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1 INTRODUCTION

As discussed in Chapter eae495, the numerical optimization
techniques are classified as either local (typically gradient-
based) or global (typically nongradient-based or evolution-
ary) algorithms. Advantages and disadvantages of each al-
gorithm are discussed in Chapter eae495. In the viewpoint
of this chapter, the former requires both function values and
gradients, while the latter only requires function values. This
chapter focuses on how to calculate the gradients during op-
timization. Although the optimization can be applied to any
engineering applications, we will explain the calculation of
gradients in structural applications.

In optimization problems, the objective and constraint
functions are called performance measures. Sensitivity, or
gradient, is the rate of performance measure change with re-
spect to design variable changes. With structural analysis, the
sensitivity analysis provides critical information, the gradi-
ent, for optimization. Obviously, the performance measure is
presumed to be a differentiable function of the design, at least
in the neighborhood of the current design point. For complex
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mance measure’s differentiability with respect to the design.
In this chapter, we assume that the performance measure is
continuously differentiable with respect to the design.

In general, a performance measure depends on the design.
For example, a change in the cross-sectional area of a beam
would affect the structural weight. This type of dependence
is simple if the expression of weight is known in terms of the
design variables. For example, the weight of a straight beam
with a circular cross section can be expressed as

W(r) = ρ�r2L (1)

where ρ is the density of the material, r the radius, and L the
length of the beam. If the radius is a design variable then the
design sensitivity of W with respect to r would be

dW

dr
= 2ρ�rL (2)

This type of function is explicitly dependent on the design,
since the function can be explicitly written in terms of that de-
sign. Consequently, only algebraic manipulation is involved,
and no expensive computation is required to obtain the sen-
sitivity of an explicitly dependent performance measure.

However, in most cases, performance measures do not ex-
plicitly depend on the design. For example, when the stress
in complex frames is considered as a performance measure,
there is no simple way to express the sensitivity of stress ex-
plicitly in terms of the radius x = r of the cross section. In
a linear elastic problem, the stress of the structure is often
determined from the displacement, which can be calculated
using finite element analysis. In such a case, the sensitivity
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2 Aerospace System Optimization

of stress σ(q) can be written as
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dσ

dx
= dσ

dq

T dq

dx
(3)

here q is the vector of displacements of the beam. Since the
xpression of stress as a function of displacement is usually
nown, dσ/dq can easily be obtained. The only difficulty is
he computation of dq/dx, which is the state variable (dis-
lacement) sensitivity with respect to the design variable x.

When a design engineer wants to compute the design sen-
itivity of performance measures such as stress σ(q) in equa-
ion (3), the structural problem has presumably already been
olved. One of the most common approaches in solving struc-
ural problems is to use the principle of virtual work, which
s convenient for formulating the equations of equilibrium,
s ∫ ∫

V

δεTCε dV =
∫ ∫

V

δuTb dV +
∫ ∫

A

δuTh dA (4)

or all δu that belong to the space of kinematically admissible
isplacements. In equation (4), δε is the virtual strain, C the
lasticity matrix, ε the strain vector, b denotes the external
oad per unit volume, and h reflects tractions acting on the
uter surface A of the structure.

Since the structural equation (4) is difficult to be solved
nalytically, numerical methods are often employed. Finite
lement analysis is one of the most popular numerical meth-
ds to solve the structural equation (4). After discretizing the
tructural equation with a set of finite elements and applying
he principle of virtual work in each element, the following
inear algebraic equation can be obtained:

K(x)q = F (x) (5)

quation (5) is a matrix equation of finite elements if K and
are understood to be the stiffness matrix and load vector,

espectively. Suppose the explicit expressions of K(x) and
igure 1. Example of shape design variables in a plate with a hole. (a) I
he stiffness matrix K(x) and load vector F (x) depend on the
esign x, solution q also depends on the design x. However,
t is important to note that this dependency is implicit, which
s why we need to develop a methodology for sensitivity
nalysis. As shown in equation (3), dq/dx must be computed
sing the governing equation (5). This can be achieved by
ifferentiating equation (5) with respect to x, as

K(x)
dq

dx
= dF

dx
− dK

dx
q (6)

ssuming that the explicit expressions of K(x) and F (x) are
nown, dK/dx and dF/dx can be evaluated. Thus, if solution
from equation (5) is known, then dq/dx can be computed

rom equation (6), which can then be substituted into equa-
ion (3) to compute dσ/dx. Note that the stress performance
easure is implicitly dependent on the design through state

ariable q.
In this chapter, it is assumed that the general performance

easure ψ depends on the design explicitly and implicitly.
hat is, the performance measure ψ is presumed to be a func-

ion of design x and state variable q(x), as

ψ = ψ(q(x), x) (7)

he sensitivity of ψ can thus be expressed as

dψ(q(x), x)

dx
= ∂ψ

∂x

∣∣∣∣
q=const

+ ∂ψ

∂q

∣∣∣∣
T

x=const

dq

dx
(8)

he only unknown term in equation (8) is dq/dx. Various
omputational methods to obtain dq/dx are introduced in the
ollowing sections.

From the sensitivity analysis point of view, design vari-
bles are often classified as either shape or non-shape de-
ign. In general, a structural equation is represented by an
ntegral form. When a design variable changes the integral
nitial design; (b) perturbed design.
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Sensitivity Analysis 3

domain, it is called a shape design. Otherwise, the design is taken before it is discretized. If the structural problem and

referred to as a non-shape design. Since a non-shape variable
appears as a parameter in the structural equation, it is rel-
atively easy to differentiate the structural equation with re-
spect to the non-shape design. However, in the case of shape
design, the change in design variables modifies the integral
domain, which is more difficult to differentiate. When finite
element analysis is used to solve the structural equation, the
shape design variables change the finite element mesh. Fig-
ure 1 illustrates how the shape design variables (Cx, Cy, and r)
change the structural domain. In the initial design (Figure 1a),
Cx and Cy describe the location of the center of a hole and r
is the radius of the hole. When these variables are changed
(Figure 1b), the finite element mesh needs to be modified.

2 METHODS OF SENSITIVITY ANALYSIS
FOR LINEAR STATIC STRUCTURES

Various methods employed in sensitivity analysis are listed
in Figure 2. Four approaches are used to obtain the sen-
sitivity: the global finite difference, discrete, continuum,
and automatic derivatives. In the finite difference approach,
the sensitivity is obtained by either the forward finite dif-
ference or the central finite difference method. In the dis-
crete method, the sensitivity is obtained by taking deriva-
tives of the discrete governing equation. For this process,
it is necessary to take the derivative of the stiffness matrix.
If this derivative is obtained analytically using the explicit
expression of the stiffness matrix with respect to the de-
sign variable, it is an analytical method, since the analyti-
cal expressions of K(x) and F (x) are used. However, if the
derivative is obtained using a finite difference method, the
method is called a semi-analytical method. In the contin-
uum approach, the derivative of the structural equation (4) is
Forward finite difference 
Finite difference 

Central finite difference 

Semi-analytical method 
Discrete derivative 

Analytical method 

Continuum–discrete method 
Continuum derivative 

Continuum–continuum method 

Source code transformation 
Computational derivative 

Operator overloading 

Figure 2. Approaches to design sensitivity analysis.
sensitivity equations are solved analytically, then it is called
the continuum–continuum method. However, only very sim-
ple, classical problems can be solved analytically. Thus, the
continuum sensitivity equation is solved by discretization in
the same way that structural problems are solved. Since dif-
ferentiation is taken at the continuum domain and is then fol-
lowed by discretization, this method is called the continuum–
discrete method. Finally, computational, algorithmic, or
automatic differentiation refers to a differentiation of the
computer code itself.

Except for the global finite differences option, the other
three come in direct and adjoint methods (called the reverse
mode for automatic derivatives). In the direct method, one
obtains the derivatives of the entire structural response and
often of intermediate quantities as well. The sensitivities of
performance measures can then be obtained from the chain
rule of differentiation. In the adjoint method, one defines an
adjoint problem that depends on the performance measure.
The sensitivities of performance measures can then be ob-
tained using the structural and adjoint responses. Thus, the
entire system response sensitivities are not required, which
is particularly an advantage in cases with many design vari-
ables, but few performance measures of interest.

2.1 Global finite difference method

The easiest way to compute sensitivity information of a per-
formance measure is by using the global finite difference
method. Different designs yield different analysis results
and, thus, different performance values. The global finite dif-
ference method computes the sensitivity by evaluating per-
formance measures at different values of design variables.
Although the given optimization problem may have many
design variables, a single design variable is considered in the
following explanation. If x is the current design then the anal-
ysis results provide the value of performance measure ψ(x).
In addition, if the design is perturbed to x + �x, where �x

represents a small change in the design, then the sensitivity
of ψ(x) can be approximated as

dψ

dx
≈ ψ(x + �x) − ψ(x)

�x
(9)

Equation (9) is called the forward difference method since the
design is perturbed by +�x. If −�x is substituted in equation
(9) for �x, then the equation is defined as the backward differ-
ence method. Additionally, if the design is perturbed in both
directions, such that the design sensitivity is approximated
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dψ

dx
≈ ψ(x + �x) − ψ(x − �x)

2�x
(10)

hen the equation is defined as the central difference method.
The advantage of the finite difference method is obvious.

f structural analysis can be performed and the performance
easure can be obtained as a result of structural analysis, then

he expressions in equations (9) and (10) become virtually
ndependent of the problem types considered. Consequently,
his method has been popular in engineering design.

However, sensitivity computation costs become the domi-
ant concern in the design process. If n represents the number
f designs, then n + 1 number of analyses have to be car-
ied out for either forward or backward difference methods,
nd 2n + 1 analyses are required for the central difference
ethod. For modern, practical engineering applications, the

ost of structural analysis is rather expensive. Thus, this
ethod is infeasible for large-scale problems containing
any design variables.
Another major disadvantage of the finite difference

ethod is the degree of accuracy of its sensitivity results.
n equation (9), accurate results can be expected when �x

pproaches zero. Figure 3 shows some sensitivity results us-
ng the finite difference method. The tangential slope of the
urve at x0 is the exact sensitivity value. Depending on per-
urbation size, the sensitivity results are quite different. For a
ildly nonlinear performance measure, relatively large per-

urbation can still provide a reasonable estimation of sensi-
ivity results. However, for highly nonlinear performances, a
arge perturbation yields completely inaccurate results. Thus,
he determination of perturbation size greatly affects the sen-
itivity result. Even though it may be necessary to choose a
ery small perturbation, numerical noise becomes dominant
ψ

x0 x1 x2 x3 x4 x

dψ4/dx

dψ3/dx

dψ2/dx

dψ1/dx

igure 3. Influence of step-size in forward finite difference method.
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urbation, no reliable difference can be found in the analysis
esults. The most obvious source of this type of error is from
omputational errors associated with arithmetic operations
ith finite number of digits and possibly ill-conditioning in

he problem. For example, if up to five digits of significant
umbers are valid in a structural analysis then any design per-
urbation in the finite difference that is smaller than the first
ve significant digits cannot provide meaningful results. As
result, it is very difficult to determine design perturbation

izes that work for all problems. One of the other potential
ources of error is the discretization of both the spatial and
he temporal domain. A typical example could be numerical
oise induced by re-meshing.

Computational efficiency, accuracy and consistency, and
mplementation effort for global finite differences depend to
large extent on the type of solvers used for the linear sys-

em of equations (5). The main issue is whether computa-
ional investments associated with solving the equations for
he nominal structure can help reduce the effort associated
ith solving these equations for a perturbed structure.
When the matrix equation (5) is solved by factorizing the

atrix K, there is an array of methods that provide fast re-
nalysis of the perturbed structure. A disadvantage of many of
hese techniques is that accuracy is generally compromised,
hat is, certain inaccuracies will be introduced. When the per-
urbation leads to a low rank modification of K, for exam-
le, because only a single finite element is modified, then an
xact analysis of the perturbed structure can be performed
sing the Sherman–Morrison–Woodbury formulas (Akgün,
arcelon and Haftka, 2001). The main computational cost of

his approach is the solution of equation (5) for a number of
ight-hand sides equal to the rank of the perturbation in K.
kgün, Garcelon and Haftka (2001) discuss several variants
f this approach including the method of virtual distortions.
hen the perturbation in the matrix is more extensive, as in

hape design, it is still possible to use a binomial series solu-
ion (Yoon and Belegundu, 1988) or a similar approximation
f the inverse of K using a Neumann series (Oral, 1996).

.2 Discrete method

structural problem is often discretized in finite dimen-
ional space in order to solve complex problems. The dis-
rete method computes the performance sensitivity of the
iscretized problem, where the governing equation is a sys-
em of linear equations, as in equation (5). If the explicit
orm of the stiffness matrix K(x) and the load vector F (x) is
nown, and if solution q of matrix equation K(x)q = F (x) is
btained, then the sensitivity of the displacement vector can
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Sensitivity Analysis 5

also be obtained from equation (6), as means only a boundary layer of elements is affected by the
K(x)
dq

dx
= p (11)

where the pseudo-load vector p is defined as

p = dF

dx
− dK

dx
q (12)

It is clear from equation (11) that the sensitivities require the
solution of the same set of equations as solved for the response
functions, but for different right-hand sides (compare with
equation (5)). The latter being the pseudo-load vector, see
equation (12).

Once dq/dx is calculated, the sensitivity of a performance
measure can be obtained from equation (8) as

dψ

dx
= ∂ψ

∂x
+ ∂ψT

∂q
K−1

(
dF

dx
− dK

dx
q

)
(13)

In practice, it is unnecessary to calculate the inverse of the
stiffness matrix, K−1. Instead, dq/dx is solved from equation
(11) and substituted in equation (8).

Since the sensitivity equation (11) uses the same stiff-
ness matrix K(x) with the original structural problem, it can
be solved very efficiently if the direct matrix solver is used.
The direct matrix solver first decomposes the stiffness matrix
into lower- and upper-triangular portions (L-U decomposi-
tion), which is independent of the right-hand side. A back-
substitution process is then employed to solve equation (5).
Since the L-U decomposition takes most of computational
time and since it is independent of the right-hand side, the
sensitivity equation (11) uses the already decomposed stiff-
ness matrix to efficiently solve for dq/dx. This process is
similar to the multiple right-hand side solution process in
finite element analysis.

In calculating the pseudo-load vector, it is unnecessary to
differentiate the global load vector and stiffness matrix, but to
differentiate only those finite elements that are affected by the
design variable. The evaluation of the pseudo-load vector is
then carried out by an assembly of all individual nodal points
and finite element contributions. These contributions are ob-
tained by differentiating the finite element stiffness matrices
with respect to the design variables and following a similar
procedure for all load contributions. The fact that the pseudo-
load vector only depends on elements that are affected may
be exploited to make the computation of the pseudo-load vec-
tor more efficient. For shape design variables, this requires
some additional attention. For that purpose, one often tries to
link the design variables only to boundary elements, which
shape design variables.
The analytical differentiation process may become te-

dious. This especially holds true for shape design variables.
Additional procedures must be implemented for each ele-
ment used within the sensitivity analysis. The procedure must
account for all possible design variables and particularly for
shape design variables as they are usually more complex than
the original finite element routines. This type of discrete de-
sign sensitivities are referred to as analytical discrete design
sensitivities.

It is not difficult to compute dF/dx, since the applied force
is usually either independent of the design or it has a simple
expression. However, the computation of dK/dx in equation
(11) depends on the type of problem. In addition, modern ad-
vances in the finite element method use numerical integration
in the computation of K. In this case, the explicit expression
of K in terms of x may not be available. Moreover, in the
case of the shape design variable, computation of the analyti-
cal derivative of the stiffness matrix is quite costly. Because of
this, approximations are frequently accepted for the pseudo-
load vector that reduces this effort. These approximations
particularly involve finite difference schemes for evaluation
of the pseudo-load vector. Forward and central finite differ-
ence schemes are most popular. This type of design sensitiv-
ity is commonly denoted as semi-analytical discrete design
sensitivities. However, Barthelemy and Haftka (1988) show
that the semi-analytical method can have serious accuracy
problems for shape design variables in structures modeled
by beam, plate, truss, frame, and solid elements. They found
that accuracy problems occur even for a simple cantilever
beam. Moreover, errors in the early stage of approximation
multiply during the matrix equation solution phase. As a rem-
edy, Olhoff, Rasmussen and Lund (1993) proposed an exact
numerical differentiation method when the analytical form
of the element stiffness matrix is available.

For shape design variables, design perturbation involves
both the size of the perturbation and its distribution over the
domain. For the choice of perturbation size, similar consid-
erations as discussed for global finite differences play a role.
Unfortunately, the semi-analytical formulation may be ex-
tremely sensitive with respect to this choice. We do not ex-
plain this aspect in detail, but we only note here that this
drawback may negate all advantages of a semi-analytical for-
mulation and motivates modifications to the semi-analytical
method.

The method of calculating sensitivity using equation (13)
is called the direct method in which the derivatives of the
state variables, dq/dx, are calculated first, and, then, the
derivative of the performance measure is calculated using
the chain rule of differentiation. There is another way of
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xplicitly calculating the sensitivity of state variable. Note
hat the term (∂ψ/∂q)T K−1 is independent of design in equa-
ion (13). Thus, we can solve for this term first by defining
he following adjoint equation:

Kλ = ∂ψ

∂q
(14)

here the symmetric property of stiffness matrix, K = KT,
s used. Note that the above adjoint equation uses the same
tiffness matrix with the structural equation. The only dif-
erence is the right-hand side term ∂ψ/∂q, which is called
he adjoint load. The adjoint solution, λ, is not dependent on
esign but the performance measure. Thus, the adjoint solu-
ion is required per performance measure. Once the adjoint
olution is available, the sensitivity can be calculated from
quation (13) as

dψ

dx
= ∂ψ

∂x
+ λT

(
dF

dx
− dK

dx
q

)
(15)

alculating the sensitivity using equation (15) is called the
djoint method. The direct method in equation (13) is more
losely related to the design variables, whereas the adjoint
ethod is more closely related to the performance measure.
hen the number of design variables is much greater than

hat of performance measures, the adjoint method has a com-
utational advantage.

.3 Continuum method

n the continuum method, the sensitivity is obtained by dif-
erentiating the continuum equations that govern structural
ehavior. Most commonly, these consist of partial differential
quations or an integral form, for example, derived from the
rinciple of virtual work. The differentiation leads to a set of
ontinuum sensitivity equations that are then solved numeri-
ally, usually but not necessarily, with the same discretization
s used for the original structural response. For shape sensi-
ivities, the two main approaches for continuum derivatives
re the material derivative approach (Choi and Kim, 2004)
nd the control volume approach (Arora, Lee and Cardoso,
992). Profound mathematical proofs are available regarding
he existence and uniqueness of the sensitivity (Haug, Choi
nd Komkov, 1986).

In the continuum approach, the sensitivity can be under-
tood as a variation of a function. Let us consider that the
esign variable x is perturbed to x + τη in which τ is the
calar that measures the perturbation size and η is the direc-
tructural design variable x does not affect the domain. The
ariation of field response u with respect to x can then be
efined as

u′ ≡ lim
τ→0

{
u(x + τη) − u(x)

τ

}
= ∂u

∂τ

∣∣∣∣
τ=0

η (16)

ince the direction of design change η can be arbitrary, equa-
ion (16) must be linear with respect to η and the coefficient of
is called the sensitivity of field response u, which is equiv-

lent to the derivative in the context of other approaches.
Using equation (16), the principle of virtual work in equa-

ion (4) can be differentiated to obtain the following contin-
um sensitivity equation:

∫∫
V

δεTCε′ dV =
∫∫

V

δuTb′ dV +
∫

A

δuTh′ dA

−
∫∫

V

δεTC′ε dV (17)

or all δu that belong to the space of kinematically admis-
ible displacements. The left-hand side of equation (17) is
he same as that of equation (4) if u is replaced by u′. The
ight-hand side of equation (17) defines a pseudo-load (or fic-
itious load), which explicitly depends on the design. Thus,
olving the sensitivity equation is the same as solving the orig-
nal structural equilibrium equation with different load terms.
he major advantage of the continuum approach is that the
ensitivity formulation is independent of discrete model and
umerical schemes. Once the continuum sensitivity equation
s obtained, it can be discretized in the same manner as the
riginal analysis equations in order to obtain a system of ma-
rix equations similar to equation (5).

When the design variables affect the shape of the domain,
he differentiation of the equations of equilibrium is much
ore complicated because the integral domain depends on

he design. Interested readers are referred to Choi and Kim
2004) for the material derivative approach and Arora, Lee
nd Cardoso (1992) or Phelan and Haber (1989) for the con-
rol volume approach.

One frequently asked question is: “Are the discrete and
ontinuum methods equivalent?” This comparison is only
ossible when the two methods use the same finite element
quation. In the case of non-shape designs, it is well known
hat the two methods yield equivalent sensitivity results if the
ame discretization (i.e., the same finite element method) is
sed. However, in the case of shape design variables, the two
ethods can yield different results based on how the domain

s changed according to the shape design variables. Choi and
wu (1989) showed that both methods are equivalent when
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Sensitivity Analysis 7

they have (i) same discretization (shape function), (ii) exact discussed by Wujek and Renaud (1998). This approach was

integration (not numerical integration), (iii) analytical (not
numerical) finite element solutions, and (iv) linear velocity
field and consistent mesh perturbation. It was shown that
the sensitivity results of both methods are different when
quadratic and cubic design velocity fields are used. In the
practical point of view, the requirements in (i) and (iv) are
reasonable, but the requirements in (ii) and (iii) can be sig-
nificant. Akbari and Kim (2009) further showed that when a
linear design velocity is used, the two methods are equivalent
without requiring (ii) and (iii). Thus, in many practical cases,
both methods may yield the same sensitivity results.

2.4 Automatic differentiation

Even if the finite element programs are composed of many
complicated subroutines and functions, they are basically a
collection of elementary functions. Automatic differentiation
method defines the partial derivatives of these elementary
functions from which the derivatives of complicated subrou-
tines and functions are computed using propagation and the
chain rule of differentiation. The arguments of elementary
functions can be either one or two. Without loss of generality,
let us assume that an elementary function has two arguments,
defined as

a = felem(zi, zj) (18)

where felem(•, •) represents (++, sin(•), . . .) operators for
the single argument and (+, −, *,/, . . .) operators for the dou-
ble arguments.

In the direct differentiation method, the derivative of equa-
tion (18) can be defined as

∂a

∂x
= ∂felem

∂zi

∂zi

∂x
+ ∂felem

∂zj

∂zj

∂x
(19)

This derivative can propagate through complicated functions
and subroutines using the chain rule of differentiation. This
propagation eventually produces the derivative of the struc-
tural response.

In the reverse mode, which corresponds to the adjoint
method in the previous sections, the derivatives are computed
backward. Due to the reverse procedure, this approach re-
quires saving entire function evaluation, which also requires
a significant amount of memory.

Computer programs that calculate the derivatives of out-
put of other computer programs are now available and are
applicable to ever-growing programs. The largest program
that we found had about 800 000 lines (Bischof et al., 2003).
Both first- and higher-order derivatives can be obtained. Ap-
plication of automatic differentiation to coupled systems is
initially called automatic differentiation, but, after a while,
it was realized that human intervention in the process is re-
quired in many cases in order to obtain a reasonably efficient
code. Thus, it is often referred to as computational differen-
tiation.

In order to achieve better performance, automatic differ-
entiation may only be used with certain parts of the program.
This consequently leads to higher labor investment as com-
pared to automatic differentiation of the entire program.

There are several automatic differentiation tools widely
available today, notably ADIFOR (Automatic Differentiation
of Fortran (Bischof et al., 1996)) and ADOL-C for C/C++
programs (Griewank, Juedes and Utke, 1996). In terms of
implementation, there are two basic approaches to automatic
differentiation – source code transformation and operator
overloading. Source code transformation can be viewed as
a pre-compiler that adds code for computing the derivatives.
Operator overloading is available in modern computer lan-
guages, such as C++ and Fortran 90, which provide the abil-
ity to redefine the meaning of elementary operators (such as
multiplication) for various classes of variables. By defining
new variable types that have gradient objects associated with
them and overloading the elementary operators to also pro-
duce gradients, the code can be transformed without increas-
ing its size substantially. ADOL-C and ADOL-F (Shiriaev
and Griewank, 1996) are examples of operator-overloading
tools for automatic differentiation.

3 EXAMPLES

3.1 Cantilevered beam

Consider a cantilevered beam shown in Figure 4 with E =
2.9 × 104 ksi. The cross-sectional dimensions are given as
w = 2.25 in and h = 4.47 in. The sensitivity of the tip de-
flection is to be determined with respect to the height of the
cross section. The discrete method is used to calculate the
sensitivity. In this simple example, the analytical expression
of the tip deflection is available as

vtip = 4FL3

Ewh3
(20)

By differentiating the above expression with respect to the
height, the exact sensitivity expression can be obtained as

dvtip

dh
= −12FL3

Ewh4
= − 12 × 2000 × 1003

2.9 × 107 × 2.25 × 4.474

= −0.921 (21)
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8 Aerospace System Optimization

Figure 4. Cantilevered beam and finite element.

Note that the negative sensitivity means that if the height of
t
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cross-sectional dimension as a design variable. The sensi-
t
d
o
t
e
e
t
(

T

T

T
p
a
i
m

he cross section increases, the tip deflection decreases.
When one beam finite element is used to model the prob-

em, as shown in Figure 4, the finite element matrix equation
efore applying boundary conditions can be written as

EI

L3

⎡
⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v1

θ1

v2

θ2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

R1

C1

F

0

⎤
⎥⎥⎥⎦ (22)

here R1 and C1 are the supporting force and couple at the
all, respectively. In matrix notation, the above equation can
e written as

K(x)q = F (x) (23)

or the cantilevered beam, the deflection and slope at the wall
re fixed. In finite element analysis, these boundary condi-
ions can be applied by deleting the first and second columns
nd rows. Then, the final form of finite element matrix equa-
ion becomes

EI

L3

[
12 −6L

−6L 4L2

] [
v2

θ2

]
=

[
F

0

]
(24)

he solutions of the above equation become

v2 = 4FL3

Ewh3
, θ2 = 6FL2

Ewh3
(25)

ote that the tip deflection, v2, is identical to that in equation
20). Thus, the solution from finite element analysis is exact
n this case.

The sensitivity of nodal displacements can be obtained
y differentiating the finite element matrix equation (22)
ith respect to the design. Consider height x = h of the
ivity equation is given in equation (6). In order to solve the
esign sensitivity equation, we need to calculate the RHS
f equation (6). Since the applied load F is independent of
he design, the first term dF/dx = 0. The stiffness matrix in
quation (22) depends on design through the moment of in-
rtia I = wh3/12. Thus, it can be differentiated with respect
o design. After multiplying with nodal degree of freedoms
DOFs) q, we have

dK

dx
q = F

4Lh

⎡
⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0

0

4L

6

⎤
⎥⎥⎥⎦

= F

4h

⎡
⎢⎢⎢⎣

−12

−12L

12

0

⎤
⎥⎥⎥⎦ (26)

hus, the RHS of equation (6) can be computed as

dF

dx
− dK

dx
q = F

4h

⎡
⎢⎢⎢⎣

12

12L

−12

0

⎤
⎥⎥⎥⎦ (27)

hen, the sensitivity equation can be obtained as

EI

L3

⎡
⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dv1

dx
= 0

dθ1

dx
= 0

dv2

dx
dθ2

dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= F

4h

⎡
⎢⎢⎢⎣

12

12L

−12

0

⎤
⎥⎥⎥⎦

(28)

he first two rows and columns are deleted due to zero dis-
lacement boundary conditions. Note that this part is the same
s the original finite element analysis. When a displacement
s fixed, the sensitivity is also zero. After applying displace-
ent boundary conditions, we have

EI

L3

[
12 −6L

−6L 4L2

] ⎡
⎢⎣

dv2

dx
dθ2

dx

⎤
⎥⎦ = F

4h

[
−12

0

]
(29)
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Sensitivity Analysis 9

The above equation can be solved for the unknown nodal

x

y

1000 N

L

L

1

23

21

3

Figure 5. Three-bar truss for fully stressed design.

3.2 Three-bar truss
DOFs. Now we have,

dv2

dx
= −12FL3

Ewh4
,

dθ2

dx
= −18FL2

Ewh3
(30)

Note that dv2/dx is the same as with equation (21). Thus, the
sensitivity we calculated is exact. Note that in differentiating
the stiffness matrix in equation (26), only the moment of iner-
tia I was differentiated. The basic form of the matrix remains
unchanged. This is because the design variable appears as a
parameter in the structural equation.

In the adjoint method, the adjoint load must be calculated
first. Since the performance measure is the tip deflection, ψ =
v2, the adjoint load becomes ∂ψ/∂q = { 0 0 1 0 }T. Thus, the
adjoint load is applying a unit force at the tip. The adjoint
equation, Kλ = (∂ψ/∂q)T, becomes

EI

L3

⎡
⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

λ1

λ2

λ3

λ4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
R̄1

C̄1

1

0

⎤
⎥⎥⎥⎦ (31)

After applying the same boundary conditions, the reduced
adjoint equation becomes

EI

L3

[
12 −6L

−6L 4L2

] [
λ3

λ4

]
=

[
1

0

]
(32)

Thus, the adjoint solution becomes

λ3 = 4L3

Ewh3
, λ4 = 6L2

Ewh3
(33)

From the sensitivity expression in equation (15), there is no
explicitly dependent term; that is, ∂ψ/∂x = 0. In addition, the
applied load is independent of design; that is, dF/dx = 0.
Thus, the sensitivity expression becomes

dψ

dx
= −λT dK

dx
q

= − L2

Ewh3

{
4L6

} Ewh3

12L3

[
12 −6L

−6L 4L2

]
FL2

Ewh3

{
4L

6

}

= −12FL3

Ewh4

(34)

Note that the result is identical to that of equation (30). It
would be a good exercise to calculate the sensitivity of θ2. In
that case, the adjoint load will be ∂ψ/∂q = { 0 0 0 1 }T.
A three-bar truss with length L = 1 m and Young’s modu-
lus E = 80 GPa in Figure 5 is under a vertical load of F =
1000 N at Node 2. Design variables are the cross-sectional
areas of each truss member. The current design variables are
x1 = x2 = x3 = 10 mm2. The discrete method is used to cal-
culate the sensitivity of the vertical displacement (v2) at Node
2 with respect to x2. In addition, the accuracy of the calculated
sensitivity is compared with the forward finite difference sen-
sitivity with 1.0% perturbation size.

The element table is shown below.

First Second
Element node i node j AE/L l m

1 1 2 Ex1 1 0
2 2 3 Ex2/

√
2 −1/

√
2 1/

√
2

3 1 3 Ex3 0 1

Using the above element table, the global element equa-
tions can be obtained after applying displacement boundary
conditions:

105

⎡
⎢⎣

10.83 −2.83 2.83

−2.83 2.83 −2.83

2.83 −2.83 10.83

⎤
⎥⎦

⎡
⎢⎣

u2

v2

v3

⎤
⎥⎦ =

⎡
⎢⎣

0

−1000

0

⎤
⎥⎦ (35)

By solving the above equation, we have the following un-
known nodal DOFs:

u2 = −1.25 mm, v2 = −6.04 mm, v3 = −1.25 mm

(36)

In order to build the sensitivity equation, the RHS of equa-
tion (6) needs to be calculated. Since the applied load F
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10 Aerospace System Optimization

is independent of the design, the first term vanishes: that is,
d
d

T
s
d

T
m

1

T

T
o

d
(

is perturbed by 1.0%; that is, x + �x = 10.1 mm2. A new
g

1

N
t
i

N
t
p
t
d

N
s
t
t
w
a
s
a
b

3

A
a
b
D
a
o
d
F
o
i
r
h

s

F/dx = 0. Out of three element stiffness matrices, only k(2)

epends on design x2. Thus,

dk(1)

dx2
= dk(3)

dx2
= 0,

dk(2)

dx2
= E

2L(2)

⎡
⎢⎢⎢⎣

1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

⎤
⎥⎥⎥⎦

u2

v2

u3

v3

(37)

hese three matrices are assembled in the same way with the
tiffness matrix and then multiplied by the vector of nodal
isplacements to obtain

dF

dx2
− dK

dx2
q = −2.828 × 1010

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 −1 −1 1

0 0 −1 1 1 −1

0 0 −1 1 1 −1

0 0 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−.0013

−.0060

0

−.0013

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−108

108

108

−108

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

hen, the design sensitivity equation, after applying displace-
ent boundary conditions, becomes

05

⎡
⎢⎣

10.83 −2.83 2.83

−2.83 2.83 −2.83

2.83 −2.83 10.83

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

du2

dx2

dv2

dx2

dv3

dx2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣

−108

108

−108

⎤
⎥⎦ (39)

he solution of the above sensitivity equation yields

du2

dx2
= 0,

dv2

dx2
= 353.55,

dv3

dx2
= 0 (40)

hus, the change in the cross-sectional area of member 2 will
nly change the vertical displacement of Node 2.

Let us compute the sensitivity of v2 by using the finite
ifference method. The original displacements in equation
36) are saved as v2(x2) = −6.036 mm. And then, design x2
2 2

lobal matrix equation is produced with new design, as

05

⎡
⎢⎣

10.86 −2.86 2.86

−2.86 2.86 −2.86

2.86 −2.86 10.86

⎤
⎥⎦

⎡
⎢⎣

u2

v2

v3

⎤
⎥⎦ =

⎡
⎢⎣

0

−1000

0

⎤
⎥⎦ (41)

ote that the matrix is slightly different from the one in equa-
ion (35). By solving the above equation, we have the follow-
ng unknown nodal DOFs:

u2 = −1.25 mm, v2 = −6.00 mm, v3 = −1.25 mm

(42)

ote that u2 and v3 did not change, which is consistent with
he zero sensitivity in equation (40). With the vertical dis-
lacement at Node 2, we have the performance at the per-
urbed design, v2(x2 + �x2) = −6.001 mm. From the finite
ifference sensitivity formula in equation (9), we have

dv2

dx2
≈ v2(x2 + �x2) − v2(x2)

�x2

= −6.001 × 10−3 + 6.306 × 10−3

0.1 × 10−5 = 350.05 (43)

ote that the finite difference sensitivity in equation (43) is
lightly different from the one in equation (40). This is due to
he influence of finite perturbation size. When 0.1% perturba-
ion is used, the finite difference sensitivity becomes 353.2,
hich is much closer to the one in equation (40). However,

s we can see in equations (36) and (41), the difference in
tiffness matrix is small. Thus, it is required to maintain high
ccuracy in matrix solution in order to have a small pertur-
ation size.

.3 Road arm model

road arm structure, as shown in Figure 6, transfers a force
nd torque from a road wheel to a suspension unit for a com-
at vehicle. The road arm model is discretized with 4365
OFs. The road arm is made of steel with E = 206 GPa,

nd ν = 0.3. At the center of the right hole, a vertical force
f 3736 N and a torque of 44 516 N m are applied, while the
isplacement on the left hole is fixed. As was illustrated in
igure 6, the stress concentration appears in the left corner
f the road arm. If the highest stress level in the left corner
s considered as a reference value, then the dimension of the
ight corner cross section can be reduced because this region
as a large amount of safety margin.

Since two holes are connected to the road wheel and tor-
ion bar, the dimension and geometry of the holes are fixed.
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Sensitivity Analysis 11

Figure 6. Discrete road arm model and simulation results (stress).

xj, i = 3,4,7,8

x6,x8

x5,x7

x2,x4

x1,x3

xj, i = 1,2,5,6

Intersection 1

Intersection 2

Intersection 3

Intersection 4

+

Figure 7. Design parameters for the road arm model.

The design goal is to determine the dimension of the cross

Figure 8. Design velocity field vectors: (a) design x2; (b) design x4.
sections of the arm. The heights and widths of four sections
are selected as design parameters (see Figure 7). Thus, a total
of eight design variables are considered in this example.

As the design variables vary, the boundary surface of the
structure changes. At the same time, the discrete model also
needs to be moved according to the design variable’s change.
Even if the design variable changes the boundary surface, it
is recommended to move the interior nodes too. Otherwise,
the accuracy of the perturbed model may deteriorate. The
relation between a design variable and the motion of each
node is denoted by the design velocity field. Figure 8 shows
the design velocity field for two different design variables x2

and x4, respectively. The arrows denote the magnitude and
direction of nodal movement according to the corresponding
design variable’s change.

For a given design variable, the design sensitivity coef-
ficients of various performance measures can be calculated
using the design velocity field. Table 1 shows the design sen-
sitivity coefficients compared with the global finite difference
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12 Aerospace System Optimization

Table 1. Design sensitivity results compared with finite difference method.

Design Performance Finite difference Continuum method Ratio (%)

ux4 7.985E − 04 6.640E − 11 6.640E − 11 100.00
uy8 −1.740E − 04 −1.505E − 11 −1.505E − 11 100.00

x1 σx10 1.384E + 01 −3.251E − 06 −3.260E − 06 99.72
σy14 1.255E + 01 −1.408E − 05 −1.408E − 05 100.00
σz18 −3.113E + 00 −1.798E − 06 −1.800E − 06 99.85

Volume 4.689E + 02 −4.538E − 05 −4.538E − 05 100.00

ux4 7.985E − 04 2.136E − 10 2.136E − 10 100.00
uy8 −1.740E − 04 −7.769E − 11 −7.769E − 11 100.00

x5 σx10 1.384E + 01 4.835E − 07 4.839E − 07 99.91
σy14 1.255E + 01 −4.811E − 06 −4.811E − 06 100.00
σz18 −3.113E + 00 −4.004E − 06 −4.006E − 06 99.95

Volume 4.689E + 02 −7.249E − 06 −7.249E − 06 100.00

results. Displacement, stress, and volume of the structure are
c
r
t
m
d
r
f
t
o
s
m
c

N

A

b

C

E

f

(
F

h

K

L

p

q

r

u

x

v
W

ε

λ adjoint variable
ρ

θ

σ

ψ

R

A

A

A

B

B

B

C

C

onsidered as performance measures. For example, ux4 rep-
esents the x-directional displacement at node 4 and σx10 is
he x-directional normal stress at element 10. Good agree-
ents are observed between the continuum and global finite

ifference sensitivities. However, several trial and errors are
equired to find appropriate perturbation size, �x = 10−4,
or the global finite difference method. In addition, the struc-
ural analysis requires very accurate numerical calculation in
rder to capture very small changes in the responses. This
ensitivity information will be provided to the design opti-
ization algorithm to obtain the optimum design for given

onstraints.

OMENCLATURE

cross-sectional area
body force vector
elasticity matrix
Young’s modulus

elem elementary operator with single/double arguments
• ,•)
(x) load vector

surface traction
(x) stiffness matrix

length of a beam
pseudo-load vector
vector of nodal DOFs
radius of a circular cross section
continuous displacement field
design variable

i nodal deflection at node i of a beam element
weight
strain
density
i nodal rotation at node i of a beam element

stress
performance measure
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