SHAPE SENSITIVITY ANALYSIS AND OPTIMIZATION FOR A CONTACT PROBLEM IN THE MANUFACTURING PROCESS DESIGN

4th World Congress of Structural and Multidisciplinary Optimization June 4-8, Dalian, China

Nam H. Kim, Ki-young Yi, and K.K. Choi

Center for Computer-Aided Design and Department of Mechanical Engineering The University of Iowa

OUTLINE

- DSA for Contact Problem with Frictional Return-Mapping
 - Material Derivative of Frictional Return-Mapping Scheme
 - ✓ Die Shape Design Parameters
- Smooth Contact Surface
 - ✓ Meshfree Interpolation of C²-Continuous Contact Surface
- Numerical Examples
 - ✓ Gasket Design Problem
 - ✓ Metal Punch DSA
 - ✓ Metal Extrusion Problem

3D CONTACT FORMULATION

Penalty-Based Contact Formulation

3D CONTACT FORMULATION cont.

• Material Derivative Formulas

 $\left. \frac{d}{d\tau}(\boldsymbol{x}_{\tau}) \right|_{\tau=0} = V(X) + \dot{z}(X)$: Slave Particle

 $\left. \frac{d}{d\tau} (\boldsymbol{x}_{\tau}^{c}) \right|_{\tau=0} = \boldsymbol{V}^{c}(\boldsymbol{X}) + \dot{\boldsymbol{z}}^{c} + \boldsymbol{e}_{\alpha} \dot{\boldsymbol{\xi}}_{\alpha} : \text{Contact Point on Master Surface}$

- Material Derivative of the Contact Form $\frac{d}{d\tau} [b_N(z_\tau, \overline{z}_\tau)] \Big|_{\tau=0} \equiv b_N^*(z; \dot{z}, \overline{z}) + b_N'(z, \overline{z})$ $b_N'(z, \overline{z}) = b_N^*(z; V, \overline{z}) + \omega_N \int_{\Gamma_n^c} \kappa g \hat{\overline{z}} \cdot n V_n d\Gamma : \text{Contact Fictitious Load}$
- $b_N^*(z; \cdot, \cdot)$ is same as the tangent stiffness operator that appears in contact analysis. Thus, the contact fictitious load can be calculated readily.

FRICTIONAL CONTACT DSA

- Elastoplasticity-Type Friction Model
 - -Trial Frictional Force **Relative Slip** $\boldsymbol{f}^{tr} = f_{\alpha}^{tr} \boldsymbol{e}^{\alpha}$ Amount $f_{\alpha}^{tr} = f_{\alpha}^{n-1} - \omega_T M_{\alpha\gamma} (\xi_{\gamma} - \xi_{\gamma}^{n-1})$
 - -Frictional Consistency Condition

 $h = \left| f_{\alpha}^{tr} \right| - \left| \mu \omega_{N} g \right|$

→ If $h \le 0$, Stick Condition **Return-mapping** $f_{\alpha} = f_{\alpha}^{tr}$ Elastoplasticity Or else, Slip Condition

$$f_{\alpha} = \mu \omega_{N} g p_{\alpha} \qquad p_{\alpha} = f_{\alpha}^{tr} / \left\| \boldsymbol{f}^{tr} \right\|$$

algorithm in

 Material derivative of the frictional form that is consistent with the frictional return-mapping algorithm has to be taken.

FRICTIONAL CONTACT DSA cont.

• Material Derivative of the Stick Condition

 $\dot{f}_{\alpha} = \omega_T \Phi_{\alpha\beta} \xi_{\beta}(\dot{z}) + \omega_T \Phi_{\alpha\beta} \xi_{\beta}(V) + \dot{f}_{\alpha}^{n-1} + \omega_T M_{\alpha\beta} \xi_{\beta}^{n-1}(\dot{z})$ $\Phi_{\alpha\beta} = M_{\alpha\beta} + M_{\alpha\gamma,\beta}(\xi_{\gamma} - \xi_{\gamma}^{n-1})$

$$\frac{d}{d\tau} [b_T(z,\overline{z})] \bigg|_{\tau=0} = b_T^*(z; \dot{z}, \overline{z}) \qquad : \text{Implicit Term} \\ + b_T^*(z; V, \overline{z}) \qquad : \text{Explicit Term} \\ + \int_{\Gamma_X^c} (\dot{f}_{\alpha}^{n-1} \overline{\xi}_{\alpha} + \omega_T M_{\alpha\beta} \overline{\xi}_{\alpha} \dot{\xi}_{\beta}^{n-1}) d\Gamma : \text{Path-Depenent Term} \end{cases}$$

- The expressions of implicit and explicit terms are same.
- The contact stiffness matrix from the response analysis can be used for DSA.

FRICTIONAL CONTACT DSA cont.

• Material Derivative of the Slip Condition

$$\begin{split} \dot{f}_{\alpha} &= \mu \omega_{N} p_{\alpha} \boldsymbol{n} \cdot (\hat{z} + \hat{V}) + \frac{\mu \omega_{N} g}{\left\| \boldsymbol{f}^{\prime \prime \prime} \right\|} [\dot{f}^{\prime \prime \prime}_{\alpha} - p_{\alpha} p^{\beta} \dot{f}^{\prime \prime \prime}_{\beta} - f^{\prime \prime \prime}_{\alpha} p_{\alpha} \boldsymbol{p} \cdot \dot{\boldsymbol{e}}^{\beta}] \\ & \frac{d}{d\tau} [b_{T}(z, \overline{z})] \bigg|_{\tau=0} = b_{T}^{*}(z; \dot{z}, \overline{z}) \\ & + b_{T}^{*}(z; \boldsymbol{V}, \overline{z}) \\ & + \mu \omega_{N} \int_{\Gamma_{X}^{c}} \frac{g \overline{\xi}_{\beta}}{\left\| \boldsymbol{f}^{\prime \prime \prime} \right\|} (\delta_{\alpha}^{\beta} - p_{\alpha} p^{\beta}) (\dot{f}^{\prime \prime -1}_{\alpha} + \omega_{T} M_{\alpha \gamma} \dot{\xi}^{\prime \prime -1}_{\gamma}) d\Gamma \end{split} \right\} b_{T}^{\prime}(z, \overline{z})$$

- \dot{f}_{α}^{tr} has the same expression as \dot{f}_{α} in the stick condition.
- The sensitivities of the frictional force and displacement contribute to the path-dependency of frictional contact DSA.

FRICTIONAL CONTAT DSA cont.

• Design Sensitivity Equation

 $a_{\Omega}^{*}(z; \dot{z}, \overline{z}) + b_{\Gamma}^{*}(z; \dot{z}, \overline{z}) = \ell_{V}'(\overline{z}) - a_{V}'(z, \overline{z}) - b_{V}'(z, \overline{z}), \quad \forall \overline{z} \in \mathbb{Z}$

Contact Fictitious Load

$$b'_{V}(z,\overline{z}) = b'_{N}(z,\overline{z}) + b'_{T}(z,\overline{z})$$

ormal Contact
Frictional Slip

- Path-dependency comes from the tangential friction.
 (Frictional force and contact particle displacement)
- The same tangent stiffness matrix from response analysis is used for DSA.

The University of Florida College of Engineering

N

SMOOTH CONTACT SURFACE

- Construction of C²continuous surface from a scattered set of particles.
- A design independent parametric plane is generated using surrounding particles.
- Meshfree shape function is independent of die shape design parameters.
- Meshfree Interpolation $\mathbf{x}(\xi_1,\xi_2) = \sum_{I=1}^{NP} \Psi_I(\xi_1,\xi_2) \mathbf{x}_I$ $\mathbf{x}_{,\alpha}(\xi_1,\xi_2) = \sum_{I=1}^{NP} \frac{d\Psi_I(\xi_1,\xi_2)}{d\xi_\alpha} \mathbf{x}_I$

information that is already available from response analysis is necessary.

GASKET SHAPE OPTIMIZATION

- Oil Pan Gasket to Reduce Leakage
- Mooney-Rivlin Rubber Material
- Flexible-Rigid Body Contact and Self-Contact Conditions
- Significant Distortion in Self-Contact Regions

DESIGN OPTIMIZATION

Optimization Problem 1

Iteration

10

∃RSELY O

DESIGN SENSITIVITY RESULTS

Design	Performance	Ψ	$\Delta \psi$	$\psi \Delta au$	$\Delta \psi / \psi \Delta \tau \times 100$
<i>u</i> ₁	z ₃₄₄	-7.66403	-8.74269E-7	-8.74284E-7	100.00
	z ₃₁₉	-6.46946	-8.41994E-7	-8.42008E-7	100.00
	Z ₂₈₆	-4.33574	-5.13241E-7	-5.13267E-7	100.00
	Z ₂₈₃	-4.36168	-5.64229E-7	-5.64249E-7	100.00
	z ₃₁₂	-5.77780	-7.17279E-7	-7.17305E-7	100.00
<i>u</i> ₂	Z ₃₄₄	-7.66403	1.01763E-6	1.01722E-6	100.04
	Z ₃₁₉	-6.46946	9.34760E-7	9.34128E-7	100.07
	Z ₂₈₆	-4.33574	6.24759E-7	6.23955E-7	100.13
	Z ₂₈₃	-4.36168	6.36105E-7	6.35389E-7	100.11
	Z ₃₁₂	-5.77780	8.39500E-7	8.38630E-7	100.10
<i>u</i> ₃	z ₃₄₄	-7.66403	-1.73855E-7	-1.73653E-7	100.12
	Z ₃₁₉	-6.46946	-5.02555E-7	-5.02153E-7	100.08
	z ₂₈₆	-4.33574	-1.46946E-6	-1.46873E-6	100.05
	Z ₂₈₃	-4.36168	-1.13062E-6	-1.12997E-6	100.06
	Z ₃₁₂	-5.77780	-1.28150E-6	-1.28086E-6	100.05

METAL EXTRUSION PROBLEM

METAL EXTRUSION PROBLEM cont.

- Area Reduction Ratio
 2.65
- Maximum Plastic Strain
 2.68
- Length Extension Ratio
 2.76

DESIGN PARAMETERIZATION

- CAD-Based Design
 Parameterization
- Die Shape Design Parameters
- ▶ Initial Billet Length = 0.6
- Final Billet Length = 1.6583
 276% Extension
- u_1 : Die Angle
- u_2 : Fillet Radius 1

DESIGN VELOCITY FIELDS

 \mathcal{U}_2

DESIGN SENSITIVITY RESULTS

Design Parameter	Process Work Sensitivity	Plastic Strain Sensitivity
\boldsymbol{u}_1	-5.50E-3	-5.32E-2
<i>u</i> ₂	6.60E–4	-6.24E-3
<i>u</i> ₃	-6.65E-5	-1.10E-4

 $\frac{\text{DSA Cost}}{\text{Finite Difference Cost}} = 0.2$

Design Optimization Problem

Minimize	Process Work (W)
Subject to	Effective Plastic Strain $(e_p) \le 2.68$

DESIGN IMPROVEMENT

CONCLUSIONS

- DSA and optimization of the frictional contact problem is presented by using the continuum approach.
- □ The material derivative that is consistent with the frictional return mapping algorithm is derived.
- The smooth contact surface is used in the sensitivity formulation with design independent meshfree interpolation function.
- Numerical examples show the efficiency and accuracy of the proposed sensitivity calculation method.
- □ The current solid-based design approach will be further extended to the nonlinear shell structure.

UNIVERSITY OF FLORIDA