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Abstract A Kalman filter-based framework is proposed for the prognostics and 
health management of DC electric motors by treating them as a system. The control 
signals of the motor are used to estimate the current health and predict the remaining 
useful life (RUL) of the motor and its components, such as bearings and permanent 
magnets. The framework consists of an online health diagnosis to estimate the health 
status of the motor and each component, and an offline failure prognosis to predict the 
RULs. The approach is demonstrated with the aid of two real examples: the reaction 
wheel motor for advanced attitude control of satellites and the driving motors in a 
quadcopter to lift and control flight operations. In each example, the motors were 
subjected to accelerated degradation tests, motor control data were collected for 
each cycle, and RULs were predicted against failure thresholds critical to motor 
performance. The results showed that the framework can be used to effectively predict 
the RUL of a degraded motor, thereby enabling failure prevention and proactive 
maintenance scheduling.
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1 Introduction 

The accurate prediction of impending failure or remaining useful life (RUL) of 
mission-critical systems improves safe system operations and offers economic bene-
fits to the industry. Extensive research on the prognostics and health management 
(PHM) of various assets with different perspectives has already been conducted by 
academic researchers and industrial engineers [1, 2]. Among these, the PHM of elec-
tric motors has been widely researched because of its ability to provide the drive and 
control of various equipment and processes in the industry. To conduct PHM, motor 
current or vibration signals are typically employed to assess and predict the health of a 
motor [3]. Traditionally, the failure modes of a motor have been identified by time and 
frequency analyses of the signals, such as by estimating the harmonic components 
of the fault frequencies and locating them in the spectrum [4–7]. Currently, artificial 
intelligence (AI)-based approaches, which are known to be powerful and possess 
improved performance over the conventional approaches, are widely adopted. These 
approaches consist of classification tools and algorithms, such as neural networks 
[8], fuzzy logic [9], support vector machines [10], and deep learning [11]. A general 
review of AI-based approaches for electric motors is presented in Ref. [12]. 

Most engineering systems consist of multiple components designed to perform a 
specific function. Because these components interact with each other in a complex 
manner, their degradation can affect the overall system performance in a non-trivial 
way. Recently, an appropriate framework that estimates the health of the components 
and predicts their RUL was proposed by Kim et al. [13, 14]. They also demonstrated 
the framework using a DC motor, considering it as a system because it has mechanical 
parts, that is, the bearing, shaft, and electrical components such as the stator winding 
and magnets. Because the performance degradation of the motor originates from 
these components, it is desirable to employ a systems approach to implement the 
PHM for motors. The framework consists of online diagnostics to monitor the status 
of each component and the overall health of the motor, as well as an offline failure 
prognosis to predict the RULs against the failure threshold conditional on motor 
performance. 

Prognostic methods applied in PHM can be categorized into model-based and 
data-driven approaches. The model-based approach assumes that a physical model 
describing the behavior of the system is available and combines the model with 
measured data to identify the model parameters. Conversely, the data-driven approach 
uses data from past failures to establish a prediction model based on machine learning. 
The model-based approach is advantageous for DC motors because it is a dynamic 
model that enables estimation of the model parameters using the measured signals, 
which are indicative of the component’s health. Hence, several researchers have 
applied model-based approaches to the PHM of DC motors. In this approach, the 
Kalman filter (KF) is the most widely used technique for estimating the model param-
eters in a recursive manner while incorporating the model and measurement uncer-
tainties. Rahimi et al. [15] applied an unscented KF with a high-fidelity model to esti-
mate health parameters for each motor fault scenario. El Sayed et al. [16] performed
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parameter estimation using an extended KF (EKF) and an unscented KF (UKF) to 
diagnose stator faults and their severity. Others, such as Singleton et al. [17], used 
a KF to estimate motor speed and conducted fault detection based on a comparison 
with the actual speed. However, a common drawback of the aforementioned studies is 
that no one has explored the systems approach, wherein the RUL prediction accounts 
for component degradation and their influence on the overall motor performance. 

This section addresses the application of the systems approach, in which the KF 
is used with motor-current signals to estimate the present health status of individual 
components and performance degradation. The advantages of the systems approach 
are two-fold. First, it does not require large volume of data until failure, which is 
critical to the training process in the data-driven approach. Second, additional sensors, 
such as accelerometers, are not required because the motor load current signal, which 
is acquired during operation, is used for the PHM. In Sect. 2, the overall prognostics 
framework for the systems approach is reviewed briefly. In Sect. 3, simulations 
are conducted using the motor dynamic equations in which the two most critical 
components, that is, the permanent magnet and bearing, are artificially degraded 
over cycles, and virtual measurements are performed accordingly to illustrate the 
process of RUL prediction. Next, two case studies of real motors are presented to 
demonstrate their implementation. The first is presented in Sect. 4, which considers 
the degradation of the reaction wheel (RW) motor, which stabilizes the attitude 
control of satellites against external environmental factors. The second is presented 
in Sect. 5 for the motors driving the quadcopter to lift and control flight operations. In 
both examples, the motors were subjected to accelerated degradation and the motor-
current signals were collected with regular time interval during operation. A systems 
approach is employed wherein the performance of the motor is properly defined. The 
health of each motor component is assessed based on this, and the RUL, after which 
the motor is no longer able to perform its normal function, is predicted. In Sect. 6, a  
detailed discussion and conclusions are presented. 

2 Systems Approach for PHM 

The overall framework of the systems approach for fault diagnosis and failure prog-
nosis based on a physical model-based approach is described in this section. Figure 1 
describes the framework which consists of two phases: construction of the system 
dynamics model on the left and the PHM implementation on the right.

The system model is developed using simulation tools or algorithms such as 
Simulink, lumped parameters, or ordinary differential equations. A group of param-
eters is identified during development; the inputs are the operation parameter u and 
the health parameter h of the critical components that affect system degradation. 
The outputs are the state variable x , the system performance variable S, and the 
measurement variable z used to estimate the present health status of the system 
and its components. Three models are established: the state model—typically in a 
recursive form in the time domain—the measurement model relating the state with
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Fig. 1 Framework for physics-based approach [13]

the measurement, and the performance model of the system. The three models are 
defined as follows: 

ẋ = f (x, h, u), (1) 

z = g(x, h), (2) 

S = sys(x). (3) 

The PHM implementation phase consists of two parts: online estimation and 
diagnosis in the upper-right figure, as well as offline training and prognosis in the 
lower-right figure. In the online estimation, state x in a single cycle is estimated for 
the input operation parameter u, from which the system performance S is evaluated 
using the performance model. Depending on the availability of health parameter h, 
the online estimation phase comprises two stages. In the estimation stage, h and x 
are estimated as unknowns using the measured data z. The unknown parameters are 
estimated by the state model and updated by the measurement model. In the prediction 
stage, h is known as a priori and there are no measurements; in this case, state x is 
predicted with the given input h. In both stages, the system performance is computed 
using the obtained state x . Using the measurement z obtained in every cycle, the 
health parameters up to the current cycle k, i.e., h0:k, can be estimated. They are then 
transferred to offline training and prognosis. To describe the degradation trend more 
efficiently, the health parameters are typically represented by either a physical model 
or an empirical model: 

hcyc = d(t, θ |h0:k), (4)
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where hcyc denotes the health parameters as a function of cycles, d is the mathematical 
model, θ is the model parameter, and t is the cycle. Once the model is fitted to h0:k, 
it can be extrapolated to predict h in the future. The predicted h is transferred to 
the prediction stage from which state x and the system performance S in the future 
are predicted. The predicted S is transferred to the offline training phase to obtain 
the future evolution of the system performance, as matched with that of the health 
parameter h in the future. Upon evaluating the RUL of the system performance 
against the failure threshold, one can identify the most critical health parameter (i.e., 
specific component) that leads to the earliest system failure and its remaining cycles, 
which provides valuable information in maintenance management. 

The overall procedure is illustrated in Fig. 2. For the implementation phase, 
the online estimation and diagnosis part of Fig. 1 can be best accommodated by 
a Bayesian approach, such as the Extended Kalman or Particle Filter algorithms. 
Thereafter, the health parameter h and state x are estimated in the form of a distribu-
tion, such as the mean and covariance, or the samples which reflect the uncertainty in 
the process. The offline training and prognosis parts can also be similarly performed; 
however, a simpler linear/nonlinear regression can also be employed to this end. The 
degradation model parameter θ in d(·) is estimated based on the accumulated values 
h0:k until the current cycle. The degradation in the future is then predicted by θ with 
uncertainty, which is usually expressed by the confidence bounds in the result. 

Fig. 2 Overall procedure for physics-based approach as illustrated
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3 Simulation Study 

3.1 Problem Statement 

In this section, the simulation data are used to illustrate the system approach procedure 
for a DC motor. Most of the contents here are extracted from the authors’ previous 
study [13]. Virtual measurement data are generated by adding random noise to the 
simulation results of the motor dynamics that converts electrical energy into mechan-
ical power. When an electric current passes through a coil in a magnetic field, the 
magnetic force produces torque that drives the DC motor. As shown in Fig. 3, a DC  
motor consists of electrical and mechanical parts that are coupled together; failure in 
one part affects the others. For example, because magnetic flux enables conversion 
of electrical energy into mechanical force, its defects can degrade mechanical perfor-
mance. The mechanical and electrical parts of the DC motor dynamics are expressed 
as: 

J 
dω 
dt  

+ bω = kT i − TL = To, (5) 

L 
di  

dt  
+ Ri = V − kT ω, (6) 

where ω, i, and To represent the angular velocity, current, and output torque, respec-
tively. The two equations share the common parameter kT , which represents the 
electromechanical coupling coefficient, and Table 1 lists the parameters and their 
values used for the simulation [18]. The duration of a single cycle is 3 s, and a 
voltage of 10 V is applied for the first 1.5 s and subsequently turned off. Figure 4 
shows the time histories of ω, i , and To as outputs from the dynamic equations in (5) 
and (6), respectively. The angular velocity ω rapidly reached the desired value on 
application of power and decreased to zero when turned off. Similarly, load current 
i and output torque To rapidly increased to the peak value at the start, followed by a 
gradual decrease when the voltage was turned off.

Fig. 3 DC motor system 
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Table 1 Parameter setting 
for simulation 

Symbol Description Value 

R Armature resistance 11.2 

L Armature inductance 0.1215 H 

J Moment of inertia 0.022145 kg m2 

b Viscous friction coefficient 0.002953 N m s/rad 

kT Electromechanical coupling 
coefficient 

1.28 Nm/A 

V Input voltage 10 V 

TL Load torque 0.05 Nm 

Fig. 4 Simulation result of DC motor system 

3.2 Simulation of Component Degradation 

Challenges with system-level prognosis arise because multiple components degrade 
over time, which affect system performance in a complex manner. To simulate this 
situation, two components with associated failure modes were selected from [19]. 
The first is degradation of the permanent magnet owing to prolonged overheating, 
also called flux weakening, that results in reduction of rotor magnetic-field strength. 
This can be described by decreasing the electromechanical coupling coefficient,



522 H. J. Park et al.

kT . The second is bearing lubrication failure, which can be modeled by a change 
in the load torque TL applied to the motor. The system performance is given by 
the motor output torque To, which may decrease as the two components degrade. 
The degradation behaviors of the magnet and bearing are assumed to be linear and 
exponential functions of the cycles, respectively. 

kT (t) = α1 + α2t, (7) 

TL (t) = β1e
β2t , (8) 

where α1 and β1 represent the initial degraded status, and α2 and β2 describe the 
cycle-dependent behavior. 

Three cases are considered, as shown in Fig. 5: (1) degradation of the magnet with 
α2 = −5.7974× 10−4, (2) degradation of the bearing with β2 = 3.3 × 10−3, and (3) 
simultaneous degradation with the α2 = −5.7974 × 10−4 and β2 = 3.9× 10−3. The  
output torque for each case was obtained by solving the system equations with the 
degraded values of kT and TL , as shown in Fig. 5a–e; results for the output torque 
are presented in Fig. 5b, d, and f. It can be observed that the maximum value of the 
output torque gradually decreases with degradation, thereby indicating degradation 
of the system performance. Furthermore, it is evident from Fig. 5b, d, and f that when 
two or more components degrade simultaneously, the system performance degrades 
at a faster rate.

In this example, the system performance S is defined by a scalar value, namely 
the maximum output torque: 

S = max T0 = max(kT i − TL ). (9) 

A system is regarded as a failure when the system performance decreases below 
70% of its initial value. Therefore, it is necessary to predict the number of cycles that 
remain before failure, as well as the responsible component to be replaced. 

3.3 Application of Physics-Based Approach 

As mentioned in the previous section, the first step in the physics-based approach 
is construction of the system dynamics model, as shown in (1), where the state 
variable x (denoted by a vector hereafter) consists of velocity ω and current i , that is, 
x = [ω, i]T while the input operation parameter u is voltage V . The health parameter 
h contains kT and TL or h = [kT , TL ]T . The state model can be constructed using 
(5) and (6) as follows:

[
ω̇ 
i

]
=

[− b 
J 

kT 
J 

kT 
L − R 

L

][
ω 
i

]
+

[ TL 
J 
V 
L

]
. (10)
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Fig. 5 Output torque due to components degradation, a health parameters and b output torque of 
case 1, c health parameters and d output torque of Case 2, and e health parameters and f output 
torque of Case 3
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Note that the equation describes the transient response of the state variable x. 
Because the state variable can be acquired from the control unit during operation, 
the measurement model is expressed as: 

z =
[
1 0  
0 1

][
ω 
i̇

]
+ ν, (11) 

where z is the measurement variable, and ν is the zero-mean multivariate Gaussian 
noise. The measurement data were gathered at 0.005 s time intervals. 

The models were used for online estimation and diagnosis. In this study, an EKF 
algorithm was employed. In the estimation stage, the state variable is augmented 

by the unknown health parameter h and denoted by x = [
xT , hT ]T 

. The state and 
measurement models in (10) and (11) can be rewritten in recursive matrix form: 

State model: xt = F(xt−1) + wt or 

⎡ 

⎢⎢⎣ 

ωt 

it 
kT,t 

TL ,t 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

(1 − b · dt/J )ωt + dt/J
(
kT,t−1 · it−1 − TL ,t−1

)
−dt/L · kT ,t−1 · ωt−1 +

(
1 − R L

)
it−1 + V · dt/L 

kT,t−1 

TL ,t−1 

⎤ 

⎥⎥⎦ + wt . (12) 

Measurement model: zt = H (xt ) + ν t or 

zt =
[
1 0 0 0  
0 1  0 0

]⎡ 

⎢⎢⎣ 

ωt 

it 
kT,t 

TL ,t 

⎤ 

⎥⎥⎦ + ν t , (13) 

where kT ,t and TL ,t denote the kT and TL at the current time t , respectively. Process 
error wt is given by the zero-mean multivariate Gaussian noise with covariance, 
whose diagonal elements are I × 10−9, where I is the identity matrix. The measure-
ment noise ν t is set as 0.1 and 0.01, which can be determined by evaluating the 
dispersion of the measured data. More details on the EKF can be found in literature 
[17, 20]. 

The initial state variables are given as x0 = [0, 0, 1.28, 0.05]T based on the 
evaluation of kT and TL at the initial stage of motor operation. The estimation stage 
was performed in two steps, as shown in Fig. 1. The first is prior estimation by the 
state model under a given input u. Next is the posterior update by the measurement 
model, which leads to the estimated state variable and health parameters. Figure 6a, 
b show the estimated state variable x (velocity and current) and health parameters 
h (kT and TL ) along with 95% prediction and confidence intervals, respectively. As 
shown in Fig. 6b, the health parameters rapidly converged to their true values. The 
values at the end of the voltage application (i.e., 1.5 s) were used as the estimated 
health of each component to assess the system performance given by (9).
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Fig. 6 Online estimation and diagnosis in a cycle by physics-based approach: a state variable x 
and b health parameters h 

Once the health parameters h are estimated for each cycle, the next step is to 
transfer them to the offline stage, as shown in Fig. 1. The results are shown in Fig. 7a, 
c, and e for all three cases; the black dots denote health parameters estimated up to 
the current cycle. Using these data, the degradation models of each health parameter 
were fitted, i.e., the model parameters α and β in (7) and (8) were estimated. For 
this purpose, the Markov Chain Monte Carlo (MCMC) method, which determines 
the parameters by large samples (104 in this study) to represent the uncertainty, 
is applied for the likelihood between the data and the model. Future degradation 
behaviors were also predicted by extrapolating the model. In Fig. 7a, c, and e, these 
are represented by the median and 95% predictive interval (PI) curves. Note that the 
associated uncertainty is so small that it nearly overlaps in this example. Once the 
health parameters h are predicted for future cycles, they are transferred to the online 
stage, as shown in Fig. 1. In this case, they are used for the prediction stage wherein 
only the state variables x are estimated by the state model, because h is known. 
Subsequently, the system performance in the future cycles obtained as samples are 
transferred to the offline prognosis over cycles. The results are given by the median 
and 95% PI in Fig. 7b, d, and f for the three cases, respectively. It is worth noting 
that establishing a degradation model for the system performance is not necessary 
because these are obtained from the online estimation stage as samples.

Because true solutions are available, they are superimposed by solid black lines 
and compared with the predictions. The prediction results at the current cycle agree 
well with the true solutions for all three cases. It should be noted that the system 
failure is defined as 70% of its initial value, depicted by the horizontal green line in 
the figure. The end of life (EOL) was found at 683, 617, and 369 cycles in terms of 
the median for the three cases. The reason for the shorter life in Case 3 is attributed to 
the acceleration effect caused by the simultaneous degradation of both components. 
In Fig. 7a, c, and e, the blue dotted horizontal lines indicate the failure thresholds of 
each health parameter. They are defined by the corresponding values at EOL when
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Fig. 7 Offline trending and prognosis over cycles by physics-based approach: a components health 
degradation for Case 1, b system health degradation for Case 1, c components health degradation 
for Case 2, d system health degradation for Case 2, e components health degradation for Case 3 
and f system health degradation for Case 3
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the system undergoes degradation of each component. The threshold values for kT 
and TL are 0.884 and 0.3897 at EOLs 683 and 617 from cases 1 and 2, respectively. 

Once the system prognostics information is available, the maintenance effect 
of individual components on the system health can be evaluated. This process is 
illustrated in Case 3 wherein two components degrade simultaneously. Note that 
all subsequent computations are based on median values, unless stated otherwise. 
First, the current conditions are assessed by introducing the health index (HI) and 
RUL. The HI indicates the current health status, whereas the RUL estimates how 
many cycles remain until final failure. HI is defined by the ratio of degradation at the 
current cycle to that at the EOL and ranges from 0 (normal) to 1 (failure). Because the 
kT values at the initial, current, and EOL cycles are 1.28, 1.1, and 0.88, respectively 
(Fig. 7a), the index is (1.28 − 1.10)/(1.28 − 0.88) = 0.45. The indices for the other 
parameters can be obtained in a similar manner. RUL is defined as the difference 
between EOL and the current cycle. For kT and TL in Fig. 7e, the EOLs are found 
at the cycles crossing the threshold lines (not shown here), which are approximately 
721 and 513, respectively. Because the current cycle is 109, the RULs of kT and TL 
are approximately 609 and 412, respectively, and the system RUL is 361 − 109 = 
252 cycles. 

All the results are summarized in Table 2 and plotted using bar charts in Fig. 8a, b. 
Note in Table 2 that the HI of kT has degraded (increased) to 0.1507, which is greater 
(worse) than the 0.0789 of TL . However, its RUL is approximately 609, which is 
longer than the 412 of TL . This is because of their different degrees of influence on 
the overall system performance. 

Subsequently, a what-if study was performed for scenarios in which one of the 
components was repaired or replaced by a new one. The health parameter is reset 
to the original value and the system performance is predicted under the renewed 
condition when the components that influence the health are replaced. These results 
are shown in Fig. 8c, d when the components that influence factors kT and TL are 
repaired. The new EOLs of the components that influence factors kT and TL got 
extended to approximately 512 and 701 cycles, respectively, thereby yielding new 
RULs of approximately 403 and 592, respectively, as shown in Fig. 8d. Among the 
choices regarding which component to repair, repairing the bearing (TL ) is more

Table 2 Results for 
simulation 

Name Flux Bearing System 
performance 

Symbol kT TL S 

Current cycle 109 109 109 

End of life 718.0811 521.1807 361 

Remaining useful 
life 

609.0811 412.1807 252 

Initial value 1.2796 0.05 0.9971 

Current value 1.22 0.0768 0.9278 

Threshold 0.884 0.3897 0.6978
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Fig. 8 Maintenance scenario in physics-based approach: a current health status, b RUL of compo-
nent and system, c prognosis with kT repair, d prognosis with TL repair and e system RUL when 
component is repaired

desirable as it leads to a longer RUL. In Fig. 8b, e, the red error bar indicates the 
95% PI of the RUL prediction. Answers to the following significant questions could 
be found from this study: what is the current health condition of the components 
and system, how much longer can the system operate until failure, which component
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should be replaced to extend the system life, and how much longer can the system 
operate after repair. 

In the following section, two real-world examples are addressed to illustrate the 
applications of the proposed framework: motors for the attitude control of satellites 
and driving quadcopters. 

4 Case Study 1: Reaction Wheel Motor in Satellites 

4.1 Problem Definition 

In this section, reaction wheel motors for the attitude control of satellites are consid-
ered. Note that the most of the contents in this case study are from the authors’ 
previous paper [21]. Satellites in space require accurate attitude control and high relia-
bility to conduct their missions fully. The RW actuated by a motor provides consistent 
angular momentum to help stabilize a satellite against external torsion, such as solar 
radiation pressure, and to control its precise attitude. However, owing to continuous 
operation, the functioning of the motor becomes degraded over time, thereby jeopar-
dizing the reliability of the entire satellite control system [22]. According to a survey 
of the failure statistics of satellite components, most failures are attributed to the 
actuators of the attitude and control system (AOCS), such as the RW motor [23]. 
Therefore, the proposed method was implemented to monitor the health and predict 
the degradation of the RW motor to improve their reliability. 

Few studies have addressed the prognostics of RW motors [24, 25]; however, 
motor RUL prediction is conducted at the single-component level. Motivated by 
the aforementioned limitations and requirements, this case study addresses the RUL 
prediction of an RW motor based on the proposed system-level prognostics frame-
work. In this study, we conducted an accelerated life test (ALT) on an RW motor for 
a period of 3 years to acquire real measurement data with a low sampling rate, similar 
to a space environment. A proper failure threshold was imposed on the motor based 
on the characteristic curve given by the design requirement. The RUL is predicted 
using the degradation relation between the system and its components, assuming that 
the data are obtained during space operations. 

4.2 Experimental Setup 

The RW in this study was developed for the Korean Space Launch Vehicle, named 
the Science and Technology Satellite-3 (STSAT-3), and is addressed in Ref. [26]. 
It is actuated by a motor to provide consistent angular momentum and control its 
precise attitude. ALT was performed for this motor; one operation cycle comprises 
a short-term pull-up followed by a longer period at constant speed. During ALT, the
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current and angular velocity signals were acquired at a sampling rate of 2 Hz. The 
pull-up test lasts only for a few seconds, while the rest of the time is given for the 
constant-speed test which extends from 10 to 20 h. Consequently, a day is spent for 
a single-cycle operation, on average, and the entire test lasts for three years. The 
pull-up operation evaluates motor performance by applying maximum voltage to 
the motor. The test was conducted under two extreme temperature conditions, i.e., 
hot (60 °C) and cold (−30 °C), within a thermal vacuum chamber to evaluate its 
reliability and performance. Even after three years there were no failures, but the test 
was stopped considering safety and the abnormally high current consumption. 

4.3 Application of the Systems Approach 

4.3.1 Online Parameter Estimation 

In online diagnosis, the EKF is used to estimate the health status based on the motor 
dynamic model and measured signals from each cycle. The governing equations for 
the mechanical and electrical parts of the motor are the same as those in Sect. 2. 
Table 3 lists the model parameters used in this case study. The health parameters 
responsible for the motor performance degradation are given by h = [kT , b]T which 
are the back EMF and friction coefficients, relating to the permanent magnet health 
and the bearing condition, respectively. The input operation parameter is the voltage 
V at current time t. 

However, unlike the simulation studies, it is difficult to assign initial values to 
the process. Measurement of noise covariance and improper values significantly 
affect and degrade the performance. To overcome this, an Adaptive EKF (AEKF) 
was employed to adaptively estimate the covariance matrices at each step of the 
EKF [27]. The forgetting factor (α = 0.8) is used for adaptive estimation. Note that 
a larger α indicates more weight on previous estimates and incurs less fluctuation 
in the covariance, as well as longer time delays to adapt to changes. In this study, 
α = 0.8 for all studies.

Table 3 Parameter 
description and values for 
extended Kalman filter (EKF) 

Symbol Description Value 

R Armature resistance 22 �

L Armature inductance 0.1215 H 

J Moment of inertia 0.001143 kg m2 

b Friction coefficient 1.01 × 10−5 N m s/rad 

kT Electromechanical 
coupling coefficient 

0.054 Nm/A 

V Input voltage 24 V 

TL Load torque 0.0001 Nm 
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4.3.2 Motor System Performance 

To evaluate the performance of the RW motor, a typical characteristic curve that is 
defined by the relation between the output torque (Toutput = J ω̇) and the angular 
velocity ω during the pull-up range was applied. To ensure the minimum actuation 
performance of the RW, the motor must generate at least 5 Nm of output torque at 
ω∗ = 314.16 rad/s, i.e., the motor is considered to have failed when the performance 
falls below this point. This is a design requirement for the STSAT-3 mission, where 
a satellite with an inertial moment of 18 kg m2 needs to maneuver 25° in 40 s. In this 
context, motor system performance is defined by the following expression: 

Psys  = J ω̇|ω=ω∗ , (14) 

and the failure threshold point is given by 5 Nm. 

4.3.3 Offline Prognosis and Monitoring 

In the offline monitoring and prognosis, the health parameters h, estimated from the 
online diagnosis for each cycle, were transferred and monitored until the current 
cycle. An empirical degradation model was introduced to quantitatively describe 
the health degradation over long-term cycles, in which the model parameters were 
estimated using the accumulated health parameters. A particle filter (PF) was used in 
this case study to recursively estimate the probability density function (PDF) of the 
long-term health status and model parameters in the form of particles [28, 29]. The 
future trend was predicted by extrapolating each particle to future cycles. As in the 
EKF, the standard PF also consists of the state transition function f and measurement 
function h, as follows: 

xk = f (xk−1, βk ), (15) 

zk = h(xk, nk), (16) 

where k is the cycle step index, xk is the estimated health state, βk is the degradation 
model parameter, zk is the measurement data (in this case, the health parameter values 
obtained using the online estimation), and nk is the measurement noise. To account 
for degradation, an empirical exponential function was employed for function f 
[30–32]: 

f (xk−1, βk) = exp(βkdt)xk−1. (17) 

The Gaussian PDF assumes the measurement noise, nk ∼ N (0, σk), where σk 

is the unknown standard deviation. Consequently, the unknown parameter to be 
estimated is θ = [x, β, σ  ]T . It should be emphasized that the health parameters are



532 H. J. Park et al.

estimated by the motor dynamic model using the AEKF for the online stage, whereas 
its trend over long-term cycles is estimated by the degradation model using the PF 
for the offline stage. Once the degradation model is estimated up to the current cycle, 
it is used to predict future RUL values. 

In an offline prognosis, it is often the case that the degradation trend accelerates 
after a certain cycle or initial fault. To account for this in the PF process, a shifting 
kernel PF (SKPF) that can detect when the current cycle deviates from the normal is 
used [33]. To this end, SKPF calculates the likelihood L , and subsequently calculates 
the decision function dk : 

dk = −  ln
(
1 

N 

N∑
i=1 

L
(
zk |xi k, β i 

k, σ  i k
))

. (18) 

When the observed degradation is close to the normal condition, the likelihood 
tends to be high and assumes a negative value; therefore, degradation is not monitored. 
Conversely, when the state degrades in a different fashion, e.g., deviates from the 
normal, the likelihood becomes lower and assumes a positive value. By monitoring 
these cycles and examining when the decision function reaches a positive value, the 
anomaly point is identified. Once detected, the SKPF shifts the kernel function used 
in the resampling step of the PF and adapts to the new degradation trend. 

4.4 Application Results 

In this section, the results of applying the AEKF to the system framework are 
discussed. In the AEKF, the initial values are necessary; they are given as x0 =[
0, 0, 0.054, 10−5

]T 
based on the motor specification, and the first two are the 

state variables [ω, i]T , whereas the remainder are the health parameters [kT , b]T , 
respectively. The initial process and measurement noise covariances were arbitrarily 
assumed as Q = [

10−5 0; 0 10−5
]
and R = [2 0; 0 0.1], respectively. The value at 

the end of time is then used as the health value of the cycle. 
The ALT test ended at 658 and 600 cycles under cold and hot conditions, respec-

tively. Among the results, the degradation of the friction coefficient (b) under cold 
conditions was noticeable, while the others did not change significantly. Therefore, 
the test data under cold conditions were used in this study to verify the proposed 
methodology. Bearing degradation was found to be dominant in this test and was 
responsible for the motor performance degradation. This conforms to the literature, 
which indicate that the bearing is the most vulnerable in RW motors. 

The characteristic curves obtained from the online diagnosis in each cycle are 
shown in Fig. 9a, where the x-axis represents the angular velocity, and the y-axis 
represents the output torque. The graph shows that the slope of the curve constantly 
decreases as the cycle proceeds and approaches the threshold point. Because the 
motor system performance is defined by the torque at ω∗ = 314.14 rad/s, it is marked
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Fig. 9 a Characteristic curve and b system performance data of cold condition test 

by the points in Fig. 9b; the green dashed line indicates the threshold. Even though 
the test lasted over three years with 658 cycles, the results indicate that the motor did 
not fail. 

Using the data up to 658 cycles, the degradation models of each health param-
eter were estimated and their future was predicted using the SKPF. The results for 
both parameters are shown in Fig. 10a, c. The blue dots and triangles represent the 
estimated health values and anomaly points, respectively, detected by the decision 
function. The red dashed and solid lines represent the median and 95% PI, respec-
tively. Figure 10b, d represent the trace of the anomaly decision function. The blue 
line with a circle represents the decision function value, and the red dotted line repre-
sents the anomaly threshold set by the user. The results of parameter b, as shown  
in Fig. 10c, confirm that SKPF successfully detects the initial point of the degrada-
tion trend change after 500 cycles. Few anomalies were detected before 500 cycles, 
which may be attributed to sudden abnormal measurements during normal condi-
tions. When the degradation pattern changed after 500 cycles, the SKPF algorithm 
successfully adapted to the new degradation trend. The trace of the decision function 
shows that dk increases significantly and exceeds the threshold when the estimated 
state becomes incoherent with the observed data.

On completion of prediction for future cycles, the health parameters are transferred 
to the online stage and used in the state model to predict the system performance. 
Subsequently, they are transferred to the offline stage. The results are shown in 
Fig. 10e with the median and 95% PI. With the system threshold given by the green 
dotted line, the EOL cycle for the system was predicted to be 808 cycles and the RUL 
was 150 cycles. It should be noted that the reason for predicting RUL at 658 cycles is 
that the test ended at this cycle. To validate this prediction, test should be continued 
further till 808 cycles; however, it was not conducted owing to limited cost and time.
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Fig. 10 a Prediction of parameter kT by SKPF algorithm and b corresponding decision function 
c prediction of parameter b by SKPF algorithm and d corresponding decision function e prediction 
of system performance based on the health parameters
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5 Case Study 2: Driving Motors in Quadcopters 

5.1 Problem Definition 

Since the commercial launch of quadcopters in early 2000s as unmanned aerial 
vehicles, their use, particularly in the field of aerial imaging, has been burgeoning 
[34]. Several commercial services related to agriculture activities, traffic control, and 
delivery of goods have been launched for quadcopters since the mid-2010s; however, 
safety issues owing to quadcopter failure have become a concern, with a high-risk 
failure factor being the occurrence of falls owing to the performance degradation of 
driving motors [35]. 

Based on a literature survey, it was found that most studies on the health diag-
nosis of quadcopter motors have been conducted to aid the design of robust flight 
controllers [36–38]. Therefore, they do not focus on health management or failure 
prevention based on the PHM framework. The recent studies in this direction that 
exploit parameters such as the vibration, current, or rotational speed have mainly been 
sensor-based approaches requiring attachment of additional sensors to the quadcopter 
[39–42]. 

The quadcopter can record various flight information, such as posture and angular 
velocity, position and linear velocity, and motor control data during flight. By 
exploiting these data and KF algorithms, it is possible to estimate the forces and 
moments acting on the aircraft and the degradation of the motor performance. In 
this case study, a PHM framework is presented that evaluates the health of individual 
motors and predicts their RUL based on the systems approach. It is applied to a Parrot 
Mambo drone (PMD), a micro quadcopter, to demonstrate the RUL prediction of the 
driving motors. Practically, the PMD structure is vulnerable to failure, and placing 
sensors to diagnose motor conditions is challenging. The PMD is more suitable for 
application of the framework proposed in this study. 

5.2 Experimental Setup 

The PMD used in this case study is a miniature quadcopter manufactured and sold by 
Parrot, France, measuring 7.1 × 7.1 inches and weighing 63 g [43]. The parameters 
for the PMD quadcopter dynamic analysis that were obtained using the MathWorks 
Simulink Parrot Minidrone model and actual measurements are summarized [44, 
45]. The PMD is equipped with an 8520 coreless DC motor whose parameters were 
obtained from experiments based on the data from previous studies [46]. 

The overall framework for prognostics of quadcopter motor comprises two phases 
as shown in Fig. 11. The first step in online diagnosis is the state estimation of the 
quadcopter using a KF. The force and moment acting on the aircraft, as well as 
the rotational speed of the four motors were estimated using the flight data in the 
dynamics model of the quadcopter. The second step in the online diagnosis is the
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Fig. 11 The Quadcopter PHM framework 

health estimation of motors using an EKF. The friction coefficient representing the 
degree of motor degradation was estimated by applying the estimated rotational speed 
of each motor to its dynamic model. Consequently, thrust, which represents a HI of 
the motor, was obtained. Offline observations identify the decreasing trend of thrust 
in each motor over long-term cycles and predict the RUL until failure. To realize 
this, an empirical degradation model was introduced, and the RUL of each motor 
was predicted using a regularized PF (RPF). Here, failure is defined as a situation 
in which the quadcopter cannot hover, i.e., it cannot sustain its own weight during 
lift-off. 

5.3 Application of the Systems Approach 

5.3.1 State Estimation of Quadcopter Using KF 

The first step in online diagnosis involves the application of flight data collected 
during hovering to the quadcopter dynamics model to estimate the force and moment 
applied to the aircraft. The rotational speeds generated by the motors are estimated 
based on data obtained from hovering flights in this study. During hovering, there are 
nearly no roll, pitch, or yaw motions to maintain posture. Consequently, the equations 
for the translational and rotational degrees of freedom are obtained as follows: 

z̈ = 
uz 

m 
− g, φ̈ = 

uφ 

Jx 
, θ̈ = 

uθ 

Jy 
, ψ̈ = 

uψ 

Jz 
(19)
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In this equation, the vector [z φ θ  ψ]T denotes the altitude z and rotational angles, 
i.e., the roll, pitch, and yaw motions, respectively, and its 2nd derivative

[
z̈ φ̈ θ̈ ψ̈,

]T 
is 

the vertical acceleration and corresponding rotational-angular accelerations, respec-
tively. The vector

[
mJx Jy Jz

]T 
is the mass and rotational inertia, and g is the grav-

itational acceleration. The vector
[
uz uφ uθ uψ

]T 
is the vertical force and moment 

acting on the quadcopter aircraft. 
The flight data collected during hovering are the position vector [zφ θ  ψ]T and its 

derivative: the velocity vector
[
ż φ̇ θ̇ ψ̇,

]T 
. By applying these to (19), the vector of 

the vertical force and moments
[
uz uφ uθ uψ

]T 
can be estimated. To implement this, 

a KF in which the system and measurement models are defined in recursive form, is 
applied [47]. Once the force and moments are obtained, the rotational speed ωi of 
each motor can be obtained as follows [48]. 
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where ωi are the rotational speed of each motor, respectively; c is the motor thrust 
coefficient; l is the length of the arm; and d is the motor drag coefficient. The motor 
thrust fi is proportional to the square of the speed ω2 

i and is expressed as follows: 

fi = c · ω2 
i (21) 

5.3.2 Health Estimation of Motors by Extended KF 

In the second step of the online diagnosis, the friction coefficient of each motor 
was estimated by applying the estimated rotation speed of the motor to its dynamic 
model. The motor dynamic model comprises the same governing equations as the 
physics-based approach described in Sect. 2. When a cycle lasts for an extended 
period, performance degradation of the motor occurs due to various factors. The 
most representative is an increase of frictional force owing to wear of mechanical 
parts, such as bearings or brushes, which corresponds to coefficient b [49]. 

Once the motor friction coefficient b is estimated using the EKF, it can be directly 
used as a health indicator. However, it is preferable to use the maximum thrust under 
the corresponding degraded condition. This is because the quadcopter fails when 
the sum of the maximum thrust of the four motors is lower than the thrust required 
to maintain the takeoff and hovering of the quadcopter. By exploiting this in the 
prognosis, RUL can be predicted using this as a failure threshold. The threshold can 
be calculated using the following formula:
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Fhov = m(g + a) + fd , fd = Cd 
1 

2 
ρv2 A (22) 

where Fhov is the thrust required for hovering, m is the mass of the quadcopter, g 
is the acceleration due to gravity, a is the takeoff acceleration, fd is the drag force, 
Cd is the drag coefficient, ρ is the air density, v is the takeoff speed, and A is the 
cross-sectional area of the quadcopter in the horizontal plane [44]. The maximum 
thrust of the motor is obtained by calculating the rotation speed using the motor 
dynamic model under the current value of the friction coefficient at the maximum 
input voltage condition and applying it to (21). 

5.3.3 RUL Prediction of Motors by PF 

The maximum thrust of the motor decreases with each cycle as the motor perfor-
mance degrades due to the increase in mechanical friction. During offline monitoring, 
these cycle trends are monitored in two stages. First, the anomaly detection which 
detects the cycle at which a deviation occurs from the normal condition due to fault 
development. Next, the degradation prediction after anomaly detection in which the 
thrust begins to decrease exponentially as the cycle continues. The degradation trend 
is suitably described by introducing an empirical model and RUL until failure is 
predicted. 

In this study, the anomaly is detected by the Naïve Bayes classifier which explores 
the first prediction time (FPT), i.e., the cycle point where the normal and fault condi-
tions are divided [50]. Once the anomaly is detected, it is presumed that the degrada-
tion begins to increase, and an empirical degradation model is employed to describe 
this trend. The PF algorithm is used to estimate the model parameters and predict 
the RUL, similar to that of Case study 1. 

5.4 Application Results 

5.4.1 Online Estimation and Diagnosis of the PMD Motors 

As the first step of online diagnosis, the KF is used to estimate the rotational speed of 
each motor during 5–50 s of hovering motion. In the KF, the standard deviations of 
the process and measurement noises are given by 0.1 and 1 × 10−5, respectively. The 
mean values are 1809.12, 1809.12, 1809.12, and 1809.11 rad/s, and the rotational 
speeds are nearly identical to maintain a stationary posture during hovering. To 
calculate the maximum thrust as the second step of the online diagnosis, the motor 
friction coefficient was first estimated using the dynamic model of the motor and 
EKF. The results are shown in Fig. 12. The standard deviations of the process and 
measurement noises were 1 × 10−13 and 1 × 10−3, respectively. As is evident from 
these figures, the friction coefficient rapidly converges to a constant value, although it
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Fig. 12 Friction coefficient of motors during PMD hovering 

tends to fluctuate around the mean, which is 3.31 × 10−6, 3.43  × 10−6, 3.27  × 10−6, 
and 3.25 × 10−6, respectively. The maximum thrust of each motor can be obtained 
by applying the maximum input voltage, which was 2.7 V in this case. After passing 
through the motor dynamic model under this condition and the friction coefficient of 
each motor, the rotational speeds were obtained as 2217, 2199, 2224, and 2226 rad/s. 
Consequently, the maximum thrust becomes 0.232, 0.2282, 0.2335, and 0.2339 N, 
respectively, according to (21). 

5.4.2 Offline Monitoring and Prognosis 

To implement the RUL prediction of the PMD motors, Motor 4 was chosen to perform 
accelerated degradation until failure occurred, which occurred after 106 h. During 
degradation, 48 cycles of hovering tests were performed at intermittent intervals and 
flight data were collected. The target was that the altitude should be maintained at 
1.1 m with a rotational angle of 0 rad during the hovering mode. The RUL of Motor 
4 was predicted using the RPF. The failure threshold of the PMD was determined as 
0.2224N using (22). In the calculation, a is 2.5 m/s2, fd is 0.0776 N, Cd is 0.0624, 
ρ is 1.225 kg/m3, v is 2.5m/s, and A is 0.325m3. 

The maximum thrust was obtained by the KF-based online estimation at each 
cycle for the motors until the 48th cycle. Figure 13 shows the results for Motor 1
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Fig. 13 Online estimation 
of maximum thrust at each 
cycle 

(normal) and Motor 4 (degraded), and it can be observed that Motor 1 maintains 
a maximum thrust value between 0.2435 and 0.237 N, whereas Motor 4 gradually 
degrades after approximately 30 cycles. 

Two exponential functions were employed for the RPF degradation model as 
follows. 

f = β1exp(β2t) + β3exp(β4t) (23) 

where f is the maximum thrust of the motor, t is the long-term cycle index (don’t be 
confused with the time in on-line diagnosis), and βi (i = 1, . . . ,  4) are the parameters 
in the degradation model. 

x0 ∼ U (0.23, 0.25), β2 ∼ U (0.10, 0.15), β3 ∼ U (0.2, 0.3), 
β4 ∼ U (−0.1, 0.0), and σ ∼ U (0, 0.01). 

From these, 3000 particles were generated for use in the subsequent process, and 
the thrust at the current cycle as well as the future values were predicted recursively 
using the RPF. Figure 14 shows the RUL prediction performed at 39 cycles. The 
filled and empty black dots represent the data collected up to the current and future 
cycles until failure, respectively. The red dashed and dotted lines after 39 cycles 
illustrate the median and 90% PI of the future thrust prediction. The magenta-colored 
horizontal line represents the failure threshold, and the black vertical line represents 
the anomaly point. The prediction results show excellent performance because the 
true EOL resides within the PI and is close to the median of the predicted distribution.
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Fig. 14 RUL prediction at cycle 39 

6 Conclusion 

In this study, a system framework that takes advantage of the motor dynamics and 
KF estimation was presented to conduct the PHM of DC motors using a model-
based approach. Most previous studies treat the motor as a single component and 
used a data-driven approach in which the raw signal of electric current or vibration 
was extracted and used for RUL prediction. However, in this study, the motor was 
considered as a system with multiple components; the health of the components 
was estimated individually, from which the RUL with respect to the motor system 
performance was predicted. In the literature, the degradation model for the system 
was typically used to predict future behavior. However, in this study, it was not 
introduced but obtained because of component degradation. The proposed framework 
is validated using two case studies, that is, a satellite RW and the driving motors of 
a quadcopter. The results demonstrate that the proposed method can provide an 
effective means to aid decision making in practical applications for DC motors. 

Several benefits are expected from this approach; however, we do not have to 
generate an enormous volume of run-to-fail data for training the data-driven models 
because we employed the model-based approach. The approach can also be applied in 
a straightforward manner to other types of motors, provided that the associated model 
parameters are available or measured a priori. This is in contrast to the data-driven 
approach, which requires training whenever a motor is changed. 
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