
10th World Congress on Structural and Multidisciplinary Optimization 
May 19 -24, 2013, Orlando, Florida, USA 
 
 
 
 

The Effect of Ignoring Dependence between Failure Modes on Evaluating Structural 
Reliability 

 
 

Chan Y. Park1, Nam H. Kim2, Raphael T. Haftka3 
 

1 University of Florida, Gainesville, FL, USA, cy.park@ufl.edu 
2 University of Florida, Gainesville, FL, USA, nkim@ufl.edu 

3 University of Florida, Gainesville, FL, USA, haftka@ufl.edu 
 
Abstract  
Statistical dependence between failure modes induces a difficulty in evaluating structural reliability. Instead, the 
dependence is often ignored and the sum of individual reliabilities has been used as a conservative approximation. 
However, it is not well known that the error of ignoring dependence between failure modes depends on the level of 
reliability. In many cases, engineering structural systems require a high level of reliability in which a structural failure is 
rarely seen. In such a rare failure event, the dependence between failure modes becomes loose, and therefore, the error of 
ignoring dependence also becomes small. This paper focuses on quantifying the effect of ignoring dependence in multiple 
failures modes with various copula models. It is found that the effect is ignorable even with the presence of high statistical 
dependence between failure modes when the reliability index of interest is greater than 3.0. 
Keywords: Multiple failure modes; Statistical dependence; Reliability evaluation 
 
Introduction 
Calculating reliability has been recognized as an important part in structural design due to various sources of uncertainty. 
Due to natural variability in loads, materials and manufacturing processes, identically manufactured structures from the 
same design have randomness in their failure events. Hence, structural reliability has to be calculated. 

A structural failure is often associated with multiple failure modes, and statistical dependence occurs when different 
failure modes interact. To calculate the probability of failure accurately, the effect of statistical dependence has to be 
properly taken into account. 

Many reliability analysis methods, such as surrogate-based methods, sampling-based methods (e.g.  Monte Carlo 
simulation and  importance sampling ) and MPP-based methods (e.g. FORM and SORM), have been developed. However, 
evaluating structural reliability including dependence in failure modes is still challenging.  Surrogate-based methods and 
sampling-based methods easily account for dependence, however the methods suffer the computational burden with high 
dimensions, often called curse of dimensionality. MPP-based methods are computationally effective, but they cannot take 
into account dependence in failure modes accurately. Consequently, approximate approaches, such as the PNET method 
and the lower-upper bound method, have been developed. However they inevitably introduce error in ignoring statistical 
dependence between failure modes. 

It is not well known that error due to ignoring dependence is smaller at the high reliability levels. Often structures are 
required to be highly reliable. For example, the U.S. Army’s introduction of a structural fatigue reliability criterion for 
rotorcraft has been interpreted as a requirement for a component lifetime reliability of 0.999999 [13]. With such a high 
level of reliability, component failures are extremely rare events. For such rare events, dependence in component failure 
modes can be negligible. In other words, taking into account dependence in failure modes may no longer an issue for 
designs of highly reliable components. 

The objective of this paper is to study the effect of ignoring dependence on reliability using various examples, in terms 
of error in probability of failure. In addition, the factors that affect the error in probability of failure are discussed. A 
structural failure is defined with a limit state function, and the variability in limit state is modeled as a distribution. For 
multiple failure modes, the concept of copula is used to model dependence between failure modes. Probabilities of failure 
considering dependence and ignoring it are compared to see the effect of ignoring dependence.  

It is observed that for high reliabilities neglecting dependence between failure modes gives only 10% error in 
calculating probability of failure even with a strong dependence between two failure modes (i.e. ρ = 0.8). The error is 
sensitive to the ratio of the standard deviation of limit states and the difference between the means of limit states.  

 
Error from neglecting the dependence between component failures 
A structural failure is commonly defined with multiple failure modes. The general formulation of structural failure is 

defined in terms of failure modes. Let  1 2, ,...,
T

nX X XX be the vector of input model uncertainties for a structure, such as 



 
 

variability in loads, variability in strength of materials. Uncertainty in input variables is defined with cumulative 
distribution functions,  

iX iF x . Failure modes can be defined with limit state functions with the input model uncertainties. 

The limit state function is defined here in such a way that the failure event occurs when  
    0iG X  (1) 

while the structure is intact when 
    0iG X  (2) 

where the subscript i represents ith failure mode of system, and X is a vector of random inputs. The failure event of ith 

failure mode is defined by   0i iF G X , and the probabilities of failures for potential failure modes can be defined as  

    Pr 0f i iP G X  (3) 

In general, determining structural failure in terms of multiple failure modes is not easy since they commonly have 
statistical dependence. Two commonly used concepts for multiple failure modes are a series failure model where the 
structure fails if any of its failure mode is activated, and a parallel model where the structural fails if all of its failure modes 
are activated [8]. The series failure model takes account of union of failures, and the parallel model takes account of 
intersection of failures. Both models are affected by dependence of failure modes. In this study, the series model is used to 
show the effect of ignoring dependence, since it is more common in structural design. 

A series model composed of N failure modes can be defined using N limit functions. Input model uncertainties are 
propagated to uncertainties in multiple limit states Gi(X). Statistical dependence between failure modes appears as 
dependence between limit states. If Fi represents the failure event of ith failure mode, the probability of failure for 
dependent multiple failure modes (or exact probability of failure) is obtained as 
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Using the well-known expansion theorem for the probability of the union of events,  

    1

11

Pr 1
N n

k

i k
ki

F S




 
  

 
  (5) 

   
1 2

1 21 ...

Pr ...
k

k

k

k i i i
i i i n

S F F F
    

      (6) 

Since evaluating the probability of the union of events is difficult, assuming independence would be preferable if the 
assumption does not lead to large error in the probability of failure evaluation. With the independence assumption, the 
probability of failure can be calculated based on the marginal probabilities of failure. The system probability can be 
simply calculated by replacing the Eq. (6) with the marginal probabilities of failure. The probability of the intersection 
region is approximated as 
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Figure 1 shows the difference in system probability of failure with and without considering dependence for two failure 
modes. When the independent assumption is used, the joint PDF is equal to the product of two marginal PDFs of limit 
states. The probability of intersection is equal to the product of the probabilities of failure of each mode.  

The effect of ignoring dependence appears as error in the probability of intersection and the error is propagated to error 
in probability of failure. The error by ignoring dependence is calculated as 
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where Pfsys is the system probability of failure with considering dependence, while Pfind is the one without considering 
dependence. The error can also be expressed in terms of the reliability index as 
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where ind is reliability index ignoring dependence and sys is reliability index considering dependence (exact reliability 

index).  1  is the inverse CDF of the standard normal distribution. Reliability index is defined with probability of 

failure as  1
fP  . The errors in reliability index are shown in the numerical example section. 
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(a) Joint PDF considering dependence   (b) Joint PDF ignoring dependence 

Figure 1: Difference between system probabilities with considering dependence and ignoring dependence 
 

Copula models 
The main focus of this section is to review how to model a joint PDF using the theory of copulas. The word ‘copula’ is a 
Latin noun which means “a link”. The word was employed in a statistical term by Sklar (1959) in the theorem describing 
the functions which join together marginal cumulative distribution functions (CDF) to form multivariate CDF [2]. In this 
context, copula is a function that links multivariate CDFs to their marginal CDFs [3,4,5]. This implies that copulas are 
multivariate CDF whose one-dimensional margins are uniform on the interval (0,1). Copulas and their application are 
important concepts for modeling a joint CDF. 

Let  1 2, ,...,
T

nX X XX  be a n-dimensional random vector. And the random variables are defined by CDFs,  
iX iF x .  

     
1,... 1 1 1,..., Pr ,...,

nX X n n nF x x X x X x    (10) 

Then the multivariate CDF of the random vector is defined using copula function as 

        
1 1,... 1 1,..., ,...,

n nX X n X X nF x x C F x F x  (11) 

where C is a copula function. All arguments of the copula function have a domain of [0, 1], because CDFs have a domain 
of [0, 1]. Also, due to the property of multivariate CDF, the output of the copula function also has a domain of [0, 1].  

As shown in Eq. (10), a copula makes a connection between marginal CDFs and multivariate CDFs. The joint PDF of 
the random vector X is obtained as 
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Two commonly used simple copulas are elliptical copula and Archimedean copula. Elliptical copulas belong to a class 
of symmetric copulas because the horizontal cross-sections of their joint PDFs take the shape of ellipse; a simple linear 
transformation can transform the elliptical cross-section to circular one. Two widely used elliptical copulas are the 
Gaussian and the t copula. Note that the multivariate Gaussian distribution is a multivariate CDF that is modeled with the 
Gaussian copula and the normal distributions as its marginal distributions. Archimedean copulas are an associative class 
of copulas. While the Gaussian copula expresses the implicit formula of C with standard normal distributions, most 
common Archimedean copulas admit an explicit formula for the copula function C. 
 For modeling dependence in failure modes, this paper uses the Gaussian, Claton, Gumbel, Frank copulas. Note that 
the Gaussian copula is elliptical, while all others are Archimedean. All the copulas are defined with a single parameter that 
defines the strength of dependence; the linear correlation coefficient for the Gaussian copula and Kendall's tau for other 
copulas. The linear correlation coefficient is not scale invariant, whereas the Kendall's tau is scale invariant. For the same 
linear correlation coefficient, Kendall’s tau can give different values for different copulas. Figure 2 shows a contour of 
each copula with two standard normal marginal distributions. Kendall’s tau of each copula is determined in such a way 
that the corresponding linear correlation coefficient becomes 0.7. 
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(a) Gaussian copula 
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(b) Claton copula 
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(c) Gumbel copula 
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(d) Frank copula 

Figure 2: Various joint PDF shapes with different copulas with two standard normal marginal distributions with the 
linear correlation coefficient 0.7 

 
Numerical example 1: The effect of ignoring dependence with two failure modes  
In this section, the effect of ignoring dependence is shown with the four bivariate copulas and two normally distributed 
marginal distributions. By changing the mean values of distributions, various levels of probability are investigated. The 
copulas represent various types of dependence between failure modes. For each copula model, system probability of 
failure considering dependence is calculated with Eqs. (5) and (6), while the system probability of failure ignoring 
dependence is calculated with Eqs. (5) and (7). Then, the error in the system probability of failure is calculated in terms of 
reliability index.  

For modeling dependence between two failure modes, the intersection probability of failure in Eq. (6) is defined with 
copulas. Since the failure is associated with negative values of limit states, the intersection probability of the two failures 
can be expressed as 

        
1 21 2Pr 0; ,1 , 0; ,1 ,G GF F C F z F z   (14) 

where 
1GF  and 

2GF are marginal CDFs of limit states with mean of z and standard deviation of 1. C is a bivariate copula with 

a parameter θ that represents the strength of dependence. The magnitude of probability of failure and the strength of 
dependence are controlled by changing z and θ, respectively. The system probability of failure considering dependence is 
rewritten as 
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In contrast, probability of failure assumingindependence is expressed as 
         

1 2 1 2
0; ,1 0; ,1 0; ,1 0; ,1f ind G G G GP F z F z F z F z    (16) 

The Error is calculated with Eqs. (8) and (9). The strength of dependence is usually categorized from very weak to 
very strong in terms of the linear correlation coefficient, ρ, as shown in Table 1 [11]. For this example, the error due to 
ignoring dependence is calculated for strong to very strong correlation (0.7-0.9) and the system probability of failure level 
of 10-1 to 10-6 with the four copula models. 

 
Table 1. The strength of dependence 

Range of ρ [0,0.2] [0.2,0.4] [0.4,0.7] [0.7,0.9] [0.9,1.0] 
Strength Very weak Weak Moderate Strong Very strong 

 



 
 

The error in reliability index and the probability of failure by ignoring dependence is shown in Figure 3 with respect to 
the different strengths of linear correlation coefficient. To change the level of probability of failure and reliability index, 
different z values are applied to Eqs. (15) and (16). As mentioned before, the error depends on the level of probability of 
failure. In most cases, the error in reliability index converges to zero as the reliability index increases. That is, the error in 
no considering dependence is ignorable when the level of reliability is high. In Table 2, the magnitudes of reliability index 
that has 10% and 1% errors are shown. In Table 3, the corresponding magnitudes of probability of failures for 10% and 
1% errors are shown. Note that the relative error in reliability index is smaller than that of the probability of failure. For 
example, at 0.1 level of probability of failure, 100% error in probability of failure is approximately equivalent to 35% 
error in reliability index. At 10-5 level of probability of failure, 100% error in probability of failure is approximately 
equivalent to 4% error in reliability index. 
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(a) Error vs reliability index (Gaussian) (b) Error vs log probability of failure (Gaussian) 
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(c) Error vs reliability index (Clayton) (d) Error vs log probability of failure (Clayton) 
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(e) Error vs reliability index (Gumbel) (f) Error vs log probability of failure (Gumbel) 
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(g) Error vs reliability index (Frank) (h) Error vs log probability of failure (Frank)
 

Figure 3: The relative error with respect to the strength of the magnitude of system probability of failure; the red 
dashed line represents 10% error. 

 
For dependence between failure modes that are modeled with the Gaussian, Gumbel and Frank copula, the effect of 

ignorance decreases as reliability index decreases. Table 2 shows the corresponding magnitude of reliability indices for 
10% errors and for 1% error with respect to the strength of dependence, which are measured by the linear correlation 
coefficient. Except the Gaussian copulas, the other copulas require Kendall's tau. Equivalent Kendall's tau is determined 
and plugged to copula models for fair comparison. 

 
Table 2. Reliability index for 10% and 1% errors (in reliability index) with respect to the strength of dependence 

measured by the linear correlation coefficient 
Copula Error \ ρ ρ =0.7 ρ =0.75 ρ =0.8 ρ =0.85 ρ =0.9 

10% 1.23 1.32 1.43 1.55 1.70 
1% 2.82 3.03 3.28 3.60 4.04 
10% 1.95 2.05 2.15 2.24 2.33 
1% 6.50 6.72 6.92 7.10 7.27 
10% 1.04 1.13 1.23 1.35 1.49 
1% 2.27 2.42 2.60 2.82 3.12 
10% 1.05 1.11 1.19 1.27 1.38 
1% 1.86 1.92 1.98 2.06 2.17 

 
For dependence between failure modes that are modeled with the Gaussian, Gumbel and Frank copula, the effect of 

ignorance decreases as the magnitude of probability of failure decreases. Table 2 shows corresponding logarithmic 
probability of failure for errors of 10% and 1% in probability of failure calculation with respect to the strength of 
dependence.  

 
Table 3. Logarithmic system probability of failure for 10% and 1% errors with respect to the strength of dependence 

measured by the linear correlation coefficient 
Copula Error ρ =0.7 ρ =0.75 ρ =0.8 ρ =0.85 ρ =0.9 

10% -2.46 -3.02 -3.85 -5.19 -7.83 
1% -7.08 -8.35 -9.86 -11.89 -15.48 

Clayton  N/A N/A N/A N/A N/A 
10% -1.41 -1.68 -2.02 -2.49 -3.25 
1% -3.81 -4.32 -5.02 -6.07 -7.57 
10% -1.21 -1.22 -1.31 -1.41 -1.56 
1% -2.11 -2.21 -2.35 -2.48 -2.57 

 
With the Frank copula model, for ρ = 0.8, strong dependence, we have 10% error in reliability index and in probability 

failure calculation by neglecting dependence at the reliability index of 1.19 and the probability of failure level of 0.049, 
respectively. For the reliability level less than that level, the error is less than 10% and the error decreases very fast as 



 
 

shown in Fig. 4 (g) and 4 (h). For ρ = 0.9, very strong dependence, we have 10% error at the reliability index level of 1.38 
and at the reliability level of 0.027.  

With the Gumbel copula, the effect becomes a bit stronger; for ρ = 0.8, we have 10% error at the reliability index level 
of 1.23 and at the probability of failure level of 0.0095. For ρ = 0.8, we have 10% error at the reliability index level of 1.49 
and at the probability of failure level of 0.00056.  

With the Gaussian copula, for ρ = 0.8, we have 10% error at the reliability level of 1.43 and at the probability of failure 
level of 0.00014. With the Clayton copula, neglecting dependence is critical for probability of failure calculation. Error in 
probability of failure calculation is more than 100%. 

From the results, the error in probability of failure calculation is 10% even with the strong dependence level of ρ = 0.8 
at the probability of failure level 10-4. Even at the very strong dependence level of ρ = 0.9, the Frank copula model has 
error less than 1% at the level of 10-4. In terms of reliability index, error is very small at the strong correlation of ρ = 0.9. 

 
Numerical example2: The effect of different standard deviations and the means of limit states 
In the previous section, we used the same means and same standard deviations for both limit states G1 and G2. In this 
section the effect of the ratio of the standard deviations of limit states and the difference of means of limit states are shown. 
The Gaussian and Clayton copulas are considered since they have relatively larger error than the other copula models. 

Figure 4 shows the error with respect to the magnitude of reliability index and logarithmic probability of failure while 
the strength of dependence is kept as ρ = 0.8. Table 4 and 5 show the error in terms of reliability index and probability of 
failure regarding of the ratio of standard deviations and the difference of means. 
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(d) Error vs log probability of failure for the difference 
between the means of two limit state variables (Gussian) 
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Figure 4: The magnitude of error with respect to the ratio of the standard deviations and the difference between the 

means of limit state variable G1 and G2 with ρ = 0.8 ("ratio" is the ratio of standard deviations G1 and standard deviation 
G2 and "diff" is the difference between the standard deviations G1 and the standard deviation G2) 

 
Probability of failure considering dependence is calculated as 
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where z is a regulator of the magnitude of probability of failure, and r is the ratio of the standard deviations (the standard 
deviation of the other limit state variable G1 is 1) and d is the difference between the means of state variables G1 and G2  

(again, the mean of the other limit state variable G1 is z). 
In contrast, probability of failure with the independence assumption is calculated as 

         
1 2 1 2

0; ,1 0; , 0; ,1 0; ,f dep G G G GP F z F z d r F z d F z d r       (18) 

Errors are calculated with Eqs. (8-9) as the previous section. The effect of ignorance decreases as the magnitude of 
probability of failure decreases. Table 4 shows reliability index for errors of 10% and 1% in reliability index calculation 
with respect to the ratio of the standard deviations and the difference between the means. Table 5 shows logarithmic 
system probability of failure for errors of 10% and 1% in reliability index calculation with respect to the ratio and the 
difference. 

 
Table 4. Reliability index for 10% and 1% errors with respect to the ratio of the standard deviations and the difference 

between the means of limit state variables G1 and G2 with ρ = 0.8 
Copula Error ratio =1 ratio =1.1 ratio =1.2 ratio =1.3 ratio =1.4 ratio =1.5

10% 1.68 1.64 1.54 1.44 1.33 1.24 
1% 3.98 3.50 2.95 2.55 2.26 2.04 
10% 2.15 1.96 1.72 1.54 1.39 1.28 



 
 

1% 6.92 3.95 3.07 2.60 2.28 2.05 
  diff.=0 diff.=0.1 diff.=0.2 diff.=0.3 diff.=0.4 diff.=0.5 

10% 1.68 1.67 1.62 1.56 1.47 1.38 
1% 3.98 3.94 3.81 3.62 3.39 3.16 
10% 2.15 2.09 1.96 1.79 1.63 1.48 
1% 6.92 6.22 5.25 4.49 3.92 3.48 

 
Table 5. Logarithmic system probability of failure for 10% and 1% errors with respect to the ratio of the standard 

deviations and the difference between the means of limit state variables G1 and G2 with ρ = 0.8 
Copula Error ratio =1 ratio =1.1 ratio =1.2 ratio =1.3 ratio =1.4 ratio =1.5 

10% -7.42 -4.36 -2.79 -2.06 -1.65 -1.39 
1% -14.86 -8.11 -5.24 -3.7 -2.85 -2.34 
10% N/A -5.66 -3.04 -2.15 -1.69 -1.41 
1% N/A -8.56 -5.38 -3.73 -2.86 -2.34 

  diff.=0 diff.=0.1 diff.=0.2 diff.=0.3 diff.=0.4 diff.=0.5 
10% -7.42 -7.11 -6.30 -5.30 -4.31 -3.44 
1% -14.86 -14.58 -13.72 -12.61 -11.43 -10.22 
10% N/A N/A N/A N/A N/A -4.77 
1% N/A N/A N/A N/A N/A N/A 

 
From the results, it is observed that the error is more sensitive to the ratio of the standard deviations than the difference 

between the means. From the Table 5, for the Gaussian copula model, the logarithmic probability of failure level for 10% 
error is decreased by 82% as the ratio changes from 1 to 1.5. The logarithmic probability of failure for 10% is decreased 
by 46% as the difference changes from 0 to 0.5.  

For the Clayton copula model, error in calculated probability of failure is significantly increased as the level of 
probability of failure decreases unlike that other copula models. However, error is decreased by 75% as the ratio changes 
from 1.1 to 1.5. For the ratio less than 1.3, for both Gaussian and Clayton copula models, logarithmic probability of 
failures for both 10% and 1% errors are almost same. The difference in means does not effect on error as much as the ratio 
does. 

 
Conclusion 
In this paper, the effect of ignoring dependence in multiple failure modes is studied. Various dependence types 

between failure modes are considered using copulas. Errors in probability of failure and corresponding reliability index 
due to ignoring dependence are compared with different strengths of dependence and different levels of reliability. It is 
found that the effect of ignoring dependence significantly decreases as the reliability increases, except for the Clayton 
copula. For the Gaussian copula, for example, even with the presence of strong dependence between failure modes, such 
as ρ = 0.8, ignoring dependence can give 10% error in the order of probability of failure of 10-4. For the case of the 
Gumbel or Frank copulas, the 10% error occurs in the order of probability of failure of 10-2 ~10-3.  

It is also found that the ratio between standard deviations and the difference between means affect the error. From the 
numerical example, it is observed that the error is sensitive to the ratio of the standard deviations than the difference 
between the means. Therefore, when a probability of failure is expected to be lower than 10-5, unless the ratio of the 
standard deviations is very close to 1, dependence in failure modes is ignorable even though the strength of dependence is 
strong. 
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