vector p is defined as
_df_dK

=—— 11.5.17
P du duz ( )
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It is clear from Equation 11.5.16 that the design sensitivities require the solution of the same set of
equations as solved for the response functions, but for another right-hand side (compare with Equation
11.5.10), the latter being the pseudo-load vector (see Equation 11.5.17).

In calculating the pseudo-load vector, it is not necessary to differentiate the global load vector and
stiffness matrix, but to differentiate only those elements that are affected by the design variable. The
evaluation of the pseudo-load vector is then carried out by an assembly of all individual nodal points
and finite element contributions. These contributions are obtained by differentiating the finite element
stiffness matrices with respect to the design variables and following a similar procedure for all load
contributions. The fact that the pseudo-load vector only depends on elements that are affected may be
exploited to make the computation of the pseudo-load vector more efficient. For shape design variables,
this requires some additional attention. For that purpose, one often tries to link the design variables only
to boundary elements, which means that only a boundary layer of elements is affected by the shape
design variables.

The analytical differentiation process may become tedious. This especially holds true for shape design
variables. Additional procedures must be implemented for each element used within the sensitivity
analysis. The procedure must account for all possible design variables and particularly for shape design
variables, as they are usually more complex than the original finite element routines. This type of discrete
design sensitivity is referred to as analytical discrete design sensitivity.

It is not difficult to compute df/du, since the applied force is usually either independent of the design,
or it has a simple expression. However, the computation of dK/du in Equation 11.5.16 depends on the
type of problem. In addition, modern advances in the finite element method use numerical integration
in the computation of K. In this case, the explicit expression of K in terms of # may not be available.
Moreover, in the case of the shape design variable, computation of the analytical derivative of the stiffness
matrix is quite costly. Because of this, frequently approximations are accepted for the pseudo-load vector
that reduces this effort. These approximations particularly involve finite difference schemes for evaluation
of the pseudo-load vector. Forward and central finite difference schemes are the most popular. This type
of design sensitivity is commonly denoted semianalytical discrete design sensitivity. However, Barthelemy
and Haftka?* show that the semianalytical method can have serious accuracy problems for shape design
variables in structures modeled by beam, plate, truss, frame, and solid elements. They found that accuracy
problems occur even for a simple cantilever beam. Moreover, errors in the early stage of approximation
multiply during the matrix equation solution phase. As a remedy, Olhoff et al.?> proposed an exact
numerical differentiation method when the analytical form of the element stiffness matrix is available.

For shape design variables, design perturbation involves both the size of the perturbation and its
distribution over the domain. For the choice of perturbation size, similar considerations as discussed for
global finite differences play a role. Unfortunately, the semianalytical formulation may be extremely
sensitive with respect to this choice. We will come back to this aspect extensively, and we only note here
that this drawback may negate all advantages of a semianalytical formulation and motivates modifications
to the semianalytical method.

The Continuum Method

In the continuum method, the design derivative of the variational equation (the continuum model of
the structure) is taken before discretization. Since differentiation is taken before any discretization takes
place, this method provides more accurate results than the discrete approach. In addition, profound
mathematical proofs are available regarding the existence and uniqueness of the design sensitivity.
Sizing design variables are distributed parameters of the continuum equation. For shape design
variables, the material derivative concept of continuum mechanics is used to relate variations in structural
shape to the structural performance measures.* Using the continuum approach, we can obtain design
sensitivity expressions in the form of integrals, with integrands written in terms of such physical quantities
as displacement, stress, strain, and domain shape change. If exact solutions to the continuum equations
are used to evaluate these design sensitivity expressions, then this procedure is referred to as the contin-
uum-continuum method. On the other hand, if approximation methods such as the finite element,
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boundary element, or mesh-free method are used to evaluate these terms, then this procedure is called
the continuum-discrete method. The continuum-continuum method provides the exact design sensitivity
of the exact model, whereas the continuum-discrete method provides an approximate design sensitivity
of the exact model. When FEA is used to evaluate the structural response, then the same discretization
method as structural analysis has to be used to compute the design sensitivity of performance measures
in the continuum-discrete method.

In the continuum approach, the design variables may be considered as fields that are functions of the
spatial coordinates. As a consequence, sensitivity is to be understood as a variation of a function. Let us
consider that the design variable s is perturbed to s + tn in which 7 is the scalar that measures the
perturbation size and 7 is the direction of design change. For simplicity, it is assumed that the structural
design variable s does not affect the domain. The variation of field response u with respect to s can then
be defined as

=— 11.5.18
T ot ( )

=0

W= lim{ u(s+’m)—u(s)} _du

=0

Since the direction of design change 1 can be arbitrary, Equation 11.5.18 must be linear with respect
tom and the coefficient of 1 is called the sensitivity of field response u, which is equivalent to the derivative
in the context of other approaches.

The continuum method of design sensitivity analysis starts from the principle of virtual work, which
is convenient for formulating the equations of equilibrium, as

J'J‘ 63"’Cedv=” , SudeV+J. Su"hdA (11.5.19)
4 sulbdv A

for all du that belong to the space of kinematically admissible displacements. In Equation 11.5.19, ¢ is
the virtual strain; C is the elasticity matrix; € is the strain vector; b denotes the external load per unit
volume; and h reflects tractions acting on the outer surface A of the structure.

Using Equation 11.5.18, the equations of equilibrium, can be differentiated to obtain the fol-
lowing continuum sensitivity equation:

H 8¢’ Ce’dV = j _[ 6uTb’dV+J Su'h/dA— _U 8"Cle dV (11.5.20)
\4 1% A 174

for all du that belong to the space of kinematically admissible displacements. The left side of Equation
11.5.20 is the same as the left side of Equation 11.5.19 if u is replaced by u’. The right side of Equation 11.5.20
defines a pseudo-load (or fictitious load), which explicitly depends on the design. Thus, solving the
sensitivity equation is the same as solving original structural equilibrium equation with different load
terms. The major advantage of the continuum approach is that the sensitivity formulation is independent
of discrete model and numerical schemes. Once the continuum sensitivity equation is obtained, it can
be discretized in the same manner as the original analysis equations in order to obtain a system of matrix
equations similar to Equation 11.5.10.

When the design variables affect the shape of the domain, the differentiation of the equations of
equilibrium is much more complicated because the integral domain depends on the design. Interested
readers are referred to Haug et al.* for the material derivative approach and Arora? or Phelan and Haber?”
for the control volume approach.

One frequently asked question is “Are the discrete and continuum-discrete methods equivalent?” To
answer this question, we have to give four conditions. First, the same discretization (shape function)
used in the FEA method must be used for continuum design sensitivity analysis. Second, an exact
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integration (instead of a numerical integration) must be used in the generation of the stiffness matrix
and in the evaluation of continuum-based design sensitivity expressions. Third, the exact solution (and
not a numerical solution) of the finite element matrix equation and the adjoint equation should be used
to compare these two methods. Fourth, the movement of discrete grid points must be consistent with
the design parameterization method used in the continuum method. For the sizing design variable, it is
shown in reference 4 that the discrete and continuum-discrete methods are equivalent under the condi-
tions given above, using a beam as the structural component. It has also been argued that the discrete
and continuum-discrete methods are equivalent in shape design problems under the conditions given
above.?® One point to note is that these four conditions are not easy to satisfy; in many cases, numerical
integration is used and exact solutions of the FE matrix equation cannot be obtained.

Computational Derivative

Even if the finite element programs are composed of many complicated subroutines and functions, they
are basically a collection of elementary functions. Computational (or automatic) differentiation method
defines the partial derivatives of these elementary functions, and then the derivatives of complicated
subroutines and functions are computed using propagation and the chain rule of differentiation. The
arguments of elementary functions can be either one or two. Without loss of generality, let us assume
that an elementary function has two arguments, defined as

azfelem(zi’zj) (11521)

where f,_( , )represents ( ++,sin( ),...) operators for the single argument and (+, —, *, /, ...) oper-
ators for the double arguments.
In the direct differentiation method, the derivative of Equation 11.5.21 can be defined as

al — afelem %J’_ afelem ai

ds 0z, ds  dz; Os (11.5.22)

This derivative can propagate through complicated functions and subroutines using the chain rule of
differentiation. This propagation eventually produces the derivative of the structural response.

In the reverse mode, which corresponds to the adjoint method in the previous sections, the derivatives
are computed backward through the computation. Due to the reverse procedure, this approach requires
saving the entire function evaluation, which also requires a significant amount of memory.

Software that creates a computer program that calculates the derivatives of output of other computer
programs is now available, and is applicable for small to medium-size programs.?* The largest program
that we found mentioned had about 140,000 lines.*® Both first- and higher-order derivatives can be
obtained. This approach was initially called automatic differentiation, but after a while it was realized
that human intervention in the process is required in many cases to obtain a reasonably efficient code.
So the name was generalized to computational differentiation.

There are several automatic differentiation tools widely available today, notably ADIFOR (Automatic
Differentiation of Fortran®' and ADOL-C for C/C++ programs.®? In terms of implementation, there are
two basic approaches to automatic differentiation — source code transformation and operator overloading.
Source code transformation can be viewed as a precompiler that adds code for computing the derivatives.
Operator overloading is available in modern computer languages, such as C++ and Fortran 90, that
provide the ability to redefine the meaning of elementary operators (such as multiplication) for various
classes of variables. By defining new variable types that have gradient objects associated with them, and
overloading the elementary operators to produce gradients as well, we can transform the code without
increasing its size substantially. ADOL-C and ADOL-F are examples of operator-overloading tools for
automatic differentiation.
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FIGURE 11.5.26 Design parameterization and mesh-free analysis results of a torque arm.

Examples

Torque Arm Model*

In order to show the accuracy of sensitivity calculation, a torque arm design problem, presented by
Bennett and Botkin,* is used as a numerical example. The geometry of the torque arm (see Figure
11.5.26) is modeled using MSC/PATRAN,?® and is represented by parametric coordinates. The displace-
ment on the left hole is fixed, while the horizontal and vertical forces are applied at the center of the
right hole. Design parameterization was performed by selecting the control points of the parametric
curves such that the boundary curves move according to the design change. The design parameter was
linked in order to obtain a symmetric design change. Design velocity vectors that represent the movement
of particles in the direction of a given design parameter were computed by perturbing the parametric
coordinates. This process is referred to as the isoparametric mapping method. Design parameterization
and design velocity vector computation were also carried out by using a design sensitivity and optimi-
zation tool (DSO).* In all, eight design parameters were chosen in order to perturb the outer/inner
boundary curves of the torque arm.

An automatic discretization procedure was used to discretize the torque arm structure. The domain
of the torque arm was discretized by 478 degrees of freedom. The plane stress formulation is used with
a thickness of 0.3 cm. The torque arm is made of steel with E = 207 GPa, and v = 0.3.

The structural analysis required 5.19 seconds, whereas by using one processor of HP Exemplar s-class
workstation the sensitivity analysis required 4.55 + 8 = 0.57 seconds per each design parameter. The
efficiency of the sensitivity computation derives from the fact that sensitivity analysis uses the same
constitutive matrix, already factorized from the response analysis stage.

The sensitivity coefficients of the performance measures, including the structural area and stresses,
were computed based on the continuum approach. The highest stress values at 19 locations are selected
as the performance measure, which will be served as constraints during optimization. Using a very small
perturbation size, the accuracy of the sensitivity coefficients is compared with the finite difference results,
as shown in Table 11.5.5. Very accurate sensitivity results are observed. In Table 11.5.5, the first column
represents design parameters, the second column represents performance measures, that is, structural
area and von Mises stress at eight integration zones. The third column Ay denotes the first-order
sensitivity results obtained from the forward finite difference method with a perturbation of T = 10.
The fourth column represents the sensitivity computation results from the method employed. As has
been shown in the fifth column, the ratio between the third and the fourth columns are very close to
100%, which means the calculated sensitivity information is very accurate.

Figure 11.5.27 shows the design sensitivity plot of the von Mises stress performance with respect to
design u;. Such a sensitivity plot graphically illustrates the effect of design change to the performance
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TABLE 11.5.5 Design Sensitivity Results and
Comparison with Finite Difference Results

u v Ay A\ Ay/y’ x 100
u, Area .10361E-5 .10362E-5 100.00
O, -.62892E-7 -.62891E-7 100.00
Ojs -.17736E-8 -.17722E-8 100.08
[ -.88829E-7 -.88828E-7 100.00
Gy, -11245E-6  -.11245E-6 100.00
Oy, -.77783E-7 -.77781E-7 100.00
G -15990E-6  -.15991E-6 100.00
G 33665E-7  .33667E-7 100.00
G1go -.67624E-7 -.67623E-7 100.00
u;  Area .10118E-5 .10119E-5 100.00
O, -.78084E-9 -.78177E-9 99.88
Gys 14674E-9  .14678E-9 99.97
Gy -.58752E-8  -.58748E-8 100.01
[ -.19387E-7 -.19387E-7 100.00
Gy, -39358E-7  -.39357E-7 100.00
G -38821E-9  -.38886E-9 99.83
O A1596E-9  .41525E-9 100.17
G1go -.59788E-7 -.59787E-7 100.00
u, Area -.20000E-5 -.20000E-5 100.00
O, .20682E-8 .20709E-8 99.87
Gys A47302E-8  .47324E-8 99.95
Ogg .60386E-8 .60409E-8 99.96
[ .81475E-8 .81496E-8 99.98
Cy; .16225E-7 .16227E-7 99.99
G -78753E-9  -.78694E-9 100.08
O 26136E-9  26181E-9 99.83
Giuo  -25006E-7  .25008E-7 99.99

-1.09 + 00

—1.19 + 00;

FIGURE 11.5.27 Von Mises stress sensitivity plot with respect to design u;.

change, which provides very useful information in the interactive design process without invoking the
automated design optimization procedure.

The Road Arm Model*
A road arm structure, as shown in Figure 11.5.28, transfers a force and torque from a road wheel to a
suspension unit for a combat vehicle. The road arm model is discretized with 4365 degrees of freedom.
The road arm is made of steel with E = 206 GPa, and v = 0.3. At the center of the right hole, a vertical
force of 3736 N and a torque of 44,516 N-m are applied, whereas the displacement on the left hole is
fixed. As was illustrated in Figure 11.5.28, the stress concentration appears in the left corner of the road
arm. If the highest stress level in the left corner is considered as a reference value, then the dimension
of the right corner cross section can be reduced, because this region has a large amount of safety margin.
Since two holes are connected to the road wheel and torsion bar, the dimension and the geometry of
the holes are fixed. The design goal is to determine the dimension of the cross sections of the arm. The
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FIGURE 11.5.28 Discrete road arm model and simulation results (stress).
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FIGURE 11.5.29 Design parameters for the rod arm model.

heights and widths of four sections are selected as design parameters (see Figure 11.5.29). Thus, a total
of eight design parameters are considered in this example.

As the design variable changes, the boundary surface of the structure changes. At the same time, the
discrete model also needs to be moved according to the design variable’s change. Even if the design
variable changes the boundary surface, it is reccommended that the interior nodes be moved too. Other-
wise, the accuracy of the perturbed model may deteriorate. The relation between a design variable and
the motion of each node is denoted by the design velocity field. Figure 11.5.30 shows the design velocity
field for two different design variables, u, and u,, respectively. The arrows denote the magnitude and
direction of nodal movement according to the corresponding design variable’s change.

For a given design variable, the design sensitivity coefficients of various performance measures can be
calculated using the design velocity field. Table 11.5.6 shows the design sensitivity coefficients, compared
with the finite difference results. Displacement, stress, and volume of the structure are considered as
performance measures. For example, zx4 represents the x-directional displacement at node 4, and sx10
is the x-directional normal stress at element 10. Very accurate sensitivity results are observed. This
sensitivity information will be provided to the design optimization algorithm, to obtain the optimum
design for given constraints.



Engineering Design

FIGURE 11.5.30 Design velocity field vectors: (a) design u,; (b) design u,.

TABLE 11.5.6 Design Sensitivity Results Compared with Finite Difference Method

Design  Perform. v Ay YAt Ay’ At x 100
ul zx4 7.98472E-04 6.64019E-11 6.64028E-11 100.00
zy8 —1.74039E-04  —1.50522E-11  —1.50526E-11 100.00
sx10 1.38382E+01  —3.25110E-06  —3.26009E—06 99.72
syl4 1.25479E+01  —1.40765E-05  —1.40762E-05 100.00
sz18 -3.11292E+00  —1.79759E-06  —1.80037E—-06 99.85
Volume 4.68909E+02  —4.53781E-05  —4.53781E-05 100.00
u5 zx4 7.98472E-04 2.13594E-10 2.13594E-10 100.00
zy8 —1.74039E-04  —7.76925E-11  —7.76924E-11 100.00
sx10 1.38382E+01 4.83484E-07 4.83908E-07 99.91
syl4 1.25479E+01  —4.81065E-06  —4.81087E—06 100.00
sz18 —3.11292E+00  —4.00414E-06  —4.00603E—06 99.95
Volume 4.68909E+02  —7.24906E-06  —7.24905E—06 100.00

Structural-Acoustic Design of a Vehicle>”

11-77

As a last example, the design sensitivity analysis of a structural-acoustic problem is demonstrated. The
goal is to estimate the sensitivity of a structure-borne noise caused by vibration of a vehicle. In order to
calculate the noise level at the driver’s ear position, sequential analysis procedure is employed. First, the
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FIGURE 11.5.31 Computational model for structural-acoustic problem (a) finite element model of the vehicle; (b)
boundary element model of the cabin compartment.

structural vibration problem is solved using the frequency response analysis. The vehicle structure is
modeled using the finite element method, as shown in Figure 11.5.31(a). The sources of excitation are
power-train vibration, wheel/terrain interaction, and a hydraulic pump load. Because of this additional
source of excitation, vibration and noise is more significant than with a conventional power train. The
frequency response analysis calculates the vibration velocity of vehicle’s panels. Second, after solving for
the panel velocity, the boundary element method is employed to calculate the pressure level in the cabin
compartment using the panel velocity as a boundary condition. Figure 11.5.31(b) shows the boundary
element model of the cabin compartment. In this example, the noise level of the passenger compartment
is chosen as the performance measure, and vehicle-panel thicknesses are chosen as design variables. From
the power-train analysis and rigid-body dynamic analysis, the harmonic excitations at 12 locations are
obtained. The following frequency response analysis is carried out using MSC/NASTRAN to obtain the
velocity response at eight frequencies, which correspond to the peak values of structure’s velocity below
100 Hz:

[joM + kK ]{v(m)} = {f(@)} (11.5.23)

where j= V-1, o is the excitation frequency, [M] is the structural mass matrix, € = (1 + jd)/jo, ¢ is the
structural damping coefficient, [K] is the stiffness matrix, {v} is the panel velocity vector, and {f} is the
harmonic excitation force.

After solving the structure’s velocity response, acoustic BEA is carried out using the cabin acoustic
boundary element model, as shown in Figure 11.5.31(b). First, the emanating pressure from the panel
is calculated using all panels’ vibration velocity, as

[Al{p,}=[Bl{v} (11.5.24)
where the matrices [A] and [B] are functions of geometry and {p} is the surface pressure of the panel.

After calculating the surface pressure distribution, the sound pressure at the interior of the cabin can be
calculated from

p=1b}"{v}+{e}" {p.} (11.5.25)

where the vectors {b} and {e} are functions of geometry.
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TABLE 11.5.7 Acoustic Pressures at the Driver’s Ear Position

Frequency (Hz)  Pressure (kg/mm-sec’)  Phase Angle (Degree)

47.3 0.64275E-04 66.915
59.5 0.35889E-03 328.99
75.9 0.66052E-04 193.91
81.8 0.41081E-03 264.21
86.0 0.21629E-03 176.18
90.5 0.43862E-03 171.44
93.6 0.75627E-02 178.30
98.7 0.22676E-03 226.07
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I
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s 7.05290E + 01

- 6.54460E + 01
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e 3.49480E + 01
-
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2.47820E + 01
1.96990E + 01
1.46160E + 01

FIGURE 11.5.32 Acoustic pressure distribution inside the cabin compartment at 93.6 Hz.

Table 11.5.7 shows sound pressure levels at the driver’s ear position. Since the sound pressure level at
93.6 Hz is significantly higher than at other frequencies, design modification is carried out at that
frequency. In fact, this frequency corresponds to the fundamental frequency of the acoustic domain.
Figure 11.5.32 shows the sound-pressure level inside the cabin compartment. The maximum sound
pressure level at the driver’s ear is 77.8 dB when the reference pressure of 2 X 10~ kg/mm-s? is used.

In order to identify which panel thickness affects the sound pressure, the design sensitivity analysis
has been performed. Forty design variables are selected in this example, which are grouped based on the
manufacturing constraints. The adjoint method is employed in calculating the design sensitivity infor-
mation because the number of performance measure (pressure at driver’s ear position) is much smaller
than the number of design variables. Table 11.5.8 shows the normalized sensitivity information for the
12 design variables whose effects are the most significant. The results show that a thickness change in
the chassis component has the greatest potential for achieving a reduction in sound-pressure levels. Since
the numerical integration process is carried out on each finite element, the element sensitivity information

TABLE 11.5.8 Normalized Sensitivity Values for Various Design Variables

Component Sensitivity Component Sensitivity
Chassis -1.0 Chassis MTG —0.11
Left wheelhouse —0.82 Chassis connectors —0.10
Right door 0.73 Right fender -0.07
Cabin —0.35 Left door —0.06
Right wheelhouse —0.25 Bumper —0.03

Bed —-0.19 Rear glass 0.03
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FIGURE 11.5.33 Design sensitivity contribution of each element to the sound pressure level.

can be calculated without any additional effort. Figure 11.5.33 plots the sensitivity contribution of the
each element to the sound-pressure level. Such graphic-based sensitivity information is very helpful for
the design engineer in determining the direction of the design modification.

As was shown in Table 11.5.8, the chassis component has the highest sensitivity for the sound-pressure
level, which means that a change in the thickness of the chassis component is the most effective way to
reduce the sound-pressure level. To see the effect of the chassis component, the thickness of the chassis
is increased by 1.0 mm and the whole analysis process is repeated for the modified design. It turns out
that the maximum value of the sound pressure is reduced from 77.8 dB to 75.0 dB.

Gradient-Based Design Optimization

When the design parameters are continuous, various numerical techniques have been developed to find
the local optimum design systematically. Unfortunately, no mathematical theory exists that can find the
global optimum design for general nonlinear functions. To find the optimum design, at least a possible
candidate must exist within a feasible design region to satisfy problem constraints. Every design in the
feasible region is an acceptable design, even if it is not the best one. The best design is usually the one
that minimizes (or maximizes) the cost function of the design problem. Thus, the goal of the design
optimization problem is to find a design that minimizes the cost function among all feasible designs. In
this section, design optimization algorithms are briefly introduced. However, this brief discussion is by
no means a complete treatment of optimization methods. For a more detailed treatment, see references
38, 39, and 40.

Most gradient-based optimization algorithms are based on the mathematical programming method,
which requires the function values and sensitivity information at given design variables. Each algorithm
has its own advantages and disadvantages. The performance of an optimization algorithm critically
depends on the characteristics of the design problem and the types of cost and constraint functions.

The Linear Programming Method

The linear programming method can be used when cost and constraints are linear functions of the design
variables.*! Most structural design problems, however, are nonlinear with respect to their design variables.
Thus, the linear programming method is not of much use for structural problems. However, a nonlinear
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problem can be solved by approximating a sequence of linear problems. The standard form of a linear
programming problem is

minimize f=c'u

subject toAu=Db (11.5.26)
u=0
where ¢ = [¢}, ¢,, ..., ¢,]T is the coefficient of the cost function, A is the m X n matrix, and b is the m x 1

vector. Inequality constraints can be treated as equality constraints by introducing slack variables. Since
all functions are linear, the feasible regions defined by linear equalities are convex, along with the cost
function. Thus, if any optimum solution of Equation 11.5.26 exists, then it is a global minimum solution
of the problem. The reason for introducing the linear problem here is that a very efficient method exists
for solving linear programming problems, namely the simplex method. A positive feature of a linear
programming problem is that the solution always lies on the boundary of the feasible region. Thus, the
simplex method finds a solution by moving each corner point of the convex boundary.

Unconstrained Optimization Problems

When cost and/or constraints are nonlinear functions of the design, the design problem is called a
nonlinear programming method, as contrasted to the linear programming method discussed in the pre-
vious section. Most engineering problems fall into the former category. Because the properties of non-
linear programming are nonlinear, this method is frequently solved using the numerical, rather than the
analytical, method.

When there are no constraints on the design problem, it is referred to as an unconstrained optimization
problem. Even if most engineering problems have constraints, these problems can be transformed into
unconstrained ones by using the penalty method, or the Lagrange multiplier method. The unconstrained
optimization problem sometimes contains the lower and upper limits of a design variable, since this type
of constraint can be treated in simple way. The standard form of an unconstrained optimization problem
can be written as

minimize f(u)
. (11.5.27)
subject to uf <u, <u, k=1,--n

In the following subsections, numerical methods for solving Equation 11.5.27 are discussed.

The Steepest Descent Method
The numerical procedure for solving Equation 11.5.26 is an iterative update of design u. If u* is the value
of the design at the k-th iteration, then the new design at the (k+1)-th iteration can be obtained by

u =u" +od"! (11.5.28)
where d*! is called the descent direction and o is a step size, used to determine the amount of movement
in the direction of d**'. If the descent direction is given, then parameter o is determined by using the
line search procedure to find the minimum value of a cost function in the descent direction. The steepest
descent method uses the gradient of the cost function as the descent direction, such that

k
a* =—%=—Vf(uk) (11.5.29)

which is the design sensitivity of the cost function. This method suffers from a slow convergence near
the optimum design, since it does not use any information from the previous design, and only first-order
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information of the function is used. Note that d* and d**! are always orthogonal, such that a zigzagging
pattern appears in the optimization process.

The Conjugate Gradient Method

The conjugate gradient method developed by Fletcher and Reeves*? improves the rate of slow convergence
in the steepest descent method by using gradient information from the previous iteration. The difference
in this method is the computation of d**! in Equation 11.5.28. The new descent direction is computed by

d* =-Vf(u*)+pid* (11.5.30)
where
_ )
Bk—m (11.5.31)

and where the first iteration is the same as Equation 11.5.28. This method tends to select the descent
direction as a diagonal of two orthogonal steepest descent directions, such that a zigzagging pattern can
be eliminated. This method always has better convergence than the steepest descent method.

The Newton Method

The previous methods we have examined use first-order information (first-order design sensitivity) of
the cost function to find the optimum design, which is called linear approximation. The Newton method
uses second-order information (second-order design sensitivity) to approximate the cost function as a
quadratic function of the design. The major concern is how to compute the second-order design sensi-
tivity (or Hessian) matrix. Let us define the Hessian matrix as second-order design sensitivity, as

of (u*)

ouf 8u§

H(uk)E > i,jzl,"',fl (11532)

The new design can then be determined, as

k+1

u"! = uf + Au (11.5.33)

where

Auk+1 =_H(uk)—lvf(uk) (11534)

If the current estimated design u* is sufficiently close to the optimum design, then Newton’s method
will show a quadratic convergence. However, the greater the number of design variables, the greater the
cost of computing H(u*) in Equation 11.5.32. In addition, Newton’s method does not guarantee a
convergence. Thus, several modifications are available. For example, the design update algorithm in
Equation 11.5.33 can be modified to include a step size by using a line search, as in Equation 11.5.28.

The Quasi-Newton Method
Although Newton’s method has a quadratic convergence, the cost of computing the Hessian matrix, and
the lack of a guaranteed convergence, are drawbacks to this method. The quasi-Newton method has an
advantage over the steepest descent method and Newton’s method: it only requires first-order sensitivity
information, and it approximates the Hessian matrix to speed up the convergence.

The DFP (Davidon-Fletcher-Powell)*> method approximates the inverse of the Hessian matrix using
first-order sensitivity information. By initially assuming that the inverse of the Hessian is the identity
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matrix, this method updates the inverse of the Hessian matrix during design iteration. A nice feature of
this method is that the positive definiteness of the Hessian matrix is preserved.

The BFGS (Broydon-Fletcher-Goldfarb-Shanno)* method updates the Hessian matrix directly, rather
than updating its inverse as with the DFP method. Starting from the identity matrix, the Hessian matrix
remains positive definite if exact line search is used.

Constrained Optimization Problems

Most engineering problems have constraints that must be satisfied during the design optimization process.
These two types of constraints are handled separately: equality and inequality constraints. The standard
form of the design optimization problem in constrained optimization can be written as

minimize f(u)

subject toh;(u)=0, i=1,-p
. (11.5.35)
g(W=0,  j=1-m

L U
w <w <ul=1,n

The computational method to find a solution to Equation 11.5.35 has two phases: first, to find a
direction d that can reduce the cost f(u) while correcting for any constraint violations that are violated;
and second, to determine the step size of movement o in the direction of d.

Sequential Linear Programming (SLP)

The SLP method approximates the nonlinear problem as a sequence of linear programming problems
such that the simplex method described earlier may be used to find the solution to each iteration. By
using function values and sensitivity information, the nonlinear problem in Equation 11.5.35 is linearized
in a similar way as Taylor’s expansion method in the first order, as

minimize f(u*)+Vf' Au*

subject to h,-(uk)+Vhl-TAuk =0, i=1-p
(11.5.36)
&) +Vg Au* <0,j=1,-,m

L U
u <y <u, I=1,n

Since all functions and their sensitivities at u* are known, the linear programming problem in Equation
11.5.36 can be solved using the simplex method for Au*. Even if the sensitivity information is not used
to solve a linear programming problem, design sensitivity information is required in order to approximate
the nonlinear problem as a linear one with SLP. In solving Equation 11.5.36 for Au¥, the move limit
Au} < Au* < Auf is critically important for convergence.

Sequential Quadratic Programming (SQP)

Compared to previous methods, which use first-order sensitivity information to determine the search
direction d, SQP solves a quadratic subproblem to find that search direction, which has both quadratic
cost and linear constraints:

minimize f(u*)+Vf'd +%dTHd
subject to B (") +Vh'd=0, i=L-p (11.5.37)

gi(u)+Vg"d<0,j=1,m
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This special form of the quadratic problem can be effectively solved, for example, by using the Kuhn-
Tucker condition and the simplex method. Starting from the identity matrix, the Hessian matrix H is
updated at each iteration by using the aforementioned methods in unconstrained optimization algo-
rithms. The advantage of solving Equation 11.5.37 in this way is that for positive definite H the problem
is convex and the solution is unique. Moreover, this method does not require the move limit as in SLP.

The Constrained Steepest Descent Method

In the unconstrained optimization process described earlier, the descent direction d is obtained from the
cost function sensitivity. When constraints exist, this descent direction has to be modified in order to
include their effects. If constraints are violated, then these constraints are added to the cost function
using a penalty method. Design sensitivity of the penalized cost function combines the effects of the
original cost function and the violated constraint functions.

The Constrained Quasi-Newton Method

If the linear approximation of constraints in SQP is substituted for a quadratic approximation, then the
convergence rate of Equation 11.5.37 will be improved. However, solving the optimization problem for
quadratic cost and constraints is not an easy process. The constrained quasi-Newton method combines
the Hessian information of constraints with the cost function by using the Lagrange multiplier method.
Nevertheless, it is still necessary to compute the constraint function Hessian. The main purpose of the
constrained quasi-Newton method is to approximate the Hessian matrix by using first-order sensitivity
information. The extended cost function is

p m
L v, w)= flw)+ Y v+ Y wg,@ (11.5.38)
i=1 j=1
where both v = [v,, v,, ..., v,]T and w = [w}, w,, ..., w,,]" are the Lagrange multipliers for equality and

inequality constraints, respectively. Note that w > 0. Let the second-order design sensitivity of L be VL.
The extended quadratic programming problem of Equation 11.5.37 thus becomes

minimize f(u*)+Vf'd+ %dTVZLd

subject to hl-(uk)+Vh,-Td=0, i=1p (11.5.39)

gj(uk)+ngTd <0, j=1,-m

WIZO, l=1)"'>m

The Feasible Direction Method

The feasible direction method is designed to allow design movement within the feasible region in each
iteration. Based on the previous design, the updated design reduces the cost function and remains in the
feasible region. Since all designs are feasible, a design at any iteration can be used, even if it is not an
optimum design. Because this method uses the linearization of functions as in SLP, it is difficult to
maintain nonlinear equality constraints. Thus, this approach is used exclusively for inequality constraints.
Search direction d can be found by solving the following linear subproblem:

minimize 3
subject to VfTd<P
(11.5.40)
Vgde < B’ 1 = 1" 5 Mactive

~1<d; <1, j=1,n
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where m,;, is the number of active inequality constraints. After finding a direction d that can reduce

cost function and maintain feasibility, a line search is used to determine step size o..

The Gradient Projection Method

The feasible direction method solves the linear programming problem to find the direction of the design
change. The gradient projection method, however, uses a simpler method for computing this direction.
The direction obtained by the steepest descent method is projected on the constraint boundary, such
that the new design can move along the constraint boundary. Thus, the direction of the design change
reduces the cost function while maintaining the constraint along its boundary. For a general nonlinear
constraint, however, a small movement along the tangent line of the boundary will violate this constraint.
Thus, in actual implementation, a correction algorithm has to be followed. The gradient projection
method behaves well when the constraint boundary is moderately nonlinear.

Examples

The Torque Arm Model

The torque arm model is used here to demonstrate the design optimization. The design optimization
problem is formulated in such a way that the total area of the structure is minimized with respect to its
shape design parameters, with design constraints defined as the second invariant of the stress tensors
(von Mises stress), as

minimize  mass

. (11.5.41)
subjectto  ©,,,, <800 MPa

As has been shown in Figure 11.5.26, the maximum stress at the initial design was 305 MPa. Thus,
the design that meets the constrained boundary in Equation 11.5.41 is far away from the initial design,
which means the amount of shape change during design optimization is significantly large.

For design optimization, the sequential quadratic programming method described earlier has been
used employing a commercially available optimization program.*® The structural analysis provides the
function values (i.e., mass and stress), whereas the sensitivity analysis provides the gradient information
to the optimization algorithm. The design optimization problem converges after 20 numbers of iteration.
Figure 11.5.34 shows the structural analysis results at optimum design where the stress constraints along
the upper side of torque arm became active. The left diameter of the interior slot significantly increases
to reduce the structural mass, whereas the right diameter is slightly decreased. The vertical position of
the right boundary (u,) is significantly reduced so that the thickness of the torque arm becomes constant.

Table 11.5.9 shows the values of design variables at the initial and optimum designs. The lower and
upper bounds are selected such that the structure maintains its topology during design optimization. All
design variables start from zero, which means the values of design variables are relative change of its
coordinates. Four design variables are changed up to their lower or upper bounds.

Figure 11.5.35 provides an optimization history of the mass function. Through optimization, the
structural mass was reduced from 0.878 kg to 0.421 kg (47.9%). The highest stress value initially, 305
MPa around the left hole, shifts to 800 MPa around the upper frame at optimum design. A total of 41
response analyses and 20 sensitivity analyses were carried out during 20 optimization iterations. When

7.62 +00
7.08 + 00
6.53 + 00
5.99 + 00
5.44 +00

FIGURE 11.5.34  Analysis result at optimum design.
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TABLE 11.5.9 Design Variables at the Initial and Optimum Designs

Section 11

Design  Lower Bound  Initial Design ~ Optimum Design ~ Upper Bound
u, —3.000 0.0 —3.000 2.000
u, —0.500 0.0 —0.500 2.000
Uy —2.000 0.0 —0.589 2.000
u, —3.000 0.0 —2.700 2.000
Us —4.500 0.0 —4.490 2.000
U —0.500 0.0 2.000 2.000
u; —2.000 0.0 4.460 5.000
Ug —0.500 0.0 —0.00714 2.000
0.9
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FIGURE 11.5.35 Histories of design optimization.

the finite difference methods are used with a re-meshing process,* the optimization process converged
at 45 iterations with eight re-meshing processes. Thus, this approach reduces the cost of design more
than 50%, without even mentioning the cost related to the re-meshing process.

The Road Arm Model

As a second example, the design optimization is carried out to minimize the structural weight of the road
arm, while maintaining the maximum stress level. The same algorithm as with the torque arm model is
used. Design optimization problem converges after eight iterations. Figure 11.5.36 compares the structural
analysis result at the initial and optimum designs. The structural weight at the optimum design is reduced
by 23% compared to the initial weight. Since the stress concentration appears in the left corner at the
initial design, the optimization algorithm tried to reduce the cross section of the right corner so that both
parts may have the same level of stress values. Figure 11.5.37 shows the optimization history of cost function
and design variables. Due to the accurate sensitivity information, the optimization algorithm converges
rather quickly. Also, the small design change can be another explanation of the fast convergence.

Gradient-Free Design Optimization
Genetic Algorithms

Genetic algorithms (GA) are inspired by Darwin’s principle of evolution, which states that a population
of individuals is capable of adapting to its environment because individuals who possess traits that make
them less vulnerable than others are more likely to have descendents and therefore to pass on their desirable
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FIGURE 11.5.36 Structural analysis results (a) initial design; (b) optimum design.

traits to the next generation. One can think of this process of adaptation as an optimization process that
probabilistically creates fitter individuals through selection and recombination of good characters. Genetic
algorithms are simplified computer models of evolution, where the environment is emulated by the
objective function to maximize, and the structure to optimize plays the role of the individuals.

A flowchart of a genetic algorithm is presented in Figure 11.5.38. GAs start by initializing a population
of individuals at random. Each individual encode of a particular candidate structure in the form of one
or several chromosomes, which are strings of finite length. Then the objective function of each individual,
called the fitness function in the context of evolutionary computation, is computed. The fitness of each
individual determines its probability of being selected for reproduction. Instead of moving from one
design point to another, the search is based on a population of design points that evolve from one
generation to another. Recombination and mutation operators are then applied to the selected individuals
(the parents) to create a population of children. Finally a survival rule determines the individuals among
the parent and child population that will be kept to form the new population.

When to Use Genetic Algorithms?

Genetic algorithms are computationally expensive compared to deterministic algorithms. Consequently,
their domain of application consists of problems that would be difficult to solve by gradient-based
algorithms, or problems that would be out of range for these algorithms. Some of the main advantages
of GAs are the following:
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+ GAs do not require continuity or differentiability of the objective function. They do not need

gradients.

+ They are robust: they are very insensitive to noise.
+ They are modular and therefore portable; because the evolutionary mechanism is separate from

the problem representation, they can be transferred from problem to problem.

+ They are particularly efficient on discrete and combinatorial problems, which are typically difficult
to solve by conventional algorithms; they can be used for problems involving both discrete and

continuous variables.

+ Because they explore the design space with populations, GAs are “naturally” amenable to parallel-

ization.

Examples of Applications

GAs have been used to solve a wide variety of engineering problems that would be difficult to tackle with
other methods, such as scheduling problems, distribution network optimization, plant or product design,
and real-time control of industrial processes and communications networks. A practical example of
application is the optimization of the lay-up of composite laminate, where the goal is to determine the
optimal fiber orientation of each of the layers of the laminate. This problem is difficult to solve by
gradient-based algorithms because the objective function is often multimodal, and the fiber orientations
have to be chosen from a set of discrete values to meet manufacturability requirements. On these
problems, GAs prove to be very effective design tools.
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FIGURE 11.5.38 Genetic algorithm.

Simulated Annealing

Simulated annealing (SA) is based on a simple algorithm introduced by Metropolis et al.** to efficiently
predict the behavior of a collection of atoms in equilibrium at a given temperature. The Metropolis
approach simulates the cooling process by means of an iterative algorithm, in which each atom is given
a small random displacement and the resulting change of energy AE is computed. If AE < 0 the displace-
ment is accepted and the resulting configuration is used as the initial point for the next iteration. If
AE > 0 a probability of acceptance is calculated with the Boltzman factor:

P(AE)= ef["%J

If AE is less than P(AE) the new configuration is accepted and used in the next iteration. This criterion
ensures that the system will eventually evolve into a Boltzman equilibrium distribution.

By using the Metropolis procedure with a cost function in place of system energy, the simulated
annealing algorithm is obtained.*® The configuration of atoms will then be a combination of design
parameters, which are evaluated in the same manner.

The temperature T becomes a control parameter with the same units as the cost function, and is used
to first “melt” the system at a high temperature, with a population of possible parameter configurations
being generated. The iterative simulation is then run at this temperature until the system is considered
to be in equilibrium, and only then is the temperature reduced by a small fraction. This cooling and
equilibrium process continues until no further improvement becomes possible and the system is con-
sidered “frozen” or crystallized, with the design parameters at this condition optimal. The temperature
reduction sequence and number of iterations allowed for the system to reach equilibrium are considered
analogues to an annealing schedule.

An important difference from iterative improvement procedures such as gradient-based methods is
that the Metropolis method need not get stuck since transitions out of a local optimum are always possible
at a nonzero temperature.



11-90 Section 11

Applications of this algorithm include the well-known traveling salesman problem,* and routing and
layout of electrical connections on computers,* among others. Like genetic algorithms, this population-
based method is relatively insensitive to noise, and doesn’t require gradient information. A major draw-
back to this method, however, is the problem dependency of algorithm parameters, for example, it is
important to use an annealing schedule that is tailored to the type of optimization problem being solved;
otherwise, the optimizer will perform poorly. Various statistical methods have been proposed, all with
limited success, to obtain optimum cooling rates to avoid entrapment in local optima.
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