SHAPE DESIGN SENSITIVITY ANALYSIS OF CONTACT PROBLEM WITH FRICTION

7th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization

K.K. Choi, Nam H. Kim, Young H. Park, and J.S. Chen Center for Computer-Aided Design Department of Mechanical Engineering College of Engineering The University of Iowa Iowa City, IA 52242

APPROACH

- Analysis
 - Reproducing Kernel Particle Method (RKPM)
 - Contact Problem Variational Inequality
 - Penalty Method for Frictional Contact
- DSA of Variational Inequality
 - Material Derivative of Contact Variational Forms
 - Shape Design Sensitivity Analysis
- Numerical Examples of Shape Design Optimization
 - Door Seal Problem
 - Windshield Blade Problem

REPRODUCING KERNEL PARTICLE METHOD (RKPM)

Reproduced Displacement Function

$$z^{R}(x) = \int_{\Omega} C(x; y - x)\phi_{a}(y - x)z(y) dy$$
$$z^{R}(x) \rightarrow z(x) \text{ as } a \rightarrow 0 \qquad \text{Dirac Delta Measure}$$

Correction Function

$$C(x; y-x) = q(x)^{T} H(y-x) \qquad H(y-x)^{T} = [1, (y-x), (y-x)^{2}, \dots, (y-x)^{n}]$$
$$q(x)^{T} = [q_{0}(x), q_{1}(x), \dots, q_{n}(x)]$$

N-th Order Completeness Requirement (Reproducing Condition)

$$z^{R}(x) = \int_{\Omega} C(x; y - x) \phi_{a}(y - x) z(y) dy$$
$$= \overline{m}_{0}(x) z(x) + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \overline{m}_{n}(x) \frac{d^{n} z(x)}{dx^{n}}$$
$$\overline{m}_{0}(x) = 1 \qquad \overline{m}_{k}(x) = 0 \qquad k = 1, ..., n$$

RKPM (cont.)

Reproducing Condition

 $\mathbf{M}(\mathbf{x})\mathbf{q}(\mathbf{x}) = \mathbf{H}(0) \qquad \mathbf{H}(0)^{\mathrm{T}} = [1,0,...,0]$ $\mathbf{M}(\mathbf{x}) = \begin{bmatrix} m_{0}(\mathbf{x}) & m_{1}(\mathbf{x}) & \dots & m_{n}(\mathbf{x}) \\ m_{1}(\mathbf{x}) & m_{2}(\mathbf{x}) & \dots & m_{n+1}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ m_{n}(\mathbf{x}) & m_{n+1}(\mathbf{x}) & \dots & m_{2n}(\mathbf{x}) \end{bmatrix}$

$$\mathbf{C}(\mathbf{x};\mathbf{y}-\mathbf{x}) = \mathbf{H}(0)^{\mathrm{T}}\mathbf{M}(\mathbf{x})^{-1}\mathbf{H}(\mathbf{y}-\mathbf{x})$$

$$z^{R}(x) = \mathbf{H}(0)^{T} \mathbf{M}(x)^{-1} \int_{\Omega} \mathbf{H}(y-x) \phi_{a}(y-x) z(y) dy$$

$$z^{R}(x) = \sum_{I=1}^{NP} C(x; x_{I} - x)\phi_{a}(x_{I} - x)z_{I}\Delta x_{I} = \sum_{I=1}^{NP} \Phi_{I}(x)d_{I}$$

UNIVERSITY OF FLORIDA

RKPM (cont.)

- Shape Function Φ_I(x_I) Depends on Current Coordinate Whereas FEA Shape Functions Depend on Coordinate of the Reference Geometry
- Does Not Satisfy Kronecker Delta Property: $\Phi_{I}(x_{J}) \neq \delta_{IJ}$
- Lagrange Multiplier Method for Essential B.C. $\Pi = U - \int \lambda^{T} (z - \zeta) d\Gamma$
 - First-order variation is $\overline{\Pi} = \overline{U} - \int_{\Gamma_{D}} \lambda^{T} \overline{z} \, d\Gamma - \int_{\Gamma_{D}} \overline{\lambda}^{T} (z - \zeta) \, d\Gamma$
- For Contact Problem, a Direct Transformation Method Is Used (Chen *et al.*-1996)

CONTACT PROBLEM

• Variational Inequality

 $\mathbf{a}(\mathbf{z}, \mathbf{w} - \mathbf{z}) \ge \ell(\mathbf{w} - \mathbf{z}) \quad \forall \mathbf{w} \in V$

Solution is obtained using a projection $\mathbf{z} = P_v(\mathbf{F})$ where

$$V = \left\{ \mathbf{w} \in \mathrm{H}^{1}(\Omega) : \mathbf{w} = 0 \text{ on } \Gamma_{\mathrm{D}} \text{ and } \mathbf{w} \cdot \mathbf{n} \leq g \text{ a.e. on } \Gamma_{\mathrm{C}} \right\}$$

a(z, w): Nonlinear strain energy formℓ(w): Load liner form for conservative load

• Equivalent Constrained Minimization Problem $\frac{1}{2}a(\mathbf{z}, \mathbf{z}) - \ell(\mathbf{z}) = \min_{\mathbf{w} \in V} \left[\frac{1}{2}a(\mathbf{w}, \mathbf{w}) - \ell(\mathbf{w})\right]$

PENALTY METHOD FOR FRICTIONAL CONTACT

Impenetration Condition

 $\mathbf{g}_{n} \equiv (\mathbf{x} - \mathbf{x}_{c}(\boldsymbol{\xi}_{c}))^{\mathrm{T}} \mathbf{e}_{n}(\boldsymbol{\xi}_{c}) \ge 0, \quad \mathbf{x} \in \Gamma_{c}^{1}, \mathbf{x}_{c} \in \Gamma_{c}^{2}$

Tangential Slip Function

 $\boldsymbol{g}_{t} \equiv \left\| \boldsymbol{t}^{0} \right\| (\boldsymbol{\xi}_{c} - \boldsymbol{\xi}_{c}^{0})$

Contact Consistency Condition

$$\varphi(\xi_{c}) = (\mathbf{x} - \mathbf{x}_{c}(\xi_{c}))^{\mathrm{T}} \mathbf{e}_{t}(\xi_{c}) = 0$$

Contact Penalty Function

$$P = \frac{1}{2}\omega_n \int_{\Gamma_c} g_n^2 d\Gamma + \frac{1}{2}\omega_t \int_{\Gamma_c} g_t^2 d\Gamma$$

where integration is performed only on the region where $g_n < 0$ on Γ_C

PENALTY METHOD (cont.)

Contact Variational Form

$$\mathbf{b}(\mathbf{z},\overline{\mathbf{z}}) \equiv \overline{P} = \boldsymbol{\omega}_{n} \int_{\Gamma_{c}} \boldsymbol{g}_{n} \overline{\boldsymbol{g}}_{n} d\Gamma + \boldsymbol{\omega}_{t} \int_{\Gamma_{c}} \boldsymbol{g}_{t} \overline{\boldsymbol{g}}_{t} d\Gamma$$

CONTACT VARIATIONAL FORMS

- Stick Condition: $|\omega_{t}g_{t}| \leq |\mu\omega_{n}g_{n}|$ $b(\mathbf{z}, \overline{\mathbf{z}}) = \omega_{n} \int_{\Gamma_{c}} g_{n} (\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{n} d\Gamma$ $+ \omega_{t} \int_{\Gamma_{c}} g_{t} [v(\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{t} + (g_{n} ||\mathbf{t}^{0}||/c) \overline{\mathbf{z}}_{c,\xi}^{T} \mathbf{e}_{n}] d\Gamma$
- Slip Condition : $|\omega_{t}g_{t}| > |\mu\omega_{n}g_{n}|$ $b(\mathbf{z}, \overline{\mathbf{z}}) = \omega_{n} \int_{\Gamma_{c}} g_{n}(\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{n} d\Gamma$ $-\mu\omega_{n} \operatorname{sgn}(g_{t}) \int_{\Gamma} g_{n} [v(\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{t} + (g_{n} ||\mathbf{t}^{0}|| / c) \overline{\mathbf{z}}_{c,\xi}^{T} \mathbf{e}_{n}] d\Gamma$

where

$$\alpha \equiv \mathbf{e}_{n}^{T} \mathbf{x}_{c,\xi\xi} \qquad \beta \equiv \mathbf{e}_{t}^{T} \mathbf{x}_{c,\xi\xi} \qquad \gamma \equiv \mathbf{e}_{n}^{T} \mathbf{x}_{c,\xi\xi\xi}$$
$$\mathbf{c} \equiv \left\| \mathbf{t} \right\|^{2} - g_{n} \alpha \qquad \mathbf{v} \equiv \frac{\left\| \mathbf{t} \right\| \left\| \mathbf{t}^{0} \right\|}{c}$$

DSA OF VARIATIONAL INEQUALITY

- Contact Is a Variational Inequality (VI) Problem
- Penalty Method (Wriggers et al.-1990 and Kikuchi & Oden-1988) Can Be Used for an Approximate Solution of VI
- Shape Design Sensitivity of VI Has Been Obtained by Sokolowski and Zolesio (1991) for Linear Problem
- Design Sensitivity Equation is Another VI
- For Linear Problems, Application of the Penalty Method to Solve the Sensitivity Equation (VI) Yields the Same Result As the Sensitivity Equation Obtained From the Penalty Equation

DSA FORMULATION FOR CONTACT PROBLEM

• Material Derivative of Structural Point

$$\frac{\mathrm{d}}{\mathrm{d}\tau}({}^{\mathrm{n}}\mathbf{x}_{\tau})\Big|_{\tau=0} \equiv \mathbf{V}({}^{\mathrm{n}}\mathbf{x}) = \mathbf{V}({}^{0}\mathbf{x}) + {}^{\mathrm{n}}\dot{\mathbf{z}}({}^{0}\mathbf{x}), \qquad {}^{0}\mathbf{x} \in \Omega^{1} \cup \Omega^{2}$$

- Material Derivative of Contact Point $\frac{d}{d\tau} {}^{(n}\mathbf{x}_{c\tau}) \Big|_{\tau=0} = \mathbf{V}_{c} {}^{(0}\mathbf{x}_{c}) + {}^{n}\dot{\mathbf{z}}_{c} {}^{(0}\mathbf{x}_{c}) + {}^{n}\mathbf{t}^{n}\dot{\boldsymbol{\xi}}_{c} , {}^{0}\mathbf{x}_{c} \in \Gamma_{c}^{2}$
- Material Derivative of Natural Coordinate at Contact $\dot{\xi}_{c} = \left(\|\mathbf{t}\|/c \right) \mathbf{e}_{t}^{T} (\mathbf{V} + \dot{\mathbf{z}} - \mathbf{V}_{c} - \dot{\mathbf{z}}_{c}) + \left(g_{n}/c \right) \mathbf{e}_{n}^{T} (\mathbf{V}_{c,\xi} + \dot{\mathbf{z}}_{c,\xi})$

MATERIAL DERIVATIVE OF CONTACT VARIATIONAL FORMS

 $\frac{d}{d\tau} \Big[b_{\Gamma_{\tau}}({}^{n}\mathbf{Z}_{\tau}, \overline{\mathbf{Z}}_{\tau}) \Big] = b^{*}({}^{n}\mathbf{z}; {}^{n}\dot{\mathbf{z}}, \overline{\mathbf{z}}) + b'_{V}({}^{n}\mathbf{z}, \overline{\mathbf{z}})$ Linearized Contact Variational Form $b^{*}({}^{n}\mathbf{z}; {}^{n}\dot{\mathbf{z}}, \overline{\mathbf{z}}) = b_{N}^{*}({}^{n}\mathbf{z}; {}^{n}\dot{\mathbf{z}}, \overline{\mathbf{z}}) + b_{T}^{*}({}^{n}\mathbf{z}; {}^{n}\dot{\mathbf{z}}, \overline{\mathbf{z}})$ $b'_{V}({}^{n}\mathbf{z}, \overline{\mathbf{z}}) = b'_{N}({}^{n}\mathbf{z}, \overline{\mathbf{z}}) + b'_{T}({}^{n}\mathbf{z}, \overline{\mathbf{z}})$

• Normal Contact Fictitious Load Form for DSA

$$\mathbf{b}_{N}'(\mathbf{z},\overline{\mathbf{z}}) = \omega_{n} \int_{\Gamma_{c}} (\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{n} \mathbf{e}_{n}^{T} (\mathbf{V} - \mathbf{V}_{c}) d\Gamma - \omega_{n} \int_{\Gamma_{c}} (\alpha g_{n}/c) (\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{t} \mathbf{e}_{t}^{T} (\mathbf{V} - \mathbf{V}_{c}) d\Gamma - \omega_{n} \int_{\Gamma_{c}} (g_{n} \|\mathbf{t}\|/c) (\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{t} \mathbf{e}_{n}^{T} \mathbf{V}_{c,\xi} d\Gamma - \omega_{n} \int_{\Gamma_{c}} (g_{n} \|\mathbf{t}\|/c) \overline{\mathbf{z}}_{c,\xi}^{T} \mathbf{e}_{n} \mathbf{e}_{t}^{T} (\mathbf{V} - \mathbf{V}_{c}) d\Gamma - \omega_{n} \int_{\Gamma_{c}} (g_{n}^{2}/c) \overline{\mathbf{z}}_{c,\xi}^{T} \mathbf{e}_{n} \mathbf{e}_{n}^{T} \mathbf{V}_{c,\xi} d\Gamma + \omega_{n} \int_{\Gamma_{c}} \kappa g_{n} (\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T} \mathbf{e}_{n} (\mathbf{V}^{T} \mathbf{n}) d\Gamma$$

MATERIAL DERIVATIVE OF CONTACT VARIATIONAL FORMS (cont.)

 Tangential Stick Fictitious Load Form for DSA $\mathbf{b}_{\mathrm{T}}^{\prime}({}^{\mathrm{n}}\mathbf{z},\overline{\mathbf{z}}) = \mathbf{b}_{\mathrm{T}}^{*}({}^{\mathrm{n}}\mathbf{z};\mathbf{V},\overline{\mathbf{z}})$ + $\omega_{t} \int^{n} (2g_{t} \|\mathbf{t}\|/c) (\overline{\mathbf{z}} - \overline{\mathbf{z}})^{T n} \mathbf{e}_{t}^{n-1} \mathbf{e}_{t}^{T} (\mathbf{V}_{c,\xi} + {}^{n-1}\dot{\mathbf{z}}_{c,\xi}) d\Gamma$ $+ \omega_{t} \int \left({}^{n} \nu (2^{n-1} \beta^{n} g_{t} - \left\| {}^{n-1} \mathbf{t} \right\|^{2} \right) (\overline{\mathbf{z}} - \overline{\mathbf{z}})^{T n} \mathbf{e}_{t} {}^{n-1} \mathbf{e}_{t}^{T} (\mathbf{V} + {}^{n-1} \dot{\mathbf{z}} - \mathbf{V}_{c} - {}^{n-1} \dot{\mathbf{z}}_{c}) d\Gamma$ $+\omega_{t}\int \left[\int a^{n-1}\beta^{n}g_{n}^{n}g_{t}\left(\left\| \int a^{n-1}\mathbf{t} \right\| + \left\| \mathbf{t} \right\| \right) \right] \left(\int a^{n-1}c \left[(\overline{\mathbf{z}} - \overline{\mathbf{z}})^{T} \mathbf{e}_{t}^{n-1}\mathbf{e}_{n}^{T} (\mathbf{V}_{c,\xi} + \int a^{n-1}\dot{\mathbf{z}}_{c,\xi}) d\Gamma \right]$ $-\omega_{t} \int \left[{}^{n}g_{n} \right] {}^{n}t \left\| {}^{n-1}t \right\|^{2} / {}^{n}c^{n-1}c \left[(\overline{z}-\overline{z})^{T} {}^{n}e_{t} {}^{t-\Delta t}e_{n}^{T} (V_{c,\xi}+{}^{n-1}\dot{z}_{c,\xi}) d\Gamma \right]$ $+\omega_{t} \int ||^{n} g_{n} ||^{n-1} \mathbf{t} || (2^{n-1}\beta^{n} g_{t} - ||^{n-1} \mathbf{t} ||^{2}) / |^{n} c^{n-1} c |\overline{\mathbf{z}}_{c,\xi}^{T} ||^{n} e_{n}^{n-1} e_{t}^{T} (\mathbf{V} + |^{n-1} \dot{\mathbf{z}} - \mathbf{V}_{c} - |^{n-1} \dot{\mathbf{z}}_{c}) d\Gamma$ $+\omega_{t} \int \int a_{n}^{n} g_{n}^{n-1} g_{n} \left(2^{n-1} \beta^{n} g_{t} - \left\| a^{n-1} t \right\|^{2} \right) / a_{n}^{n-1} c \left| \overline{z}_{c,\xi}^{T} a_{n}^{n} e_{n}^{n-1} e_{n}^{T} (V_{c,\xi} + a^{n-1} \dot{z}_{c,\xi}) d\Gamma \right|^{2} d\Gamma$ $+ \omega_{t} \int \kappa \left\{ {}^{n} \nu^{n} g_{t} (\overline{\mathbf{z}} - \overline{\mathbf{z}})^{T n} \mathbf{e}_{t} + \left({}^{n} g_{n}^{n} g_{t} \right) \right\}^{n-1} \mathbf{t} \left\| / c \right| (\overline{\mathbf{z}} - \overline{\mathbf{z}})^{T n} \mathbf{e}_{t} \right\} (\mathbf{V}^{T} \mathbf{n}) d\Gamma$

MATERIAL DERIVATIVE OF CONTACT VARIATIONAL FORMS (cont.)

• Tangential Slip Fictitious Load Form for DSA $\mathbf{b}_{\mathrm{T}}^{\prime}(^{\mathrm{n}}\mathbf{z},\overline{\mathbf{z}}) \equiv \mathbf{b}_{\mathrm{T}}^{*}(^{\mathrm{n}}\mathbf{z};\mathbf{V},\overline{\mathbf{z}})$ + $\omega_{t} \int \left({}^{n}g_{n} \right) \left({}^{n}g_{n} \right) \left(\overline{z} - \overline{z}_{c} \right)^{T} \left({}^{n}e_{t} \right)^{T} \left(V_{c,\xi} + {}^{n-1}\dot{z}_{c,\xi} \right) d\Gamma$ $+ \omega_{t} \int \left({^{n}\nu^{n-1}\beta^{n}g_{n}}/{^{n-1}c} \right) (\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c})^{T n} \mathbf{e}_{t}^{n-1} \mathbf{e}_{t}^{T} (\mathbf{V} + {^{n-1}}\dot{\mathbf{z}} - \mathbf{V}_{c} - {^{n-1}}\dot{\mathbf{z}}_{c}) d\Gamma$ $+ \omega_{t} \int \left[{n-1 \beta^{n} g_{n}}^{n-1} g_{n} \right]^{n-1} \mathbf{t} \left\| / {n c}^{n-1} c \right] \left(\overline{\mathbf{z}} - \overline{\mathbf{z}}_{c} \right)^{T} {n e}_{t}^{n-1} \mathbf{e}_{n}^{T} \left(\mathbf{V}_{c,\xi} + {n-1 \dot{\mathbf{z}}_{c,\xi}} \right) d\Gamma$ + $\omega_{t} \int \left[n g_{n}^{2} / n c \right] \overline{z}_{c,\xi}^{T n} e_{n}^{n-1} e_{t}^{T} (V_{c,\xi} + n-1 \dot{z}_{c,\xi}) d\Gamma$ + $\omega_{t} \int \left[\int a^{n-1} \beta \right]^{n-1} t \| g_{n}^{2} / c^{n-1} c | \bar{z}_{c,\xi}^{T} e_{n}^{n-1} e_{t}^{T} (V + \int a^{n-1} \dot{z} - V_{c} - \int a^{n-1} \dot{z}_{c}) d\Gamma$ + $\omega_{t} \int_{-\infty}^{n-1} \beta^{n} g_{n}^{2n-1} g_{n} / c^{n-1} c \mathbf{z}_{c,\xi}^{T} e_{n}^{n-1} e_{n}^{T} (\mathbf{V}_{c,\xi} + c^{n-1} \dot{\mathbf{z}}_{c,\xi}) d\Gamma$ + $\omega_t \int \kappa \left[{}^n \nu^n g_n (\overline{\mathbf{z}} - \overline{\mathbf{z}}_c)^{T n} \mathbf{e}_t + \left({}^n g_n^2 \right) \right]^{n-1} \mathbf{t} \left\| / {}^n c \right] \overline{\mathbf{z}}_{c,\xi}^{T n} \mathbf{e}_n \left\| \mathbf{V}^T \mathbf{n} \right\| d\Gamma$

NONLINEAR CONTACT ANALYSIS

• Variational Equation for Mixed Formulation of Hyperelastic Solid

a(ⁿ⁺¹ $\mathbf{r}, \overline{\mathbf{r}}$) + b(ⁿ⁺¹ $\mathbf{r}, \overline{\mathbf{r}}$) = $\ell(\overline{\mathbf{r}})$ $\forall \overline{\mathbf{r}} \in Z$ $\mathbf{r}^{\mathrm{T}} \equiv [\mathbf{z}^{\mathrm{T}}, \mathbf{p}, \lambda^{\mathrm{T}}]$

• Linearized Incremental Equation

 $\mathbf{a}^{*}(^{n+1}\mathbf{r}^{k};\Delta\mathbf{r}^{k+1},\overline{\mathbf{r}}) + \mathbf{b}^{*}(^{n+1}\mathbf{r}^{k};\Delta\mathbf{r}^{k+1},\overline{\mathbf{r}}) = \ell(\overline{\mathbf{r}}) - \mathbf{a}(^{n+1}\mathbf{r}^{k},\overline{\mathbf{r}}) - \mathbf{b}(^{n+1}\mathbf{r}^{k},\overline{\mathbf{r}})$

where linearized strain energy form is

$$\mathbf{a}^{*}(^{n}\mathbf{r};\Delta\mathbf{r},\overline{\mathbf{r}}) \equiv \int_{\Omega} \left[\overline{\mathbf{E}}:(\mathbf{C}:\Delta\mathbf{E}+\mathbf{J}_{3,\mathbf{E}}\Delta\mathbf{p})+\mathbf{S}:\Delta\overline{\mathbf{E}}\right] d\Omega + \int_{\Omega} \overline{p} \left(\mathbf{J}_{3,\mathbf{E}}:\Delta\mathbf{E}-\frac{\Delta p}{K}\right) d\Omega - \int_{\Gamma_{D}} \overline{\mathbf{z}}^{\mathrm{T}}\Delta\lambda d\Gamma - \int_{\Gamma_{D}} \Delta \mathbf{z}^{\mathrm{T}}\overline{\lambda} d\Gamma$$

SHAPE DESIGN SENSITIVITY ANALYSIS

- Variational Equation for Perturbed Shape Design $a_{\Omega_{\tau}}({}^{n}\mathbf{r}_{\tau}, \overline{\mathbf{r}}_{\tau}) + b_{\Gamma_{\tau}}({}^{n}\mathbf{r}_{\tau}, \overline{\mathbf{r}}_{\tau}) = \ell_{\Omega_{\tau}}(\overline{\mathbf{r}}_{\tau}) \qquad \forall \overline{\mathbf{r}}_{\tau} \in Z_{\tau}$
- Shape Sensitivity Equation 1st Order Variation $a_{\Omega}^{*}(\mathbf{r};\dot{\mathbf{r}},\overline{\mathbf{r}}) + b_{\Gamma}^{*}(\mathbf{r};\dot{\mathbf{r}},\overline{\mathbf{r}}) = \ell_{V}'(\overline{\mathbf{r}}) - a_{V}'(\mathbf{r},\overline{\mathbf{r}}) - b_{V}'(\mathbf{r},\overline{\mathbf{r}})$

where fictitious load forms for DSA are

$$a'_{V}(\mathbf{r}, \overline{\mathbf{r}}) = \int_{\Omega} \left[\overline{\mathbf{E}} : \mathbf{C} : \mathbf{E}_{V}(\mathbf{z}) + \mathbf{S} : \overline{\mathbf{E}}_{V}(\mathbf{z}, \overline{\mathbf{z}}) + \mathbf{S} : \overline{\mathbf{E}} \operatorname{div} \mathbf{V} \right] d\Omega$$
$$- \int_{\Gamma_{D}} \kappa \overline{\mathbf{z}}^{T} \lambda(\mathbf{V}^{T} \mathbf{n}) d\Gamma - \int_{\Gamma_{D}} \overline{\lambda}^{T} (\mathbf{z} - \zeta) (\mathbf{V}^{T} \mathbf{n}) d\Gamma$$

SHAPE DESIGN SENSITIVITY ANALYSIS (cont.) $\ell'_{V}(\bar{\mathbf{r}}) = \int_{\Omega} [\bar{\mathbf{z}}^{T}(\nabla \mathbf{f}^{B^{T}} \mathbf{V}) + \bar{\mathbf{z}}^{T} \mathbf{f}^{B} \operatorname{div} \mathbf{V}] d\Omega$ $+ \int_{\Gamma_{T}} [\bar{\mathbf{z}}^{T}(\nabla \mathbf{f}^{T^{T}} \mathbf{V}) + \kappa \bar{\mathbf{z}}^{T} \mathbf{f}^{T}(\mathbf{V}^{T} \mathbf{n})] d\Gamma$

- Remarks
 - Total form of sensitivity equation
 - No iteration is required
 - Frictional contact is path-dependent
 - DSA needs to be carried out at each converged load step
 Direct Differentiation Method is used
 - Material derivatives of displacement at contact nodes are used for DSA at next time step

DOOR SEAL CONTACT MODEL

Material Constant $D_{10} = 80$ KPa $D_{01} = 20$ KPa Bulk Modulus K = 80 MPa Frictional Coefficient $\mu = 0.25$ Rubber Seal = 174 Particle Points Rigid Wall = 32 Piecewise Linear Master Segments 100 Load Steps for Analysis with Displacement Driven Procedure

MESHLESS ANALYSIS OF DOOR SEAL

Frictionless Contact Frictional Contact

DOOR SEAL CONTACT DESIGN

26 Shape Design Parameters

1	$\sum g_n^2$			
	Area(1	09)	≤110	
	$\sigma_{75}(130)$))	≤ 100	
	$\sigma_{86}(129)$	9)	≤100	
	σ ₄₄ (20	9)	≤160	
	$\sigma_{114}(20)$)7)	≤160	
	$\sigma_{31}(98)$)	≤ 100	
	σ ₃₈ (191)		≤160	
	$\sigma_{115}(14)$	-8)	≤160	
	-0.5	\leq u _i \leq	0.5	i = 0, 26

Optimizer: DOT-SQP Initial Design is Infeasible

ACCURACY OF SHAPE DSA RESULTS

Analysis: 1968 Sec, Sensitivity: 1084 Sec for 26 DV = 41.7 Sec

Ψ	$\Delta \Psi$ (FDM)	Ψ' (PROPOSED)	$(\Delta \Psi / \Psi') \times 100$	Ψ	$\Delta \Psi$ (FDM)	Ψ' (PROPOSED)	$(\Delta \Psi / \Psi') \times 100$
u ₁				$\sigma_{_{44}}$	481447E-	6481452E-6	100.00
Area	163895E-	5163895E-5	100.00	$\sigma_{_{114}}$.143501E-	5 .143499E-5	100.00
σ_{75}	501565E-	6501563E-6	100.00	$\sigma_{_{31}}$.869462E-	7 .868284E-7	100.14
$\sigma_{_{86}}$	255777E-	5255775E-5	100.00	Σg_n^2	311421E-	9311370E-9	100.02
σ_{44}	247860E-	6247893E-6	99.99	\mathbf{u}_4			
σ_{114}	.525571E-	6 .525554E-6	100.00	Area	351300E-	5351300E-5	100.00
σ ₃₁	149431E-	6149300E-6	100.09	$\sigma_{_{75}}$	105863E-	4105864E-4	100.00
Σg_n^2	114879E-	8114878E-8	100.00	$\sigma_{_{86}}$	130646E-	4130647E-4	100.00
u ₂				$\sigma_{_{44}}$.122614E-	5 .122615E-5	100.00
Area	.163894E-	5 .163895E-5	100.00	$\sigma_{_{114}}$	329776E-	5329777E-5	100.00
σ ₇₅	.514388E-	6 .514395E-6	100.00	$\sigma_{_{31}}$	243310E-	6243378E-6	99.97
$\sigma_{_{86}}$	268130E-	5268129E-5	100.00	Σg_n^2	210381E-	8210383E-8	100.00
σ_{44}	.292610E-	4 .292609E-4	100.00	u_5			
σ_{114}	.126237E-	4 .126237E-4	100.00	Area	.447486E-	5 .447486E-5	100.00
σ_{31}	.947482E-	6 .947679E-6	99.98	$\sigma_{_{75}}$.629273E-	5 .629276E-5	100.00
Σg_n^2	.223116E-	7 .223116E-7	100.00	$\sigma_{_{86}}$.835460E-	5 .835467E-5	100.00
u ₃				$\sigma_{_{44}}$.122614E-	5 .122615E-5	100.00
Area	405671E-	5405671E-5	100.00	$\sigma_{_{114}}$.143353E-	5 .143352E-5	100.00
σ ₇₅	858554E-	7858371E-7	100.02	$\sigma_{_{31}}$.116624E-	6 .116676E-6	99.96
$\sigma_{_{86}}$	361270E-	5361266E-5	100.00	Σg_n^2	430791E-	9430725E-9	100.02

SHAPE OPTIMIZATION HISTORY

SHAPE OPTIMIZATION HISTORY (FDM)

OPTIMIZED DOOR SEAL (FDM)

WINDSHIELD BLADE MODEL

Material Constant $D_{10} = 80$ Kpa, $D_{01} = 20$ Kpa Bulk Modulus K = 80 MPa

Frictional Coefficient $\mu = 0.15$

Windshield Blade = 128 Particle Points

Rigid Wall = 26 Piecewise Linear Master Segments

100 Load Steps for Analysis with Displacement Driven Procedure

SHAPE DESIGN PARAMETERS OF BLADE

Min	Area(39)	
s.t.	$\sigma_{_{53}}(75) \leq 55$	
	$\sigma_{_{54}}(45) \leq 55$	
	$\sigma_{76}(32) \leq 55$	
	$\sigma_{_{84}}(34) \leq 55$	
	$F_{y128}(5) \geq 5.5$	
	$-0.2 \leq u_i \leq 0.2$	i = 1,3,7,8
	$-0.3 \le u_i \le 0.3$	i = 2,4
	$-0.6 \le u_i \le 0.6$	i = 5,6
	$-0.1 \leq u_i \leq 0.1$	i=9

ACCURACY OF SHAPE DSA RESULTS

Analysis: 633 Sec, Sensitivity: 133 Sec for 6 DV = 22.2 Sec

Ψ	$\Delta \Psi(\text{FDM})$	$\Psi'(PROPOSED)$	$\Delta \Psi / \Psi' \times 100$	Ψ	$\Delta \Psi(\text{FDM})$	$\Psi'(PROPOSED)$	$\Delta \Psi / \Psi' \times 100$
DV = 1			DV = 3				
Area	.284063E-05	.284063E-05	100.00	Area	.686628E-05	.686628E-05	100.00
$\sigma_{\scriptscriptstyle 53}$.804656E-04	.804720E-04	99.99	σ_{53}	.875426E-04	.875487E-04	99.99
$\sigma_{_{54}}$.155088E-03	.155089E-03	100.00	$\sigma_{_{54}}$.215552E-04	.215548E-04	100.00
$\sigma_{_{76}}$.168538E-04	.168559E-04	99.99	σ_{76}	.751887E-07	.765740E-07	98.19
$\sigma_{_{84}}$.223094E-04	.223117E-04	99.99	σ_{84}	158343E-04	158331E-04	100.01
F_{x128}	406709E-06	406753E-06	99.99	F_{x128}	244081E-05	244084E-05	100.00
F _{y128}	.271140E-05	.271169E-05	99.99	F _{y128}	.162721E-04	.162723E-04	100.00
DV = 2			DV = 4				
Area	.200000E-05	.200000E-05	100.00	Area	500000E-05	500000E-05	100.00
$\sigma_{\scriptscriptstyle 53}$	458509E-05	457972E-05	100.12	σ_{53}	757898E-05	757548E-05	100.05
$\sigma_{_{54}}$.927484E-05	.927534E-05	99.99	σ_{54}	884933E-05	884885E-05	100.01
σ_{76}	.458977E-05	.459232E-05	99.94	σ_{76}	513851E-04	513846E-04	100.00
$\sigma_{_{84}}$.597551E-05	.597838E-05	99.95	σ_{84}	646750E-04	646747E-04	100.00
F_{x128}	102118E-06	102180E-06	99.94	F _{x128}	.112802E-05	.112801E-05	100.00
F _{y128}	.680789E-06	.681198E-06	99.94	F _{y128}	752015E-05	752009E-05	100.00

PERFORMANCE MEASURE HISTORY

DESIGN PARAMETER HISTORY

OPTIMIZED WINDSHIELD BLADE

Optimum Shape Analysis of Optimum Design

