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1. Abstract  
This paper investigates an effective strategy of experimental characterization of structural failure criteria. While 
repeating tests for the same structural configuration is preferable for tackling noise in test observation, exploring 
the design space with different structural configurations may uncover unmodeled critical failure modes. For a 
given number of tests, there arises a resource allocation problem: repetition or exploration? We examine the 
problem using interpolation techniques, known as surrogate models, to predict the failure load of a structural 
element as a function of problem parameters. Polynomial response surface (PRS), support vector regression (SVR) 
and Gaussian process regression (GPR) surrogates are tested. We compare repetition and exploration for two 
structural elements, a support bracket and a composite laminate. We conclude that repetition of tests is not 
necessarily needed since fitting surrogates has the effect of filtering out noise. This conclusion is intensified when 
the failure load surface is complicated. Furthermore, fitting the surrogate models with all the repeated data led to 
better accuracy than using only the mean values of repeated data.  
2. Keywords: Test, surrogate models, Failure modes, resource allocation  
 
3. Introduction 
Commercial aviation is the safest mode of transportation, partly due to large safety factor used in aircraft design. 
However, factors of safety may not compensate for large errors in the analytical predictions of structural failure, 
especially when designers fail to identify failure modes. Such failures may cause critical delays in aircraft 
development and later in service. Thus, it is imperative to identify failure modes and appropriately characterize 
them as early during the design stage as possible.  

A key element in the process of helping designers predict structural failure is the construction of design 
allowable charts for each failure mode, e.g., failure load map with respect to geometry and load conditions. Due to 
the complexity of failure mechanisms and lack of knowledge, especially for newly introduced materials and 
structures, analytical prediction models, are not reliable enough. Therefore, failure-criterion characterization tends 
to rely on t4ests. We typically conduct a matrix of characterization tests to cover the expected design space. To 
achieve the accuracy of failure load mapping, we may want to repeat several tests for the same configuration to 
eliminate the effect of noise in the test due to variability in material properties and test conditions. On the other 
hand, exploring within the design space with many different configurations is more likely to spot yet-unidentified 
failure modes.   

 The objective of this paper is to shed light on key factors of the characterizing tests and their relationship to 
failure prediction errors. We view this test process as a resource allocation problem. Because tests are often 
expensive, a key question is how we effectively allocate the limited number of tests to satisfy those two different 
objectives; predicting accurately a failure load map and spotting yet-unidentified failure modes (repetition vs. 
exploration). We illustrate the failure-criterion characterization using two example structural elements and 
metamodeling techniques, also known as surrogate models, for the failure load mapping.  

We test different types of surrogate models, including polynomial response surface, Gaussian process 
regression, and support vector regression, all of which are known to be capable of smoothing equivalent to a noise 
filter. In addition, we examine the treatment of the repeated data. That is, whether we fit surrogates using repeated 
data or whether we fit to the mean values t of the repeated data. With the help of the examples, we will discuss 
effective strategies of the failure-criterion characterization both in the context of structural test and in the context 
of use of surrogate models.   
  
4. Characterizing Test 
A major role of characterizing tests is to refine failure criteria which are critical for determining design allowables. 
As quoted by the Department of Defense handbook for composite materials [1], “unfortunately, the capability of 
the state of the art analysis methods are limited.” This process is usually conducted with a family of element 
structures intended for a particular use. A series of tests needs to consider multiple factors, such as external 
environments, geometry of structure, variability of material properties, defects and so on.  
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Characterizing failure criteria has two goals. The first goal is to identify all potential failure modes. For doing 
that, to quote the DOD handbook [1], “it is important to carefully select the correct test specimens that will 
simulate the desired failure modes. Special attention should be given to matrix sensitive failure modes.” The 
handbook also states that “the multiplicity of potential failure modes is perhaps the main reason that the building 
block (test) approach is essential in the development of composite structure substantiation.” The second goal is to 
enable accurate design allowable prediction, for example a failure load chart with respect to geometry and load 
conditions. This is usually implemented by a matrix of experiments and approximation techniques to interpolate 
the observed data.  

Challenges of achieving these goals include noisy data observation due to material variability, error in test 
conditions and measurement, and unknown potential failure modes. While the effect of noise can be statistically 
quantified by repeating test observation on each point in the matrix, exploring within the matrix with many 
different points is more likely to capture underlying potential failure modes. A key question is how we allocate the 
limited number of tests: repetition or exploration? (Fig. 1) 

 

 
 

Figure 1: Resource allocation issue in determining test matrix 
 

In this paper, we focus on failure criterion characterization with a low dimension and a small number of tests. 
We chose two very simple examples, for clarity and to allow exhaustive study of large number of strategies. The 
examples are support bracket and a composite laminate plate. Each structure has two underlying failure modes; 
one is dominant in the design space and the other is rare, representing an un-modeled mode that might be missed. 
Whereas the composite laminate plate has a high order of nonlinearity of the failure load surface, the support 
bracket has a smooth simple surface.  
  
4.1 Support bracket 

A simple support bracket mounted on a base structure is shown in Fig 2. The load is imposed on the handle and 
the expected operational load angle α is 0 to 110 deg in the x-z plane. It is also assumed that the height of the 
bracket l and length a are fixed due to space constraints. The diameter of the cylindrical part d is considered as a 
design parameter. Table 1 shows the properties of the structure.  

The combination of loading and geometry generates multi-axial states of stress due to axial, bending, torsion, 
and torsional shear stresses. Figure 3 illustrates the critical failure modes of the structure. Because of the additive 
effect of the torsion and torsional shear stresses or bending and axial stresses, point D is likely to be a critical 
failure point. However, point A can be a critical point under some conditions as shown in Figure 3. If the designer 
fails to locate the mode initiated at the point A, the design allowable will be underestimated. 

It is assumed that the yield strength of the material is normally distributed, and the geometry of test specimens 
varies within the tolerances of manufacturing, which are the sources of noisy test observation. Failure is predicted 
by the Von-Mises criterion ignoring stress concentrations. The tests seek to allow designers to predict the mean 
failure loads due to the dominant mode at the point D, which is determined by the mean of yield strength and the 
nominal values of d and α. Figure 4 depicts the failure load mapping at the point D. 
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Figure 2. Support Bracket 

 
 

                     

Figure 3. Critical failure modes Figure 4. Failure load surface for 
Point-D failure 

 
4.2 Composite laminate plate 

For the second example, intended to have a more complex failure surface, a symmetric composite laminate 
with three ply angles [0˚/ -θ/ +θ]s is considered (Fig. 5). The laminate is subject to mechanical loading along the x 
and y directions defined by the load ratio α, such that Nx = (1-α)F and Ny = αF. As design parameters for the 
failure load identification, the ply angle θ and the loading condition α are selected. The range of the parameters are 
set as [0, 90] deg for θ and [0, 0.5] for α. Table 2 shows the material properties and strain allowables,  including 
strain allowable along fiber direction ε1allow, transverse along fiber direction ε2allow, and shear γ12allow. All the 
properties are assumed to be normally distributed and the source of the noise in data observation. The strains are 
predicted by the classical laminated plate theory. 

Figure 6 shows the mapping of the critical failure modes, one due to the ply axial strain, which is dominant, and 
the other due to ply shear strain, which is rare. The designer is assumed to conduct a series of tests in order to 
construct an accurate approximation of the failure load map of the dominant mode as well as to spot the less 
dominant mode. Figure 7 is the failure load surface due to ply axial strain.   

 
 

Table 1. Properties of support bracket 
 

Property Quantity Variability 

l [inch] 2 Uniform ±2%  

a [inch] 4.6 Uniform ±2% 

d [inch] [1, 3] Uniform ±2% 

α [deg]  [0, 110] N/A 

Yield strength 
[psi] 

43,000 Normal 10% COV 
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Figure 5. Composite laminate 
 
 
 

                                                                      
Figure 6. Critical failure modes Figure 7. Failure load surface due to axial ply strain 

 
 
4.3 Test matrix 
In this study, we use matrices with from 4x4 to 7x7 grid in order to investigate the effect of the density of matrix. 
For each of the test matrices, we repeat the same test configuration (Nr) up to seven times. Table 3 shows the total 
number of test points for the matrices.  

As mentioned earlier, it is obvious that a denser matrix is desirable to spot rare failure modes. For both 
structural examples, 5x5 test matrix or denser with evenly spaced test points (Ng) in the two dimensions will detect 
the less dominant failure modes.   
 

Table 3. Test matrix and total number of tests 
 

Matrix 
(NgxNg) 

Number of repetitions (Nr) 
1 2 3 4 5 6 7 

4x4 16 32 48 64 80 96 112 
5x5 25 50 75 100 125 150 175 
6x6 36 72 108 144 180 216 252 
7x7 49 98 147 196 245 294 343 

 
 
5. Surrogate Models 
Surrogate models have been widely used in lieu of expensive computer simulations and experiments in 
engineering design. Their capability and validity have been proven by a variety of applications, such as design 
optimization [2, 3], uncertainty quantification [4]. Since one of the challenges of the characterizing test is to tackle 
the noise in observation, we select three surrogate models that have a smoothing effect, including polynomial 
response surface (PRS), support vector regression (SVR) and Gaussian process regression (GPR). The following 
sections briefly describe each of the surrogate models and the treatment of the test data for surrogate fitting. 
 
5.1 Polynomial Response Surface (PRS) 
Polynomial response surface employs a polynomial function and the least square fit to approximate the true 
function. As an example, the second order polynomial model is shown in Eq.(1). 
 

Table 2. Properties of composite laminate plate 
 

Property Quantity (mean) COV 

E1 [GPa] 150 5% 

E2 [GPa] 9 5% 

ν12 0.34 5% 

G12 [GPa] 4.6 5% 

Thickness of ply [μm] 125 N/A 

ε1allow ±0.01 6% 

ε2allow ±0.01 6% 

γ12allow ±0.015 6% 
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where ݔ represents the input variable, yො represents the prediction of output y. ߙ represents the coefficient and k is 
the number of training data points. PRS is known for computational tractability as well as for smoothing noisy 
observations [5, 6]. Because of polynomial functions being applied, it may cause a problem when being fitted to 
functions not well approximated by polynomials. In this study, we test various orders of polynomial function (up to 
9th order), then choose the best one based on the accuracy of the prediction, i.e., root mean square error (RMSE). 
 
5.2. Support Vector Regression (SVR) 
Support vector regression evolved from machine learning algorithm [7]. SVR has a tolerance of error and finds an 
approximation model that minimizes the degree of violation beyond the error tolerance.  In case of linear 
approximation, the prediction model is formulated as  
  

ොሺ࢞ሻݕ ൌ ,࢝ۦ ࢞ۧ ൅ ܾ (2) 

 
where ࢝ۦ, ࢞ۧ is a dot product of the coefficient vector ࢝ and ࢞, and b is the base term. The regression is carried out 
by optimizing ࢝ and b by solving the optimization problem shown in Eqs.(3) and (4). Regularization parameter C 
is a user-defined parameter and tradeoffs between flatness of the prediction model (low coefficients), the first term 
of Eq.(3), and the violation of the error tolerance, the second term of Eq.(3). 
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Figure 8 illustrates one of the most common models for the error tolerance (used here), so-called ε-sensitive 

loss function. When the error (ൌ ො௜ݕ െ  is zero, otherwise the loss is (ߦ) ௜) is within the tolerance ±ε, the lossݕ
proportionally increased with the error.  

 

 
Figure 8. ε-sensitive loss function 

 
A more general SVR model is expressed by Lagrange multipliers, ߙ௜ and  ߙ௜∗. 
 

ොሺ࢞ሻݕ ൌ෍ሺߙ௜ െ ,࢏ሺ࢞ܭ௜∗ሻߙ ࢞ሻ
௞

௜ୀଵ

൅ ܾ

 

(5) 

where ܭሺ࢞࢏, ࢞ሻ is the kernel function, and ࢞࢏ represents the ith training point and ࢞ is the point to be estimated by 
the surrogate model.  

For the implementation, we deploy the Surrogate Tool Box [8], which employs the MATLAB code offered 
by Gunn [9]. One of the challenges of SVR is to select an appropriate regularization parameter ܥ. In general, 
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substantial large C is suggested [10] and the exact selection of C “is not overly critical” [11]. Since our focus is on 
noise-canceling rather than flatness, and based on some empirical works to seek for an accurate fitting, we select 
infinity for C. For the kernel function, we use Gaussian model as shown in Eq.(6), which is often used, with ߠ 
being also a user-defined parameter, which determines the correlation between the points. 

 

,࢏ሺ࢞ܭ ࢞ሻ ൌ ݌ݔ݁ ቆെ
࢏࢞| െ ࢞|ଶ

ଶߠ2
ቇ (6) 

 
 Nearby points should be highly correlated for smooth interpolation, and after some experimentation, we 

selected ߠ such that K=0.9 for the closest two training data points. For ε, we use the average standard deviation of 
the observed data from 7x7 matrix with 7 repetitions, assuming that the designer has some idea about the noise in 
observation. Table 4 shows the selected ε comparing to the noise level. However, since this assumption might not 
be realistic, the selection of ε will be further investigated for the future work whether we can take advantage of 
statistic estimated from the observed data.  
 

Table 4. ε selection and noise level. Noise level varies depending on the location in the design space. All 
numbers are normalized by the range of the failure load). 

 

 
Noise level 

ε   
Max Min 

Support bracket 0.004 0.122 0.041 

Composite laminate 0.009 0.085 0.041 

 
5.3. Gaussian Process Regression (GPR) 
Gaussian process regression is originally developed as a method of the spatial statistics [12]. GPR is also known as 
Kriging [13]. Instead of assuming an approximated function like PRS, GPR views a set of data points as a 
collection of random variables that follow some rule of correlation, called random process. The name of Gaussian 
process originates from the form of random process using multivariate normal (Gaussian) distribution. The 
prediction is formulated as    
 

yො ൌ෍ߚ௜ߦ௜ሺ࢞ሻ

௞

௜ୀଵ

൅ ܼሺ࢞ሻ (7) 

 
The first terms of Eq.(7) is called the trend function and ܼሺݔሻ represents a departure from the trend function. The 
departure is assumed to be a realization of a random process which is expressed by a spatial correlation function. 
For example, Gaussian model is expressed as  
  

cov ቀܼሺ࢞௜ሻ, ܼ൫ ௝࢞൯ቁ ൌ ଶߪ exp൭െ
ห࢞௜ െ ௝࢞ห

ଶ

ଶࣂ2
൱ ൅  ௡ଶ (8)ߪ

 
where ߪଶ is process variance with zero mean. where ࣂ is the vector of scaling parameters, which determine the 
correlation between the points, and ߪ௡ is the noise variance independent of ߪ in order to handle the repeated data.  
Throughout the regression process, the trend function and hyperparameters of the correlation function are 
optimized to maximize the likelihood of having the training points. The advantage of GPR is the flexibility of 
fitting to nonlinear functions. However, fitting process of GPR is time consuming due to the optimization process.  

In this paper, we use the Gaussian Process Regression and Classification Toolbox version 3.2 [12] for the 
implementation. We select a linear model for the trend function and Gaussian model for the correlation function, 
shown in Eq.(8), which is one of common correlation functions. Since the toolbox deploys a line-search method 
for the optimization of the hyperparameters ߠ and the variances, the optimal solution tends to depend on the 
starting points of the hyperparameters. To avoid the danger of resulting in a local optimum, we apply multiple 
starting points [1, 0.1, 0.01, 0.001, 0.0001, 0.00001] for both ߪ and  ߪ௡  in the normalized output space (36 

combinations of the starting points). We also select the starting point of ߠ such that expቆെ
ห࢞೔ି࢞ೕห

మ

ଶࣂమ
ቇ ൌ 0.9 for the 

closest two points among the training points, as discussed for the kernel function of SVR. After fitting with all the 
starting points, we select the best model based on their maximum likelihood.      
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5.3. Treatment of test data 
We test the following two strategies of test data for fitting the surrogate models. Note that both strategies provide 
the same result for PRS.  
 
(1) All-at-once strategy 

We fit the surrogate models to all the test data including the repeated data.  
(2) Mean strategy 

We first take the mean values of the repeated data at each location in the design space. Then, the surrogate 
models are fitted to the mean values. 

 
6. Results of Failure Load Mapping  
6.1 Error evaluation 
In order to evaluate the accuracy of the failure load mapping, we compare the predictions from the surrogate 
models with the true values at a 20x20 matrix of testing points (in total 400 points). The true values are the failure 
loads corresponding to the mean values of all the input random variables, i.e., the material properties and 
geometry. To measure overall accuracy, we use root mean square error normalized by the range of the failure loads 
(NRMSE) calculated by Eq.(9). We also evaluate normalized maximum absolute error calculated by Eq.(10) in 
order to examine the robustness of the surrogate models.  
 
(a) Normalized root mean square error (NRMSE) 
 

ܧܵܯܴܰ ൌ
1

range of ݕ
ඩ

1
400

෍ሺݕො௜ െ ௜ሻଶݕ
ସ଴଴

௜ୀଵ

 (9) 

 
(b) Normalized maximum absolute error (NMAE) 

ܧܣܯܰ ൌ
1

range	of	ݕ
maxሺ|ݕොଵ െ ,|ଵݕ ොଶݕ| െ …,|ଶݕ , ොସ଴଴ݕ| െ  ସ଴଴|ሻ (10)ݕ

 
 First, we calculate the failure loads based on randomly generated test data at the matrix of experiments 
(ranging from 4x4 to 7x7 grid). Then, we fit the surrogate models to the failure loads. We repeat the fitting process 
100 times, each of which has a different set of the random test data and the failure load surface. Finally, we 
evaluate the errors, i.e., NRMSE and NMAE, for each of the fittings. The errors discussed in this section are the 
mean values of NRMSE and NMAE over 100 runs. Table 5 shows the standard errors over 100 runs, and they are 
small enough for the comparison discussed in the next section.  
 

Table 5. Standard errors of error estimate over 100 runs  
The numbers represent the mean of standard errors among different test matrices, and the numbers in parentheses 

are the maximum values. 
 

 
Support bracket Composite laminate plate 

NRMSE NMAE NRMSE NMAE 

SVR 0.07% (0.17%) 0.29% (0.61%) 0.05% (0.15%) 0.26% (0.49%) 

SVR all-at-once 0.06% (0.14%) 0.30% (0.51%) 0.06% (0.12%) 0.26% (0.43%) 

SVR mean 0.06% (0.14%) 0.28% (0.51%) 0.05% (0.12%) 0.27% (0.49%) 

GPR all-at-once 0.07% (0.21%) 0.27% (0.55%) 0.14% (0.46%) 0.43% (1.25%) 

GPR mean 0.08% (0.21%) 0.28% (0.55%) 0.13% (0.41%) 0.92% (0.36%) 

 
 
6.2 Support bracket 
Figure 9 compares the NRMSE with respect to the total number of test points (Ng

2×Nr) when the all-at-once 
strategy is applied to PRS, SVR, and GPR. The markers on each of the lines correspond to, from left to right, one 
repetition through seven repetitions. For PRS, 4th order polynomial function performs best for all the matrices. 

First of all, it can be seen that PRS performs better than SVR. This may reflect the fact that PRS is more error 
sensitive than SVR because while PRS minimizes L2 error norm (i.e., RMSE) by the least square method, SVR 
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with ε-sensitive loss function minimizes L1 error norm or that the selection of ε might be inappropriate. In terms of 
NMAE, both in PRS and SVR, as the test matrix becomes denser, the accuracy deteriorates. This is because the 
more test data observed, the higher the chance of observing outliers which harm the accuracy of the fitting. 
However, this does not apply to GPR, indicating that GPR is more robust against outliers. 

 

 
                          (a) PRS                                           (b) SVR                                             (c) GPR 
 

Figure 9: Error comparison for support bracket: NRMSE for all-at-once strategy  
Markers of each line correspond to one repetition through seven repetitions from left to right (see Table 3 for 

details on the numbers of data). The error values are the means out of 100 runs.  
 
 

 
                          (a) PRS                                           (b) SVR                                             (c) GPR 
 

Figure 10: Error comparison for support bracket: NMAE for all-at-once strategy.  
Markers of each line correspond to one repetition through seven repetitions from left to right. The error values are 

the means over 100 runs.  
 

Furthermore, we measured the errors associated with the surrogate models fitted to the noise-free test 
observation by 7x7 matrix. Table 6 shows the errors of the surrogate models fitted to the noise-free data and the 
remaining errors. The predictions of the surrogates are shown in Fig.11. Almost zero errors of PRS and GPR 
means that the errors in these surrogates are mainly due to the noise in observation rather than the modeling error. 
The large error in SVR (2.71%) reflects the wavy behavior of SVR prediction shown in Fig.11(b). Based on the 
remaining errors, SVR and GPR seem to work better as a noise filter than PRS.  

 
 
 
 
 
 
 

Table 6. Means (over 100 runs) of errors of the surrogates fitted to noise-free data (support bracket). The 
number in parentheses represents the standard error of the mean value. 
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Error 

Noise-free data 
(7x7 matrix) 

Noisy data 
(7x7 matrix with no repetition) 

Difference 

PRS 0.02% 2.60% (±0.07%) 2.58% 

SVR 2.71% 4.66% (±0.08%) 1.94% 

GPR 0.02% 1.94% (±0.09%) 1.92% 

 

 
                           (a) PRS                                              (b) SVR                                            (c) GP 
  

Figure 11: Surrogate models fitted to the noise-free data (7x7 matrix) of the support bracket  
 
Next, we examine the resource allocation (repetition vs. exploration). For PRS and GPR in Fig.9, all the lines 

corresponding to the density of matrix form a single line, meaning that the resource allocation between repetition 
and exploration does not matter, but the total number of tests does. As discussed in the previous paragraph, the 
errors mainly come from the noise rather than the prediction models. For such case, increasing the number of tests 
contributes to reducing the error regardless of whether they are for repetition or whether they are for exploration. 
However, recall that PRS might have a danger of outliers from a denser matrix, which harms the accuracy.     

Finally, in terms of the treatment of repeated data, Figs.12 and 13 show NRMSE and NMAE respectively 
when the mean strategy is applied. Compared to the all-at-once strategy shown in Figs.9 and 10, while no 
significant difference is observed both in NRMSE and NMAE for PRS and GPR, the all-at-once strategy offers a 
better performance than the mean strategy for SVR. This happens because SVR only considers the data outside of 
the tolerance ±ε as the errors to be reduced. Since SVR with the mean strategy does only provide one point, i.e., the 
mean value, at each location in the design space, it does not fully take advantage of the fitting algorithm. This may 
conclude that it is recommended to inform SVR about as many data as possible.       

 
 

 
                          (a) PRS                                           (b) SVR                                             (c) GPR 
 

Figure 12: Error comparison for support bracket: NRMSE for mean strategy.  
Markers of each line correspond to one repetition through seven repetitions from left to right. The error values are 

the means out of 100 runs.  
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                          (a) PRS                                           (b) SVR                                             (c) GPR 

 
          Figure 13: Error comparison for support bracket: NMAE for mean strategy.  

Markers of each line correspond to one repetition through seven repetitions from left to right. The error values are 
the means out of 100 runs. 

 
 
6.3 Composite laminate plate 
For the fitting performance to the nonlinear failure load surface of the composite laminate plate, Figure 14 shows 
NRMSE of all the surrogate models. For PRS, the best performed polynomial functions are listed in Table 5. Due 
to the non-linearity of the surface, the performance for the sparse matrices (4x4) is quite poor and unstable for all 
the models. Once the denser matrices (5x5 matrix or denser) are available, which are substantial enough to capture 
the nonlinear behavior, the accuracy of the prediction is drastically improved. 
 In terms of overall accuracy, GPR surpasses PRS and SVR. PRS and SVR are comparable for the 7x7 matrix, 
but SVR performs better for sparser matrices, i.e., 5x5 and 6x6. A remarkable observation is that the contribution 
of repetition to reducing error is miniscule. For example, given 100 test points, 7x7 matrix with two repetitions is 
better than 5x5 matrix with four repetitions (for GPR, a significant difference can be seen when a higher number of 
tests are sampled). As Table 7 shows that the errors of the models fitted to the noise-free data, this is because the 
major source of total error is due to the error in prediction models rather than the noise. In order to improve the 
accuracy of the prediction models, we need to capture the nonlinear behavior of the surface by as many different 
locations as possible in the design space. Figure 15 illustrates the predictions fitted to the noise-free data. Similar 
trends are also observed in NMAE shown in Fig.16, but the contribution of repetition to the accuracy can be hardly 
seen.     
        
  

 
                          (a) PRS                                           (b) SVR                                             (c) GPR 
 

Figure 14: Error comparison for composite laminate plate: NRMSE for all-at-once strategy  
Markers of each line correspond to one repetition through seven repetitions from left to right. The error values are 

the means out of 100 runs. 
 

Table 5. Best performed PRS for composite laminate plate 
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Matrix  Order of polynomial function 
4x4 5th order 
5x5 5th order 
6x6 7th order 
7x7 8th order 

 
 

Table 7. Means (over 100 runs) of errors of the surrogates fitted to noise-free data (support bracket). The 
number in parentheses represents the standard error of the mean. 

 

 
Error 

Noise-free data 
(7x7 matrix) 

Noisy data 
(7x7 matrix with no repetition) 

Difference   

PRS 6.26% 7.51% (±0.13%) 1.25% 

SVR 6.43% 7.58% (±0.12%) 1.15% 

GPR 6.71% 7.48% (±0.12%) 0.77% 

 

 
Figure 15: Surrogate models fitted to the noise-free failure load surface of the composite laminate plate  

 

 
                          (a) PRS                                           (b) SVR                                             (c) GPR 
 

Figure 16: Error comparison for composite laminate plate: NMAE for all-at-once strategy.  
Markers of each line correspond to one repetition through seven repetitions from left to right. The error values are 

the means out of 100 runs. 
 
As for the treatment of repeated data for fitting, Figs.17 and 18 illustrate NRMSE and NMAE when the mean 
strategy is used. For SVR, the all-at-once strategy is better than the mean strategy to a small extent. SVR still takes 
advantage of as many data, as discussed previously. In case of GPR, the mean strategy also underperforms the 
all-at-once strategy. It seems that as many data is helpful to improve the model accuracy even for GPR.      
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                          (a) PRS                                           (b) SVR                                             (c) GPR 
 

Figure 17: Error comparison for composite laminate plate: NRMSE for mean strategy  
Markers of each line correspond to one repetition through seven repetitions from left to right. The error values are 

the means out of 100 runs. 
 
 

 
                          (a) PRS                                           (b) SVR                                             (c) GPR 
 

Figure 18: Error comparison for composite laminate plate: NMAE for mean strategy.  
Markers of each line correspond to one repetition through seven repetitions from left to right. The error values are 

the means out of 100 runs. 
 
7 Concluding remarks and future work 
We investigated an effective strategy of matrix of tests for failure criterion characterization, focusing on the 
resource allocation of tests between repetition and exploration. Polynomial response surface (PRS), support vector 
regression (SVR) and Gaussian process regression (GPR) are examined to approximate the failure load surface. 
With two structural elements, it is found that repetition of tests is not necessarily needed in terms of the accuracy of 
approximation because of the smoothing effect of the surrogate models. This conclusion is more solidified when 
the failure load surface is complex, because the error in surrogate fitting tends to be more dominant than noise in 
observation. Furthermore, fitting the surrogates (GPR and SVR) to the all the repeated data performs better than 
fitting only with the mean values of repeated data. 

For future work, we will further investigate the treatment of repeated data in order to see whether we can take 
advantage of statistics of repeated data. In the present paper, we assume that the designer knows about the noise 
level and uses the average value the noise over the design space for ε. However, it is not realistic. For example, a 
variance estimator might be useful to select the error tolerance ε of SVR. ε might as well be adjusted according to 
the number of repetitions, like the standard error of mean. Furthermore, the weighted least square fitting is used to 
diminish the effect of outlier.   
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