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1. Abstract 
In cost based manufacturing tolerance optimization, multiple sources of uncertainty are present in the cost model 
inputs that leads to uncertainity in the outputs. The main output of interest is the cost associated with the optimal 
tolerance value. The cost model  used in this paper combines the multiple objectives of manufacturing, quality and 
performance (reflected in value of weight savings). Combining these costs allows finding a tolerance value that 
balances the value of weight saving and production cost objectives. Sensitivity analysis is used to identify the main 
sources of uncertainty as manufacturing error data, cost of useful load (hence value of weight savings) and mean 
cost of quality review. We propagated uncertainities present in the input variables by Monte Carlo simulation and 
explored uncertainty reduction startegies that would lead to maximum uncertainty reduction in the output i.e. total 
cost. It was found that uncertainty reduction in the cost of useful load leads to significant reduction in the total cost 
uncertainty, and uncertainty reduction in the manufacturing error data has the least effect.     
 
2. Keywords: Tolerance optimization, uncertainty reduction, aircraft tolerance.  

3. Introduction 
In aircraft industry, manufacturing tolerance allocation plays an important role in balancing the conflicting 
objectives of structural weight and production cost. Minimizing structural weight requires tighter tolerance values, 
while reducing production cost is served by relaxation of tolerances. The production cost consists of quality and 
manufacturing cost and for given manufacturing technology the only input from manufacturing is the material cost. 
In such situations, a qualitative trade-off existing between these players is shown in Figure 1. 
 

 
Figure 1: Qualitative trade-off between disciplines 

 
Most tolerance allocation techniques only focus on minimizing the manufacturing cost without considering the 
quality cost [1, 2]. A few methods allocate tolerance by balancing both manufacturing and quality costs [3, 4]. Even 
fewer techniques account for the concurrent effect of tolerance on the performance, quality and manufacturing costs. 
Curran et al. [5] investigated the influence of tolerance on the direct operating cost (DOC) of an aircraft from the 
study performed on engine nacelle structure, and showed that relatively small relaxation in the tolerances resulted in 
reduced costs of production that lowered the DOC without unduly penalizing the parasite drag (performance).  The 
authors [6] explored a similar approach on a business jet’s wing spar designed under fatigue and damage tolerance 
constraints, and estimated the optimal tolerance by balancing the quality, manufacturing and performance (structural 
weight) objectives. The study concluded by identifying the input variables (cost variables and manufacturing error 
data) that could significantly impact the optimal tolerance and corresponding total cost.  
In aircraft design, manufacturing tolerances are mostly decided early in the design phase when cost and 
manufacturing error data pertinent to the new aircraft are not accurately known. So, for tolerance optimization the 
obvious first choice is to use data available from similar aircraft that use similar manufacturing techniques. It 
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introduces uncertainty in the optimal cost and optimal tolerance due to lack of accurate information, but as the new 
aircraft program moves closer to  production, more accurate information is available for some of the cost variables 
(e.g. cost of useful load). When the aircraft is in production, more accurate manufacturing error data and quality cost 
data becomes available but at that stage it would be very expensive to re-design the tolerances. Therefore, it is of 
interest for an engineer to estimate the uncertainty in an optimal point (i.e. optimal cost and optimal tolerance) and 
make an appropriate tolerance decision earlier in the design stage.  

In this paper we only propagate the epistemic uncertainties due to cost model input variables (i.e. due to 
uncertainties in the cost of useful load and mean cost of quality review) and sampling epistemic uncertainty (i.e. 
uncertainty due to finite sample of manufacturing error data)  using Monte Carlo Simulation. We then quantify the 
effect of uncertainty reduction measures (URMs) on the optimal cost and optimal tolerance. Aleatory uncertainty 
associated with the quality cost is not considered in this paper but will be addressed in the future.    

 
4. Design of a Lap Joint for Damage Tolerance 
We consider the design of a wing spar lap joint for damage tolerance (i.e. fatigue resistance) as a demonstration for 
the manufacturing tolerance optimization procedure. Lap joints are widely used on aircraft structures for attaching 
various parts together by using fasteners. A real example of such a lap/splice joint is shown in Figures 2-3 that 
connects the wing spars (from left and right wing) with the help of strap and fasteners. Such joints are typically in 
double or triple shear loading but for simplicity we have assumed it to be in a single shear. An idealized cross-
sectional geometry representative of the front spar is shown in Figure 3. We use this idealized geometry to perform 
our analysis. See reference [6] for further design details pertaining to the idealized spar geometry.  

 
 

 
Figure 2: Wing assembly of a business jet showing wing spars attached at splice joints and to the wing skin 
 

 

Figure 3: Front spar (C-channel) lap/splice joint (left), and idealized spar geometry (right) 

4.1 Damage Tolerance and Manufacturing Errors 
The objective of the damage tolerant design is to ensure that cracks (e.g. present at the fastener holes) do not grow to 
a size that could impair flight safety during the expected lifetime of an aircraft. It is done by specifying structural 
inspection intervals so that cracks could be found and the component replaced or repaired. A manufacturer has to 
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show that the specified inspection intervals would satisfy the safety requirement by performing a crack growth 
analysis at every fastener hole.   
Due to manufacturing errors, fastener holes can get mislocated by Δe and/or oversized by Δd as shown in Figure 4, 
which may lead to nonconformance with the desired inspection interval constraints. Generally, multiple inspection 
intervals are defined throughout the service life of an aircraft, but we only consider here the initial structural 
inspection interval I* that is assumed to be set at 12,000 flight hours (FH). In actuality, a manufacturer identifies 
such deviations and checks if they violate the inspection interval constraints. If they do violate a constraint then a 
repair or part scrapping may be needed. So, we simulate this procedure in the presence of simulated manufacturing 
errors (shown in Figure 4) by executing crack growth analyses at a fastener hole. See reference [6] for more 
information on crack growth analysis. 

 

 
Figure 4: Common fastener hole manufacturing errors, Event (A) represents mislocated hole, and Event (B) 

represents an oversized hole. 
 

If any or both of the above events occur, we assume that a quality review (QR) will be initiated. It represents criteria 
that airframe manufacturers often use to identify such errors, which may result in constraint violation. A major task 
accomplished under QR is the analysis and resolution of a quality problem by the concerned engineers. If the 
outcome of an engineering analysis (crack growth analysis in our case) does not lead to constraint violation then an 
easy repair is carried out. Otherwise, depending upon the severity of error an intricate repair might work or part (e.g. 
front spar) may have to be scrapped. A few examples of easy repairs are, 

 
1. Plug and relocate the fastener hole while maintaining the specified edge distance. 
2. Clean the hole to next available fastener diameter size and install the fastener. 
 

Whereas an example of an intricate repair would be to cold work a hole and install a fastener. However, for our 
analysis we assume that constraint violation will always lead to part scrapping. Such an assumption is expected to 
add reasonable conservatism in the analysis because such intricate repairs are very rarely employed. In addition, as 
we will see from the results, even the cost of this drastic measure contributes relatively little to the total cost. 

 
5. Manufacturing Error Data and Distributions 
In this paper we model the two types of manufacturing deviations/errors (shown in Figure 4) as random variables 
with distributions based on collected data. The edge distance deviation ∆e is a continuous random variable, while 
hole diameter deviation ∆d is a discrete random variable. The physical data for the two random variables were 
collected from the wing assemblies of a business jet with the help of Cessna Aircraft Company. These data are used 
to estimate the distributions for each random variable in order to estimate the probability of encountering a quality 
notification PQN and probability of violating an inspection constraint PCV. These probability estimates are used in the 
cost model to calculate the expected value of the quality cost CQ. 

 
5.1 Edge distance distribution 
The edge distance deviation data ∆e were collected from the lower spar caps of the 8 wing assemblies of a business 
jet. A total of 8164 samples were fitted with 12 continuous parametric distributions available in MATLAB (Normal, 
Lognormal, Logistic, Log Logistic, Weibull, Beta, Generalized Extreme Value, Gamma, Inverse Gaussian, 
Nakagami, Rician, and Birnbaum-Saunders). The logistic distribution was found to be a reasonably good fit with 
respect to other distributions. A probability plot of the logistic fit is shown in Figure 5. The maximum likelihood 
estimates (MLE) of the logistic distribution parameters is listed in Table 1. The cumulative distribution function of 
the logistic distribution are given as follows,        
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The standard deviation is related to scale parameter by following relationship, 

3
LFs

                 (2) 

 
Table 1: Maximum likelihood parameter estimates of logistic fit 

Logistic fit   
Parameters MLE (inch)   
Location (μLF) -5.467×10-4   
Scale (sLF) 0.01378   

 
The logistic distribution was used in the sensitivity analysis [6] to illustrate the impact of uncertainty in edge 
distance deviation data on the optimal tolerance by simply varying the scale parameter (sLF) of the distribution. 
Therefore, we have used logistic distribution to model the uncertainty in the edge distance deviation data. Although 
a more accurate fit was found to be a semi-parametric distribution [6], but in this paper we continue with logistic 
distribution as it allows easier investigation of the effectiveness of uncertainty reduction measures  

 
Figure 5: Probability plot of logistic fit and actual ∆e data 

 
5.2 Hole diameter deviation distribution 
The hole diameter deviation data (∆d) were collected from the wing assemblies of about 110 airplanes with sample 
size of 650,642. Aerospace fasteners are generally available in ∆d =n/64” standard increments, i.e. if d = 8/32” 
fastener gets oversized due to manufacturing error then the next available fastener size is 8/32”+1/64” and so on. 
This makes ∆d a discrete random variable that can be modeled by using a simple histogram. The frequencies 
associated with 13 subsequent fastener increments are listed in Table 2.  
 

Table 2: Fastener oversize (hole diameter deviation) distribution 
∆d (inch) Frequency  ∆d (inch) Frequency ∆d (inch) Frequency 

0/64 649520 5/64 43 10/64 2 
1/64 100 6/64 64 11/64 1 
2/64 666 7/64 17 12/64 2 
3/64 90 8/64 7 13/64 1 
4/64 119 9/64 10 - - 

 
 The probability that a fastener will be oversized is, 

13
3

1

1122
( 0) ( ) 1.724 10

650,642n
n

P d P F 



          (3) 

 
6. Estimating Probabilities 
The probability of quality review and probability of constraint violation are estimated by using the distributions 
estimated above to calculate the expected value of quality cost. The procedure for estimating these probabilities is 
discussed next. 
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6.1 Probability of Quality Review (PQR) 
As discussed earlier that quality review is initiated if the criteria shown in Figure 4 are satisfied i.e. when edge 
distance deviation exceeds the allocated tolerance value |∆e| > T and/or hole diameter deviation is greater than zero 
∆d > 0. It is assumed that the two events are independent of each other. Therefore, it allows the calculation of PQR 
(per fastener) by using the following formula,   
 

( ) ( 0) ( ) ( 0)QRP P e T P d P e T P d               (4) 

 
where, P (|∆e| > T) is estimated from the edge distance distribution and P (∆d > 0) is estimated from the hole 
diameter distribution. Notice that former has direct dependency on the tolerance and later does not. It means that PQR 

is expected to gradually decrease with increase in tolerance and will tend to 1.724×10-3 (the probability of oversizing 
a hole) for very large T. Such a trend is shown in Figure 6,  

 
Figure 6: PQR variation with tolerance 

6.2 Probability of Constraint Violation (PCV) 
As mentioned before that if quality review shows that initial inspection interval constraint is violated then spar 
would be scrapped. The PCV is calculated by Monte Carlo Simulation (MCS) that simulates the quality review, 
where a given combination of fastener deviation (∆e, ∆d) are checked for the possibility of constraint violation by 
executing a crack growth analysis. For the given combination of deviation samples an initial inspection interval is 
calculated by dividing the total crack growth life (CGL) by a factor of two i.e. I = CGL/2. A sample combination 
(∆e, ∆d) fails to meet the initial inspection constraint of I* = 12,000 flight hours (FH) if, 
 

* 0,  or 12,000 02
CGLI I         (5) 

A total of 10 million (ntotal) samples generated from their respective distributions are used in the estimation of PCV. 
The PCV also decreases with the increase in tolerance as shown in Figure 7.  
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Figure 7: PCV variation with tolerance  
7. Cost Model 
The total cost is the sum of three components i.e. quality cost, manufacturing cost and performance cost.  
 
7.1 Quality Cost (CQ) 
The quality cost is incurred due to quality review and constraint violation/part scrapping. For the optimization of the 
tolerance we use the expected value of the quality cost is the sum of expected quality review cost CQR and constraint 
violation/scrap cost CCV, 

 

Q QR CVC C C        (7) 

 
The quality review cost CQR captures the cost associated with resolving the two types of manufacturing errors 
discussed earlier. Cost of materials and tools used in easy repairs is negligible in comparison to labor cost. i.e. 
engineering time required to review and specify a repair and labor used to execute a repair.  The following equation 
is used to estimate the repair cost, 

 

QR f QN QRperFasC n P C , QRperFas ET EC LT LCC                                (8) 

 
where, CQRperFas is the quality review cost for a single fastener; µEC (100 $/hr.) and µLC (65 $/hr.) are the mean hourly 
engineering and labor rates; µET (3/4 hr.) and µLT (1/2 hr.) are the mean engineering and labor time involved in 
completing a quality review; PQR is the probability of quality review and nf  is the total number of fastener holes to 
be drilled in a spar. The cost of constrain violation is mainly the scrap cost that is estimated by the following 
expression, 

2CV CV p AlC P W C , p p p AlW w t l      (9) 

where, CAl is the cost for a pound of aluminum alloy (5.50 $/lb.); Wp is the weight of aluminum plate; PCV is the 
probability of violating an inspection interval constraint. A factor of 2 is used in the equation because scrap cost is 
generally twice the raw material cost for the high valued parts (such as wing spar).  

7.2 Manufacturing Cost (CM) 
The two main constituents of CM are tooling cost and material cost. As tooling cost is assumed to be constant (i.e. 
jigs, tools and technology remains the same), it does not vary with the tolerance and therefore it can be taken out 
from the following equation, 
 

M tool MatC C C        (10) 

 
Then, material cost is proportional to the weight increase ∆Wp of the raw aluminum plate multiplied by the cost per 
pound of the aluminum alloy CAl. The increase in weight is calculated with respect to the zero tolerance design. It 
leads to the following expression for CM, 

 

M Mat p AlC C W C   , 2p AlW hlT                    (11) 

 
7.3 Performance Cost (CP) 
It is the extra money that customers have to pay due to increased structural weight attributable to the addition of 
tolerance. It serves as a penalty parameter that penalizes the total cost function Ctotal due to increase in structural 
weight with addition of tolerance. 
The maximum takeoff weight of an airplane can be divided into operational empty weight (OEW) and useful load. 
We have slightly modified the breakdown of the OEW to put everything that does not take flight loads (inclusive of 
engines) under non-structural weight. The tolerance is added to the structural weight, and useful load is the sum of 
full fuel load and full fuel payload (i.e. passengers, crew, baggage etc.).We have assumed that maximum take-off 
weight (MTOW) of an airplane remains constant i.e. addition of tolerance increases the structural weight leading to 
reduction in the useful load capacity. Conversely, weight savings due to tolerance optimization decreases the 
structural weight leading to increase in the useful load capacity. 
The useful load of an aircraft is as an important characteristic that customers care about. The following equation 
expresses the performance cost as a function of increase in the spar weight ∆Ws due to addition of tolerance T and 
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cost of useful load CUL. Again, weight increase is measured with respect to zero tolerance weight that leads to the 
following relationship for CP, 

4 price
P s UL cap Al

useful

S
C W C t lT

W


 
     

 
    (12)

 

 
Where, CUL is the expected cost that customers pay for a pound of useful load. A reasonable measure of this cost can 
be calculated by dividing the sales price Sprice [7] of an aircraft with useful load Wuseful for the existing airplane 
models. A plot of CUL calculated for various business jets is shown in Figure 8 with airplanes arranged according to 
the increasing useful load capacity (weight data extracted from their respective websites). For our calculations we 
have used the mean value of 1,200 $/lb. 

 
Figure 8: Performance cost estimated for various business jets 

7.4 Total Cost (Ctotal) 
It is used to represent the integrated cost function that combines all the individual cost objectives into a single 

cost objective that is used to optimize the tolerance is expressed by the following equation, 
 

(Production cost)prod

total Q M P

C

C C C C  
       (13) 

 
8. Uncertainty Sources and Respective Distributions 
The significant sources of uncertainty identified by performing local sensitivity analysis [6] were edge distance 
deviation data, cost of useful load and mean cost of quality review. The data for edge distance deviation (Δe) were 
collected from 8 wing assemblies (8164 samples) that only represent about 2.3 % of the expected number of 
airplanes (350) to be produced. The finite sample means that there is uncertainty about the scale (sLF) and location 
(µLF) of the estimated logistic distribution, which can lead to errors in the estimation of the PQR and PCV. It is 
important to quantify the impact of such uncertainties on the optimal tolerance and total cost. The two possible 
sources of uncertainties are limited amount of data and measurement errors in ascertaining the edge distance of the 
fastener holes.  

In this study we limit ourselves to uncertainty in edge distance data due to limited sample size and we 
model this uncertainty by determining a distribution of location (µLF) and scale parameter (sLF) of the logistic fit. 
This is done by bootstrapping; i.e. 10,000 times of resampling (with replacement) from original 8,164 samples and 
fitting a logistic distribution to each sample. We find that the distributions of µLF and sLF are normal  With means  
and standard deviations given in Table 3. 
 

Table 3: Mean (µ) and standard deviation (σ) of the distribution of µLF and sLF        
 Bootstrap estimates (in.) Lower 95% Upper 95% 

µµLF -5.47×10-04 -5.52×10-04 -5.41×10-04 
σµLF 2.71×10-04 2.67×10-04 2.75×10-04 
µsLF 1.3780×10-02 1.3778×10-02 1.3783×10-02 
σsLF 1.205×10-04 1.189×10-04 1.222×10-04 
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The uncertainty in the location (σµLF) and scale parameters (σsLF) can be reduced by collecting more data i.e. 
in order to reduce σµLF  and σsLF by 50%, 4 times more data is needed (8164×4 = 32,656).  

The exact value of the cost of useful load is not accurately known for a new aircraft early in the design 
phase. So, it is estimated by dividing the sales price by useful load for the current similar aircrafts. The CUL ranged 
between 800-1600 $/lb for the current aircrafts as shown in Figure 8. We have used 1200 $/lb (nominal value) to 
perform the optimization, but it is possible that the actual value of CUL for the aircraft under consideration might be 
different. Therefore, it is important to evaluate the impact of uncertainty/error in the estimation of CUL on the 
optimal cost and optimal tolerance. 
We have assumed that CUL follows a normal distribution with mean (µCUL) of 1200 $/lb and standard deviation 
(σCUL) of 100 $/lb that is estimated from the bounds of CUL derived from Figure 8 as follows, 
 

1600 1200
4 1600 ,  100 $/lb

4CUL CUL CUL   
        (14) 

The cost of quality review represents the average cost involved in reviewing and resolving the two types of quality 
problems for a single fastener. It captures the cost incurred due to utilization of engineering and labor resources, and 
was estimated to be $ 107.5 (nominal) per quality review. However, there can be some errors/uncertainty involved 
with the estimation of CQR as engineering and labor times involved in quality review are not accurately known. So, it 
is important to evaluate the impact of uncertainty in CQR on the total cost at optimal tolerance value. 

We have assumed CQR to follow a normal distribution with mean (µCQR) of $ 107.5 and standard deviation 
(σCQR) of $ 18. The value of standard deviation is carefully chosen based on the assumed maximum engineering and 
labor time involved with resolving a single quality review. The maximum expected CQR is determined to be $ 161.25 
and is considered to represent µCQR + 3σCQR value Uncertainty Propagation and Quantification 
At first, optimization is executed by considering the nominal values of all the input variables that gives mean total 
cost curve (µtotalcost) as a function of tolerance as shown in Figure 9, and optimal point is found at 0.0732” with total 
cost of $ 2,457. Then uncertainty is propagated by Monte Carlo Simulation for the fixed value of tolerance (i.e. 
0.0732”) by generating random samples from the distributions estimated in Section 8. It basically gives a 
distribution of total cost about optimal point as shown in Figure 9 (right). The initial uncertainty in total cost at 
optimal tolerance is determined to be σtotalcost = $ 166 i.e. 3σ (99.9%) bounds are $1,977 and $ 2,973. Also it is 
noticed that uncertainty is minimal at optimal point as shown in Figure 9 (left).  
 

  
Figure 9: Initial uncertainty in the total cost 

 
Next, we explored uncertainty reduction measures and their impact on the total cost uncertainty. The uncertainty in 
edge distance data is basically due to limited sample size, so it is easy to reduce the uncertainty in the location (µLF) 
and scale parameters (sLF) of the logistic fit by collecting more data. We assumed that by collecting 4 times more 
samples would reduce the parameter standard deviations σµLF and σsLF by 50% and their updated values are given as 
follows, 
 

Table 4: Updated standard deviation of location and scale parameters of logistic distribution 
 Bootstrap estimates (in.) Lower 95% Upper 95% 

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

1

2

3

4

5

6
x 10

4

Tolerance (inch)

T
ot

al
 C

os
t 

($
)

 

 

μ
totalcost

Upper 99.9% confidence bound
Lower 99.9% confidence bound
Optimum

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

Tolerance (inch)

T
ot

al
 C

os
t 

($
)

At Optimum (μ
totalcost

 = $2456, σ
totalcost

 = $165, COV = 7%)

 

 

μ
totalcost

99.9% confidence bounds



9 
 

µµLF -5.381×10-04 -5.407×10-04 -5.355×10-04 
σµLF 1.336×10-04 1.318×10-04 1.355×10-04 
µsLF 1.3813×10-02 1.3811×10-02 1.3814×10-02 
σsLF 6.075×10-05 5.993×10-05 6.161×10-04 

 
We further assumed that uncertainty in the CUL could be reduced by having more accurate information of the sales 
price and useful load of the aircraft and can update the 4σCUL bounds of the CUL distribution and could reduce the 
uncertainty by 50% (σ reduces from 100 $/lb to 50 $/lb). On the other hand, uncertainty in the CQR could be reduced 
by simply collection more accurate time reporting data. It is assumed that it is possible to reduce the uncertainty in 
the CQR by 50 % i.e. σCQR reduces from $18 to $9. 

Out of the three uncertainty reduction measures discussed above, 50% in σCUL leads to 35.85% reduction in 
the uncertainty of optimal cost (see Table 5); 50% reduction in σµLF and σsLF leads to only 0.96% reduction in 
optimal cost uncertainty and 50% reduction in σCQR leads to about 8.81% reduction in optimal cost uncertainty. 
Whereas 50% reduction in σCQR and σCQR together results in about 49% reduction in the total cost uncertainty. 
Therefore, the best way to reduce the uncertainty in optimal cost is through accurate prediction of cost of useful load 
and mean cost of quality note. Whereas, collection of more edge distance deviation/error data will have negligible 
effect.  

On the other hand, the uncertainty in optimal tolerance (on horizontal scale about optimal point) is reduced 
by 36.8% by 50% reduction in σCQR and only about 4.6% with 50 % reduction in σCUL. Again, 50% reduction in σµLF 
and σsLF only leads to about 1.1% reduction in optimal tolerance uncertainty.  
 

Table 5: Uncertainty reduction in inputs and corresponding uncertainty reduction in optimal cost 
Input uncertainty reduction Optimal Cost 

σµLF, σsLF σCUL σCQR σtotalcost Reduction 
0% 0% 0% 166.8 - 

50% 0% 0% 165.2 0.96% 
0% 50% 0% 107.0 35.85% 
0% 0% 50% 152.1 8.81% 
0% 50% 50% 84.7 49.22% 

50% 50% 50% 83.0 50.24% 
 
The final uncertainty in total cost at optimal tolerance is determined to be σtotalcost = $ 83 i.e. 99.9% confidence 
bounds are $ 2,212 and $ 2,710 as shown in Figure 10. 
  

  

Figure 10: Uncertainty reduction in total cost by reducing uncertainty in all the inputs 

 

9. Concluding Remarks 
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The main sources of uncertainty identified by sensitivity analysis were edge distance deviation data, cost of useful 
load and mean cost of quality review. We propagated uncertainities present in the input variables by Monte Carlo 
simulation and explored uncertainty reduction startegies that would lead to maximum uncertainty reduction in the 
output i.e. total cost. It was found that uncertainty reduction in the cost of useful load leads to significant reduction 
in the total cost uncertainty, and uncertainty reduction in the manufacturing error data has the least effect.  
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