DESIGN SENSITIVITY ANALYSIS for MESHFREE SHELL STRUCTURE

K.K. Choi*, N.H. Kim*, & M.E. Botkin[⊕]

* Center for Computer-Aided Design & Department of Mechanical Engineering College of Engineering The University of Iowa and

[⊕]Vehicle Analysis & Dynamics General Motors R&D and Planning

CONTENTS

- Parameterization of Shell Surface
- Shear-Deformable Shell
- Meshfree Shell Formulation
- Unified Design Sensitivity Formulation
- Design Sensitivity Analysis
- Meshfree Discretization of Sensitivity Equation
- Plate & Shell Examples
- Elastoplastic Example
- Summary

PARAMETERIZATION OF SHELL SURFACE

SHEAR-DEFORMABLE SHELL

MESHFREE SHELL FORMULATION

Continuum Form

– Variational Equation

 $a(\mathbf{z}, \overline{\mathbf{z}}) = \ell(\overline{\mathbf{z}}), \quad \forall \overline{\mathbf{z}} \in Z$

- Structural Energy Form $a(\mathbf{z}, \overline{\mathbf{z}}) = 2 \iint_{\Omega^r} \varepsilon_{ij}^1(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^1(\mathbf{z}) |\mathbf{J}| d\Omega^r$ $+ \frac{2}{3} \iint_{\Omega^r} \varepsilon_{ij}^2(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^2(\mathbf{z}) |\mathbf{J}| d\Omega^r$

- Load Linear Form $\ell(\overline{\mathbf{z}}) = 2 \iint_{\Omega^r} \overline{\mathbf{z}}^T \mathbf{f}^B |\mathbf{J}| d\Omega^r$ $\mathbf{z}(\boldsymbol{\xi},\boldsymbol{\eta},\boldsymbol{\zeta}) = \mathbf{z}^{1}(\boldsymbol{\xi},\boldsymbol{\eta}) + \boldsymbol{\zeta}\mathbf{z}^{2}(\boldsymbol{\xi},\boldsymbol{\eta})$

Displacement Function

$$\mathcal{E}_{ij}^{1}(\mathbf{z}) = sym(\frac{\partial z_{i}^{1}}{\partial \xi_{m}}J_{mj}^{-1} + z_{i}^{2}J_{3j}^{-1})$$

Membrane-Shear Strain

$$\mathcal{E}_{ij}^2(\mathbf{z}) = sym(\frac{\partial z_i^2}{\partial \xi_m} J_{mj}^{-1})$$

Bending Strain

- Analytically Integrated over Thickness Direction
- Shell Surface Is Transformed into the Parametric Plane Ω^r

SHELL FORMULATION (cont')

□ Meshfree Discretization

$$\mathbf{z}(\xi,\eta,\zeta) = \sum_{I=1}^{IP} \Psi_{I}(\xi,\eta) \mathbf{d}_{I} + \sum_{I=1}^{IP} \Psi_{I}(\xi,\eta) \frac{t_{I}}{2} \zeta[\mathbf{S}_{I}^{1^{T}}, -\mathbf{S}_{I}^{2^{T}}] \begin{bmatrix} \alpha_{I} \\ \beta_{I} \end{bmatrix} \begin{bmatrix} d_{I1} \\ d_{I2} \end{bmatrix}$$
$$\mathbf{\varepsilon}^{1}(\mathbf{z}) = \mathbf{S}_{q} \mathbf{T} \sum_{I=1}^{IP} \mathbf{G}_{I}^{1} \mathbf{r}_{I} \equiv \sum_{I=1}^{IP} \mathbf{B}_{I}^{1} \mathbf{r}_{I}$$
$$\mathbf{\varepsilon}^{2}(\mathbf{z}) = \mathbf{S}_{q} \mathbf{T} \sum_{I=1}^{IP} \mathbf{G}_{I}^{2} \mathbf{r}_{I} \equiv \sum_{I=1}^{IP} \mathbf{B}_{I}^{2} \mathbf{r}_{I}$$

NIVERSITY OF

SHELL FORMULATION (cont')

• Global Stiffness Matrix and Load Vector

 $\begin{bmatrix} \mathbf{K} \end{bmatrix} = \sum_{L=1}^{NP} (\mathbf{K}_{L}^{1} + \mathbf{K}_{L}^{2}) \qquad \begin{bmatrix} \mathbf{K}_{L}^{1} \end{bmatrix} = \sum_{I=1}^{IP} \sum_{J=1}^{IP} 2\mathbf{B}_{I}^{1} (\mathbf{x}_{L})^{T} \mathbf{C} \mathbf{B}_{J}^{1} (\mathbf{x}_{L}) |\mathbf{J}| A_{L}$ $\begin{bmatrix} \mathbf{K}_{L}^{2} \end{bmatrix} = \sum_{I=1}^{IP} \sum_{J=1}^{IP} \frac{2}{3} \mathbf{B}_{I}^{2} (\mathbf{x}_{L})^{T} \mathbf{C} \mathbf{B}_{J}^{2} (\mathbf{x}_{L}) |\mathbf{J}| A_{L}$ $\{\mathbf{F}\} = \sum_{L=1}^{NP} \mathbf{F}_{L} \qquad \begin{bmatrix} \mathbf{F}_{L} \end{bmatrix} = \sum_{I=1}^{IP} 2\Psi_{I} (\mathbf{x}_{L}) \mathbf{f}^{B} (\mathbf{x}_{L}) |\mathbf{J}| A_{L}$

 $[K]\{r\} \!=\! \{F\}$

- Meshfree Shape Function Is Constructed on Parametric Plane
- Direct Nodal Integration for Membrane–Shear Part and SC Nodal Integration for Bending Part

UNIFIED DESIGN SENSITIVITY FORMULATION

- A Unified Design Sensitivity Formulation Is Obtained for Sizing, Shape, and Configuration Design Variables
- Design Velocity Field Is Defined in the Continuum Domain and Then Degenerated Using Shell Kinematics
- Parametric Domain Ω^r Is Independent of Design Perturbation
- Local to Global Coord. Transformation Depends on Design Explicitly
- Design Velocity of Neutral Surface Is Obtained by Perturbing CAD Geometric Matrix

$$\mathbf{V}_{u}^{n}(\boldsymbol{\xi},\boldsymbol{\eta}) = \frac{d\mathbf{x}^{n}(\boldsymbol{u}+\tau\boldsymbol{\delta}\boldsymbol{u})}{d\tau}\bigg|_{\tau=0} = \mathbf{U}(\boldsymbol{\xi})^{T}\mathbf{M}(\frac{\partial\mathbf{G}}{\partial\boldsymbol{u}}\boldsymbol{\delta}\boldsymbol{u})\mathbf{M}^{T}\mathbf{W}(\boldsymbol{\eta})$$

DIRECT DIFFERENTIATION METHOD

• Structural Performance Measure

$$\psi = \iint_{\Omega^r} g(\mathbf{z}, u) |\mathbf{J}| d\Omega^r$$
$$\psi' = \iint_{\Omega^r} (g_{,\mathbf{z}}^T \dot{\mathbf{z}} + g div \mathbf{V} + g_{,u} \delta u) |\mathbf{J}| d\Omega^r$$

• Design Sensitivity Equation

 $[a(\mathbf{z},\overline{\mathbf{z}}) = \ell(\overline{\mathbf{z}})]'$

 $\implies a(\dot{\mathbf{z}}, \overline{\mathbf{z}}) = \ell'_V(\overline{\mathbf{z}}) - a'_V(\mathbf{z}, \overline{\mathbf{z}}), \qquad \forall \overline{\mathbf{z}} \in Z$

- External Fictitious Load

$$\frac{d}{d\tau}\ell(\overline{\mathbf{z}})\Big|_{\tau=0} = 2\iint_{\Omega^r} \overline{\mathbf{z}}^T \mathbf{f}^B div \mathbf{V} |\mathbf{J}| d\Omega^r$$
$$\equiv \ell'_V(\overline{\mathbf{z}})$$

DIRECT DIFFERENTIATION METHOD (cont')

– Structural Fictitious Load

$$a'_{V}(\mathbf{z}, \overline{\mathbf{z}}) = 2 \iint_{\Omega^{r}} \varepsilon_{ij}^{V1}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{1}(\mathbf{z}) |\mathbf{J}| d\Omega^{r} + 2 \iint_{\Omega^{r}} \varepsilon_{ij}^{1}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{V1}(\mathbf{z}) |\mathbf{J}| d\Omega^{r} + 2 \iint_{\Omega^{r}} \varepsilon_{ij}^{1}(\overline{\mathbf{z}}) C_{ijkl}^{V} \varepsilon_{kl}^{1}(\mathbf{z}) |\mathbf{J}| d\Omega^{r} + 2 \iint_{\Omega^{r}} \varepsilon_{ij}^{1}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{1}(\mathbf{z}) div \mathbf{V} |\mathbf{J}| d\Omega^{r} + \frac{2}{3} \iint_{\Omega^{r}} \varepsilon_{ij}^{V2}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{2}(\mathbf{z}) |\mathbf{J}| d\Omega^{r} + \frac{2}{3} \iint_{\Omega^{r}} \varepsilon_{ij}^{2}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{V2}(\mathbf{z}) |\mathbf{J}| d\Omega^{r} + \frac{2}{3} \iint_{\Omega^{r}} \varepsilon_{ij}^{2}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{2}(\mathbf{z}) |\mathbf{J}| d\Omega^{r} + \frac{2}{3} \iint_{\Omega^{r}} \varepsilon_{ij}^{2}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{2}(\mathbf{z}) |\mathbf{J}| d\Omega^{r} + \frac{2}{3} \iint_{\Omega^{r}} \varepsilon_{ij}^{2}(\overline{\mathbf{z}}) C_{ijkl} \varepsilon_{kl}^{2}(\mathbf{z}) |\mathbf{J}| d\Omega^{r}$$

$$\boldsymbol{\varepsilon}_{ij}^{V1}(\mathbf{z}) = -sym(z_{i,m}^{1}V_{m,j} + z_{i}^{2}V_{3,j})$$

$$\mathcal{E}_{ij}^{V^2}(\mathbf{z}) = -sym(z_{i,m}^2 V_{m,j})$$

Explicitly Dependent Terms of Strains

$$div \mathbf{V} = \frac{\partial V_i}{\partial \xi_i}$$

Variation of |**J**

$$\mathbf{C}^{V}(u) = \dot{\mathbf{Q}}^{T} \mathbf{D} \mathbf{Q} + \mathbf{Q}^{T} \mathbf{D} \dot{\mathbf{Q}}$$

Local to Global Coord. Transformation

ADJOINT VARIABLE METHOD

• Adjoint Equation

$$a(\mathbf{\lambda}, \overline{\mathbf{\lambda}}) = \iint_{\Omega^r} g_{\mathbf{z}}^T \overline{\mathbf{\lambda}} |\mathbf{J}| d\Omega^r, \quad \forall \overline{\mathbf{\lambda}} \in \mathbb{Z}$$

• Performance Measure Sensitivity

$$\psi' = \ell'_V(\lambda) - a'_V(\mathbf{z}, \lambda) + \iint_{\Omega'} (gdiv\mathbf{V} + g_{,u}\delta u) |\mathbf{J}| d\Omega'$$

• Efficient for Small Number of Performance Measures and Large Number of Design Parameters

MESHFREE DISCRETIZATION OF DESIGN SENSITIVITY EQUATION

• Explicitly Dependent Displacement

$$\mathbf{z}_{\delta u}' = \sum_{I=1}^{IP} \Psi_{I}(\xi, \eta) \frac{\delta t}{2} \zeta [\mathbf{S}_{I}^{1^{T}}, -\mathbf{S}_{I}^{2^{T}}] \begin{bmatrix} \alpha_{I} \\ \beta_{I} \end{bmatrix}$$
$$+ \sum_{I=1}^{IP} \Psi_{I}(\xi, \eta) \frac{t}{2} \zeta [\dot{\mathbf{S}}_{I}^{1^{T}}, -\dot{\mathbf{S}}_{I}^{2^{T}}] \begin{bmatrix} \alpha_{I} \\ \beta_{I} \end{bmatrix}$$

• Explicitly Dependent Strain

$$\boldsymbol{\varepsilon}^{V1}(\mathbf{z}) = \mathbf{S}_{q} \sum_{I=1}^{IP} \mathbf{T}_{I}^{V} \mathbf{G}_{I}^{1} \mathbf{r}_{I} + \mathbf{S}_{q} \sum_{I=1}^{IP} \mathbf{T}_{I} \mathbf{G}_{I}^{V1} \mathbf{r}_{I} \equiv \sum_{I=1}^{IP} \mathbf{B}_{I}^{V1} \mathbf{r}_{I} \qquad \mathbf{T}_{I}^{V} = \begin{bmatrix} \mathbf{J}^{-1} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}^{-1} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}^{-1} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} & \mathbf{0} \end{bmatrix}$$
$$\boldsymbol{\varepsilon}^{V2}(\mathbf{z}) = \mathbf{S}_{q} \sum_{I=1}^{IP} \mathbf{T}_{I}^{V} \mathbf{G}_{I}^{2} \mathbf{r}_{I} + \mathbf{S}_{q} \sum_{I=1}^{IP} \mathbf{T}_{I} \mathbf{G}_{I}^{V2} \mathbf{r}_{I} \equiv \sum_{I=1}^{IP} \mathbf{B}_{I}^{V2} \mathbf{r}_{I} \qquad \mathbf{I}^{V} = \begin{bmatrix} \mathbf{J}^{-1} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}^{-1} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}^{-1} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} \end{bmatrix}_{I}$$

DISCRETE DESIGN SENSITIVITY EQUATION

• Direct Differentiation Method

$$\mathbf{F}_{L}^{a} = \boldsymbol{L} \{ \sum_{I=1}^{IP} 2[\mathbf{B}_{I}^{V1^{T}} \mathbf{C} \boldsymbol{\varepsilon}^{1} + \mathbf{B}_{I}^{1^{T}} \mathbf{C} \boldsymbol{\varepsilon}^{V1} + \mathbf{B}_{I}^{1^{T}} (\mathbf{C}^{V} + \mathbf{C} div \mathbf{V}) \boldsymbol{\varepsilon}^{1}] |\mathbf{J}| A_{L} \}$$
$$+ \boldsymbol{L} \{ \sum_{I=1}^{IP} \frac{2}{3} [\mathbf{B}_{I}^{V2^{T}} \mathbf{C} \boldsymbol{\varepsilon}^{2} + \mathbf{B}_{I}^{2^{T}} \mathbf{C} \boldsymbol{\varepsilon}^{V2} + \mathbf{B}_{I}^{2^{T}} (\mathbf{C}^{V} + \mathbf{C} div \mathbf{V}) \boldsymbol{\varepsilon}^{2}] |\mathbf{J}| A_{L} \}$$
$$\mathbf{F}_{L}^{\ell} = \boldsymbol{L} \{ \sum_{I=1}^{IP} 2(\boldsymbol{\Psi}_{I} \mathbf{f}^{B} div \mathbf{V}) |\mathbf{J}| A_{L} \}$$

 $[\mathbf{K}]\{\dot{\mathbf{r}}\} = \{\mathbf{F}^{\ell}\} - \{\mathbf{F}^{a}\}$

• Chain Rule of Differentiation Can Be Used To Calculate Sensitivity of Performance Measure

Design Parameter: Plate Thickness

Parameters	Value
Young's modulus E	3×10 ⁶
Poisson's ratio ν	0.3
Plate dimension	80×80
Plate thickness t	0.8
Boundary condition	clamped
Applied force P	1.0 (vertical)
Kernel function	cubic spline
Normalized dilation parameter (a, a)	(2.0, 2.0)
Completeness condition	1-st order

PLATE BENDING EXAMPLE (cont')

Analytical Sensitivity

DESIGN SENSITIVITY RESULTS

Accuracy of Sensitivity Analysis

Design	Δz	$z' \tau \Delta u_i$	$\begin{array}{c} (\Delta z / z' \tau \Delta u_i) \\ \times 100\% \end{array}$
11	0.2667110678E-06	0.2681489993E-06	99.46
32	0.2722314095E-06	0.2689011302E-06	101.24
53	0.1464059417E-06	0.1430103828E-06	102.37
74	0.6533997742E-07	0.6578831239E-07	99.32
95	0.5806800927E-07	0.5945678529E-07	97.66
116	0.9747570553E-07	0.9537862770E-07	102.20 -
137	0.1450910631E-06	0.1409421884E-06	102.94
158	0.4739573975E-06	0.4702366147E-06	100.79
179	0.6748613380E-06	0.6736937651E-06	100.17
200	0.2170313115E-05	0.2150760629E-05	100.91
221	0.6155689150E-05	0.6151250631E-05	100.07

Comparison of Sensitivity Methods

Design	Direct differentiation method	Adjoint variable method
11	0.536297998631E-03	0.536305808329E-03
32	0.537802260496E-03	0.537801119644E-03
53	0.286020765581E-03	0.286020204320E-03
74	0.131576624781E-03	0.131576397114E-03
95	0.118913570576E-03	0.118913690400E-03
116	0.190757255398E-03	0.190758979318E-03
137	0.281884376712E-03	0.281882711447E-03
158	0.940473229450E-03	0.940474560876E-03
179	0.134738753020E-02	0.134738839984E-02
200	0.430152125821E-02	0.430151666983E-02
221	0.123025012625E-01	0.123025063345E-01

The University of Florida College of Engineering

Displacement Sensitivity at Center w.r.t. Plate Thickness

0.174 × 441 = 76.75 sec

Cost of Sensitivity Analysis

VEHICLE ROOF MODEL

Half Model

DESIGN PARAMETERIZATION

DESIGN PARAMETERIZATION (cont')

• Design parameters are chosen from the vertical movement of the tangent vector

• Three nodal forces and the material property *E* and *v* are chosen as design variables

$$u_1$$
:
 \mathbf{p}_{00}^{ξ}
 u_9 : f_1
 u_2 :
 \mathbf{p}_{10}^{ξ}
 u_{10} : f_2
 u_3 :
 \mathbf{p}_{01}^{ξ}
 u_{11} : f_3
 u_4 :
 \mathbf{p}_{11}^{ξ}
 u_{12} : E
 u_5 :
 \mathbf{p}_{00}^{η}
 u_{13} : V
 u_6 :
 \mathbf{p}_{10}^{η}
 u_7 :
 \mathbf{p}_{01}^{η}

 $u_8: p_{11}^{\eta}$

MESHFREE ANALYSIS RESULTS

Bottom Surface (Max = 217.3 *MPa*)

- 347 nodes (1735 DOF)
- Force = 100 kN @ node 17 -200 kN @ node 182 100 kN @ node 302
- CPU Time (HP Workstation) Meshfree Analysis : 37.12 sec Sensitivity Analysis : 0.94 sec

Top Surface (Max = 174.9 MPa)

i i adollar i roporty			
E(MPa)	26,000		
V	0.34		
G(MPa)	9,701		
t(mm)	2.0		

Material Property

DESIGN SENSITIVITY RESULTS

Design = u_1 : Vertical Movement of \mathbf{P}_{00}^{ξ}

Perturbation Size = 1.602E-02

Туре	Ψ	$\Delta \Psi$	$\Psi' \Delta au$	$(\Delta \Psi / \Psi') \times 100$
Volume	1.51033E+06	1.95212E-01	1.95180E-01	100.02
σ_{169}	1.34898E+02	9.43339E-03	9.43429E-03	99.99
σ_{182}	2.17291E+02	8.96848E-03	8.96976E-03	99.99
σ_{195}	1.35578E+02	7.27985E-03	7.28063E-03	99.99
σ_{17}	1.21676E+02	1.32524E-03	1.32552E-03	99.98
σ_{31}	1.09005E+02	2.88250E-03	2.88289E-03	99.99
σ_{301}	8.66971E+01	2.66191E-03	2.66156E-03	100.01
σ_{302}	7.34885E+01	1.72660E-03	1.72636E-03	100.01

Design = u_3 : Vertical Movement of \mathbf{p}_{01}^{ξ} Perturbation Size = 1.354E–02

Туре	Ψ	$\Delta \Psi$	$\Psi' \Delta au$	$(\Delta \Psi / \Psi') \times 100$
Volume	1.51033E+06	2.08691E-01	2.08665E-01	100.01
σ_{169}	1.34898E+02	6.58233E-03	6.58289E-03	99.99
σ_{182}	2.17291E+02	7.80610E-03	7.80689E-03	99.99
σ_{195}	1.35578E+02	7.50906E-03	7.50947E-03	99.99
σ_{17}	1.21676E+02	2.64271E-04	2.64279E-04	100.00
σ_{31}	1.09005E+02	7.37644E-04	7.37657E-04	100.00
σ_{301}	8.66971E+01	4.77743E-03	4.77783E-03	99.99
σ_{302}	7.34885E+01	1.06057E-03	1.06138E-03	99.92

DESIGN SENSITIVITY RESULTS (cont')

Design = u_{10} Force f_2 at the Edge Perturbation Size = 3.793E-03

Туре	Ψ	$\Delta \Psi$	$\Psi' \Delta au$	$(\Delta \Psi / \Psi') \times 100$
Volume	1.51033E+06	0.00000E+00	0.00000E+00	0.00
σ_{169}	1.34898E+02	-2.12311E-03	-2.12310E-03	100.00
σ_{182}	2.17291E+02	-3.52794E-03	-3.52793E-03	100.00
σ_{195}	1.35578E+02	-2.11374E-03	-2.11373E-03	100.00
σ_{17}	1.21676E+02	-1.37942E-04	-1.37941E-04	100.00
σ_{31}	1.09005E+02	1.94032E-05	1.94029E-05	100.00
σ_{301}	8.66971E+01	-1.72318E-04	-1.72319E-04	100.00
σ_{302}	7.34885E+01	-9.10049E-05	-9.10035E-05	100.00

Design = u_{13} Poisson's Ratio Perturbation Size = 1.853E-05

Туре	Ψ	$\Delta \Psi$	Ψ'	$(\Delta \Psi / \Psi') \times 100$
Volume	1.51033E+06	0.00000E+00	0.00000E+00	0.00
σ_{169}	1.34898E+02	3.98915E-04	3.98709E-04	100.05
σ_{182}	2.17291E+02	6.15776E-04	6.15426E-04	100.06
σ_{195}	1.35578E+02	3.67303E-04	3.66965E-04	100.09
σ_{17}	1.21676E+02	-4.93757E-05	-4.93850E-05	99.98
σ_{31}	1.09005E+02	-2.60711E-05	-2.60801E-05	99.97
σ_{301}	8.66971E+01	3.88180E-04	3.87581E-04	100.15
σ_{302}	7.34885E+01	1.02153E-03	1.02096E-03	100.06

ELASTOPLASTIC PROBLEM

Spherical Shell (1,445 DOF)

Properties	Value
Young's modulus E	70 GPa
Poisson's ratio ν	0.35135
Yielding strength σ_{Y}	241 MPa
Hardening slope H	241 MPa

- J₂ Plasticity Theory with Isotropic/Kinematic Hardening
- Return-Mapping That Satisfies Plane-Stress Condition
- Bending: SC Nodal Integration
- Membrane/Shear: Direct Nodal Integration

2	7.41409E+01
3	1.82775E-01
4	4.26552E-07

DESIGN SENSITIVITY RESULTS

(b) $u_2 = \mathbf{p}_{01}^{\eta}$

Node	$\Delta \psi$	$\psi' \Delta \tau$	Ratio	Node	$\Delta \psi$	$\psi'\! \Delta au$	Ratio
Z ₅₄	3.31830E-7	3.31520E-7	100.09	Z ₅₄	-3.09593E-8	-3.09622E-8	99.99
Z ₁₄₅	1.75315E-6	1.79128E-6	97.87	Z ₁₄₅	1.67601E–6	1.67607E-6	100.00
Z ₁₆₄	7.40097E-6	7.40136E–6	99.99	Z ₁₆₄	-1.84748E-7	-1.84758E-7	99.99
Z ₁₇₅	-1.85079E-6	-1.84984E-6	100.05	Z ₁₇₅	2.96181E-8	2.96222E-8	99.99
Z ₁₉₉	2.10897E-6	2.10980E-6	99.96	Z ₁₉₉	-2.66952E-8	-2.66960E-8	100.00
Z_{250}	3.40716E-7	3.39494E-7	100.36	Z ₂₅₀	-1.77193E-8	-1.77203E-8	99.99
Z_{261}^{200}	1.99752E-7	1.99943E-7	99.99	Z_{261}^{200}	3.27533E-9	3.27513E–9	100.01

- Forward Finite Difference Method
- Perturbation Size = 10⁻⁴

SUMMARY

- A Unified DSA and Parameterization Methods for Meshfree Shell Structure Is Developed That Can Handle Sizing/Shape/Configuration Design Parameters Simultaneously.
- A Design Velocity Field Is Defined in the Continuum Domain and Then Degenerated Using Shell Kinematics
- A Connection with CAD Tool Provides Useful Information for Meshfree Shell Analysis (Surface Normal, Jacobian, Coordinate Transformation)
- SC Nodal Integration Method of Meshfree Analysis Is Used in the Parametric Domain
- Accuracy of the Proposed Sensitivity Calculation Method Is Compared with the Analytical Solution and with the Finite Difference Results for Various Examples.
- Current Development Will Be Extended to the Die Shape Design Capability to Remove the Springback Problem in Stamping Process.

