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Abstract 

Structural elements, such as stiffened panels are designed based on material strength data 

obtained from coupon tests, with a failure theory that generalizes 1D stress failure to 3D stress 

field. Variability in material properties is captured by dozens of coupon tests, but there remains 

epistemic uncertainty due to error in a failure theory, which is reduced by element tests. 

However, the uncertainties are not completely removed by tests because the number of structural 

tests is finite. Therefore designs of structural elements require conservative estimate of the 

failure stress of structural elements to compensate the remaining uncertainties. Consequently, the 

design weight is a function of the number of coupon and element tests.  

 A key question, addressed here, is whether it is more important to increase the number of 

coupon tests or element tests if we want to design light structures by reducing the remaining 

uncertainty in failure prediction. A convolution approach that allows efficient estimation of the 

combined uncertainty from coupon tests and the failure theory is developed. Then the 

methodology is applied to typical values of the variability in material properties (COV 7%) and 

the error in the failure theory (±5% and ±1%). It is found that the uncertainty in failure theory 

dominates for the case of having ±5% error, so that increasing the number of element tests is 

more effective than increasing the number of coupon tests. However, for the case of having small 

±1% errors, the number of element tests has similar influence to that the number of coupon tests. 

 

Nomenclature 

  

eb  = Error bound for failure theory 

b  = Estimated bound for standard deviation of structural element 

,
ˆ

k Ptruee  = Possible true error in failure theory 

, ,( , )init

e Ptrue e Ptruef    
= Initial joint PDF for given mean and standard deviation of structural 

element 

 , ,k Ptrue k Ptruef e  = PDF for given possible true error in failure theory 

 , ,c Ptrue c Ptruef   = PDF for given possible true mean of material strength 

 , ,e Ptrue e Ptruef   = PDF for given possible true mean of structural strength 
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 , ,c Ptrue c Ptruef   = PDF for given possible true standard deviation of material strength 

 , ,e Ptrue e Ptruef   = PDF for given possible true standard deviation of structural strength 

 , ,,upd

e Ptrue e Ptruef    
= Updated joint PDF for given mean and standard deviation of structural 

element 

 , ,

upd

e Ptrue e Ptruef 
 

= Updated marginal distribution for given mean of structural element 

 , ,

upd

e Ptrue e Ptruef 
 

= Updated marginal distribution for given standard deviation of structural 

element 

calck  = Calculated ratio of structural element strength to material strength  

ˆ
Ptruek  = Possible true structural element strength to material strength  

truek  = True ratio of structural element strength to material strength  

 , ,,i

test e Ptrue e Ptruel    
= Likelihood function of i

th
 test for given mean and standard deviation of 

structural element 

0.05  
= Mean of 5

th
 percentile of the mean element strength for given test 

results 

,
ˆ

c Ptrue  = Possible true mean of material strength 

,c test  = Measured mean of material strength from coupon test 

,c true  = True mean of material strength 

,
ˆ

e Ptrue  = Possible true mean of structural element strength 

,e test  = Measured mean of structural element strength from coupon test 

,e true  = True mean of structural element strength 

cn  = The number of coupon tests 

en  = The number of element tests 

PUD
 

= Probability of unconservative design 

,
ˆ

c Ptrue  = Possible true standard deviation of material strength 

,c test  = Measured standard deviation of material strength from coupon test 

,c true  = True standard deviation of material strength 

,
ˆ

e Ptrue  = Possible true standard deviation of structural element strength 

,e test  
= Measured standard deviation of structural element strength from coupon 

test 

,e true  = True standard deviation of structural element strength 

0.05  = 5
th

 percentile of the mean element strength for given test results 

,ĉ Ptrue  = Possible true material strength 

,ĉ true  = True material strength  

,ê Ptrue  = Possible true structural element strength 

,ê true  = True structural element strength 

0.95w  = 95
th

 percentile of the weight penalty for given test results 

Superscripts  
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init = Initial distribution (prior distribution) 

upd = Updated distribution (posterior distribution) 

Subscripts  

calc = Calculated value using a theory 

Ptrue 
= Possible true estimate reflecting epistemic uncertainty of estimation 

process 

test = Measured value from a test 

true = True value 

I. Introduction 

Predicting variability in failure stress is important to ensure structural safety in engineering 

designs. Due to natural variability in material properties and manufacturing processes, identically 

manufactured structures have variability in failure stress, which brings unavoidable randomness.. 

Due to its incontrollable nature, the variability can be categorized as aleatory uncertainty. The 

randomness has to be compensated with conservativeness in structural design 

The Element is a basic unit composing aircraft structure. Predicting randomness in failure 

stress of elements is important in aircraft structural design. The randomness in failure stress can 

be mathematically modeled with a statistical distribution. Since distributions are typically 

defined by their parameters, predicting the distribution of the failure stress is equivalent to 

predicting distribution parameters (e.g. predicting mean and standard deviation of failure stress 

that follows a normal distribution). 

However, predicting the statistical distribution of element strength is hampered by two 

epistemic uncertainties. Since structural elements are under multi-axial stress state, the 

distribution of element failure stress has to be predicted by translating the distribution of material 

strength using a failure theory. First, the distribution of material strength has to be estimated 

based on a finite number of coupon tests; thus, incurring a sampling error. Second, element 

failure has to be predicted using a failure theory that causes some inevitable errors. In contrast to 

irreducible aleatory uncertainty, these uncertainties are reducible with various measures. They 

are categorized as epistemic uncertainty. The two epistemic uncertainties lead to uncertainty in 

parameters of the predicted distribution of element failure stress. 

Epistemic uncertainty is often treated conservatively in the literature of probabilistic design. 

Noh et al. [1] compensated for epistemic uncertainty caused by the finite number of samples 

with a confidence level of 97.5%. Matsumura et al. [2] and Villanueva et al. [3] considered the 

effect of epistemic uncertainty in a computer model on estimating probability of failure of an 

integrated thermal protection system of a space vehicle and demanded 95% confidence for the 

epistemic uncertainty.  

For ensuring integrity of structural elements, conservativeness in element design, 

compensates for the aleatory uncertainty and the two epistemic uncertainties. Here, a distinction 

is made between irreducible and reducible conservativeness in design. Since conservativeness 

due to the aleatory uncertainty is unavoidable, it is irreducible. On the contrary, since 
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conservativeness due to the epistemic uncertainties is reducible, design weight increase due to 

the epistemic uncertainties is also reducible.  

A Number of coupon and a number of element tests are carried out to reduce the epistemic 

uncertainties, and thus, the weight penalty. The epistemic uncertainty from predicting material 

strength distribution can be reduced by increasing the number of coupon tests. The epistemic 

uncertainty from a failure theory can be reduced by carrying out element tests. The reduced 

epistemic uncertainties after tests is reflected in reduced uncertainty in parameters of the element 

failure stress distribution, which in turn leads the reduced weight penalty. Typicall numbers of 

tests for coupon and element tests are 50 and 3, respectively. 

In an overview of future structures technology for military aircraft, Joseph et al. [4] noted that 

a progressive uncertainty reduction model, which is seen in building-block tests, can be a 

feasible solution today, since complete replacement of traditional tests with computational 

models is not feasible yet. Lincoln et al. [5] pointed out that building-block tests play a key role 

in reducing errors in failure prediction of composite structures due to large uncertainty in 

computational models. They noted that the use of probabilistic methods can significantly lower 

the test cost by reducing the scope of the test program.  

There are also several studies investigating the effect of tests on safety and reducing 

uncertainty in computational models. Jiao and Moan [6] investigated the effect of proof tests on 

structural safety using Bayesian inference. They showed that proof tests reduce uncertainty in the 

strength of a structure, and thus provide a substantial reduction in the probability of failure. An et 

al. [7] investigated the effect of structural element tests on reducing uncertainty in element 

strength using Bayesian inference. Acar et al. [8] modeled a simplified building-block process 

with safety factors and knockdown factors. Bayesian inference is used to model the effect of 

structural element tests. They showed the effect of the number of tests on the design weight for 

the same probability of failure, and vice versa. Jiang and Mahadevan [9] studied the effect of 

tests in validating a computational model by obtaining an expected risk in terms of the decision 

cost. Urbina and Mahadevan [10] assessed the effects of system level tests for assessing 

reliability of complex systems. They built computational models of a system and predicted the 

performance of the system. Tests are then incorporated into the models to estimate the 

confidence in the performance of the systems. Park et al. [11] estimated uncertainty in 

computational models and developed a methodology to evaluate likelihood using both test data 

and a computational model. McFarland and Bichon [12] estimated probability of failure by 

incorporating test data for a bistable MEMS device.  

The objective of this paper is to introduce a probabilistic approach to estimate parameters, 

mean and standard deviation, and their uncertainty of the distribution of element failure stress. 

Since approaches to estimate the mean and standard deviation are similar, this paper focuses on 

estimating the mean and its uncertainty after tests. Using the estimated uncertainty in the mean, a 

mean with 95% conservativeness is estimated. The mean with 95% conservativeness is a 

conservative estimate that is expected to be less conservative than the true mean with 95% 

probability. The weight penalty, a consequence of the conservativeness, is also calculated. The 
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effect of the number of coupon and element tests on reducing the weight penalty is discussed. It 

is assumed that with an infinite number of coupons and elements, the sampling uncertainty and 

the uncertainty of a failure theory can be eliminated; therefore, the weight penalty becomes zero. 

The effect of the number of tests on the incurring weight penalty is compared to the case with an 

infinite number of tests.  

The methodology is examined with typical values of material variability (7% COV) and 

element test variability (3% COV). The effect of the magnitude of error in failure theory is 

shown with two different magnitudes of errors in a failure theory, ±1% and ±5%. The effect of 

the number of tests on the weight penalty with different errors in a failure theory is also 

discussed. It is observed that the element test is influential to reduce the weight penalty for a 

failure theory with ±5% error. For a failure theory with ±1% error, coupon test becomes 

influential but still the effect of element test is not ignorable. 

The paper is organized as follows: Section II introduces the building-block test process, which 

is composed of coupon and element test stages, used in this paper and sources of uncertainty. 

Section III provides uncertainty modeling of the building-block test process to estimate the 

element strength and its uncertainty. This section has three subsections: coupon tests, element 

design and element tests. Section IV introduces different measures that are used to evaluate the 

efficiency of different tests. Section V presents numerical results, followed by conclusions in 

Section VI. 

II. Structural Uncertainties  

For aircraft structures, the building-block test process (Fig. 1) is used to find design errors and to 

reduce uncertainties in design and manufacturing. At each level, analytical/numerical models are 

calibrated to account for discrepancies between model prediction and test results. Since the errors 

are unknown at the modeling stage, they may be modeled as uncertainty (epistemic), and test 

results may be used to reduce the uncertainty. Starting 

from simple coupon tests at the bottom level, 

structural complexity gradually increases further up 

the building-block pyramid. The number of tests 

gradually reduces from bottom to top; for example, 50 

coupons, 3 elements, and 1 component. In higher-

level tests, it is difficult to understand deviations from 

analytical predictions, tests are more expensive, and 

any design modification can be expensive. The 

building-block test process is designed to detect 

modeling errors at the possible lowest level.  

Although building-block tests are designed to 

reduce uncertainty, it is difficult to quantify how 

much each level can contribute to uncertainty 

reduction, which is the main objective of this paper. 

 

Figure 1: Building-block test process for 

aircraft structural components 
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Once the contribution of each level to uncertainty reduction is understood, a design engineer can 

decide how to allocate resources to different levels in order to achieve the target reliability at 

minimum cost. 

Although the actual building-block test process has many levels, this paper only considers 

coupon and element tests to demonstrate the effect of these tests on uncertainty reduction. Table 

1 shows the objectives of these two tests and the sources of uncertainty.  

 

Table 1. Sources of uncertainty in the building-block test process for estimating element strength 

Test stage Objectives Uncertainty sources 

Coupon test Estimate nominal value and 

variability of material strength 

Variability in material strength and 

sampling error due to a finite number of 

coupons 

Element 

design 

Estimate multi-axial strength based 

on a failure theory 

Incomplete knowledge of failure 

mechanism: error in failure theory 

Element test Reduce uncertainty in the multi-

axial strength  

Sampling error due to a finite number of 

elements 

 

In this paper, the failure stress of a structural element is simulated with randomly generated 

test results. True distributions are used only for generating test samples and assessing the 

estimations of the failure stress.  

III. Modeling Uncertainty in the Building-Block Test Process 

In order to model the two-level building-block test process, it is assumed that the strength of 

coupons and elements follows a normal distribution due to material variability. This assumption 

can easily be removed when actual test results are available, and the type of distribution can be 

identified using various statistical methods, such as the one in MIL-HDBK [20]. In the following 

subsections, uncertainties at each stage are modeled. 

A. Coupon tests: Modeling uncertainty in estimating statistical properties 

Due to inherent variability, the material strength shows a statistical distribution. Coupon tests are 

conducted to estimate the distribution and to determine regulatory (e.g., FAA) strength 

allowables (e.g., A-basis or B-basis) that compensate for the uncertainty. It is assumed that the 

true material strength, ,ĉ true , follows a normal distribution as, 

  , , ,
ˆ ~ ,c true c true c trueN    (1) 

where ,c true  and ,c true  are, respectively, the mean and standard deviation of ,ĉ true . The 

circumflex symbol represents a random variable. The subscript “c” is used to denote coupons. In 

this paper, Eq. (1) is only used for the purpose of simulating coupon tests; the true distribution is 

unknown to the designer. 

Since the true distribution parameters are estimated with a finite number of coupons, the 

estimated parameters have sampling uncertainty (or error). Thus, it is natural to consider these 

parameters as distributions rather than deterministic values. In this paper, this estimated 
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distribution is called the possible true distribution (PTD) of the parameter, and ,
ˆ

c Ptrue and ,
ˆ

c Ptrue

are random variables of the PTD of the mean and standard deviation, respectively. Note that 

,
ˆ

c Ptrue and ,
ˆ

c Ptrue
 
depend on the number of coupons. With cn  coupons, ,

ˆ
c Ptrue  is nothing but the 

distribution of sample mean and can be estimated as  

 
,

, ,
ˆ ~ ,

c test

c Ptrue c test

c

N
n


 

 
 
 

 (2)  

where ,c test  and ,c test  are, respectively, the mean and standard deviation of coupons. With an 

infinite number of coupons, ,
ˆ

c Ptrue  will become a deterministic value; i.e., no sampling error. 

It is also well known that the standard deviation ,
ˆ

c Ptrue  follows a chi-distribution of order 

1cn  . In a way similar to the mean, ,
ˆ

c Ptrue  can be estimated as 

  ,

,
ˆ ~ 1

1

c test

c Ptrue c

c

n
n


  


 (3) 

where  1cn   is the chi-distribution of order 1cn  . 

B. Element design: combining uncertainties 

To design a structural element, the material strength from coupon tests must be generalized to 

multi-axial stress states using a failure theory. Since the failure theory is not perfect, additional 

error (i.e., epistemic uncertainty) is introduced, which needs to be combined with the sampling 

error in the coupon test. Since the uncertainty in element strength can be represented using the 

distributions of mean and standard deviation, the uncertainties of these two random variables are 

modeled separately [15]. 

A failure theory provides a relation between uni-axial strength and multi-axial strength. In this 

paper, this relation is represented using a prediction factor 3 ,d truek   as 

 , 3 , ,e true d true c truek   (5) 

where ,c true  is a true uni-axial material strength, and ,e true  is a true multi-axial equivalent 

strength. Subscript “e” is used to denote that the variable is for an element. For example, when 

von Mises criterion is used, 3 , 1d truek  . The relation between the two mean values can be 

obtained from Eq. (5) as   

 , 3 , ,e true d true c truek   (6) 

Again, 3 ,d truek  is unknown to designers; only its estimate 3 ,d calck  is given from the failure 

theory. Therefore, the epistemic uncertainty in the failure theory can represented using the PTD 

of the prediction factor as 

  3 , , 3 ,
ˆ ˆ1d Ptrue k Ptrue d calck e k    (7) 

In the above equation, the error ,
ˆ

k Ptruee is assumed to follow a normal distribution that has 

symmetric 95% confidence interval defined with ±be that is obtained error bounds of the failure 
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prediction from experts. Then, the designer’s estimated relationship corresponding to Eq. (6) can 

be written as 

 , 3 , ,
ˆˆ ˆ

e Ptrue d Ptrue c Ptruek   (8) 

 

 
Figure 2: Process of estimating element mean strength 

 

Figure 2 shows a process of obtaining ,
ˆ

e Ptrue  through MCS. First, N samples from ,
ˆ

c Ptrue  and 

M samples from 3 ,
ˆ

d Ptruek  are generated. Then, ,
ˆ

e Ptrue  is estimated from N×M samples that are 

obtained by taking every possible combination of the two sets of samples.  

In this paper, a convolution integral is used to calculate the PDF of ,
ˆ

e Ptrue . The convolution 

integral provides an accurate PDF using numerical integration, whereas MCS brings in 

additional uncertainty. A comparison between MCS and the convolution integral is given in the 

illustrative example section. In the case of a normally distributed mean and normaly distributed 

error, the PDF of ,
ˆ

e Ptrue  can be written as (see Appendix A for detailed derivations) 

 

 
 

,

, , , , , , ,

,

| , | ,
0.975

c teste
e Ptrue e Ptrue e Ptrue c Ptrue c Ptrue c test c Ptrue

c Ptrue c

b
f d

n



       







  
         
  (9) 

where eb is the error bound of ,
ˆ

k Ptruee  and 3 , 1.0d calck  is assumed.  0.975 is the standard 

normal distribution. 

Unlike the mean, there is only a weak relation between the standard deviation of coupon 

strength and that of element strength. Usually test conditions are well controlled to minimize 

uncertainty; the standard deviation in the test is substantially smaller than that of material 

properties. The distribution of ,
ˆ

e Ptrue  is defined as a uniform distribution with lower and upper 

bounds as 

  
 

 , , ,

1
,upper lower

e Ptrue e Ptrue e Ptrue e eupper lower

e e

f I    
 

   


  (10) 

mc

PTD of mean material strength
(coupon test)

m1, m2, m3, ..., mN

PTD of mean 
element strength
(element design)

me

m1 k1, m1 k1,    ..., m1 k1

m2 k2, m2 k2,    ..., m2 k2

...

mN kM, mN kM, ..., mN kM

Multiply two random variables
mi kj for i=1,2,…N and j=1,2,…,M

0.9 1.1

k1, k2, k3, ..., kM

PTD of error in failure theory
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where  I  is the indicator function, and upper

e and lower

e are upper and lower bounds of the 

standard deviation of element strength, respectively. These bounds are estimated to cover a true 

standard deviation of element test.   

C. Element tests: Bayesian inference to reduce errors 

The PTDs in Eqs. (8) and (9) are combined uncertainty from (a) material variability, (b) 

sampling errors in coupon tests and (c) error in the failure theory. Although material variability 

will always exist, the other two epistemic uncertainties can be reduced using element tests. In 

this section, the effect of element tests on reducing uncertainty is modeled using Bayesian 

inference.  

For the purpose of Bayesian inference, Eqs. (8) and (9) are used as marginal prior 

distributions. Since no correlation information is available, these distributions are assumed to be 

independent. Therefore, the prior joint PDF is given as  

      , , , , , ,,init

e Ptrue e Ptrue e Ptrue e Ptrue e Ptrue e Ptruef f f       (11) 

 In Bayesian inference, the updated joint PDF with ne number of element tests is expressed as 

      , , , , , ,

1

1
, , ,

en
upd i init

e Ptrue e Ptrue test e Ptrue e Ptrue e Ptrue e Ptrue

i

f f
A

     


   (12) 

where A is a normalizing constant, and  , ,,i

test e Ptrue e Ptrue  is the i
th

 likelihood function for given 

, ,,e Ptrue e Ptrue  . From the assumption that the true element strength ,ê true follows a normal 

distribution and by ignoring errors associated with the test, the likelihood function can be defined 

as a probability of obtaining test result 
,

i

e test  for given , ,ande Ptrue e Ptrue   as 

    , , , , ,, | ,i i

test e Ptrue e Ptrue e test e Ptrue e Ptrue       (13) 

Note that the likelihood function is not a probability distribution, but a conditional probability. 

The numerical scheme to evaluate the updated joint PSF is explained in Appendix B. 

Using the updated joint PDF, the marginal PDFs of , ,ande Ptrue e Ptrue   can be obtained as 

    , , , , ,
0

,    


 
upd upd

e Ptrue e Ptrue e Ptrue e Ptrue e Ptruef f d  (14) 

 
   , , , , ,,upd upd

e Ptrue e Ptrue e Ptrue e Ptrue e Ptruef f d    



   (15) 

The above distributions represent the uncertainty in estimating mean and standard deviation of 

the element strength. If a conservative prediction is wanted, the lower 5
th

 percentile of ,

upd

e Ptruef  

can be used for the 95% confidence level. The mean values of distributions in Eqs. (14) and (15) 

are, respectively, the estimate of the mean strength and its standard deviation. The standard 

deviations of distributions in Eqs. (14) and (15) are measures of remaining uncertainty after the 

element tests. 
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IV. Assessing the Merits of a Combination of Number of Element Tests and Number of 

Coupon Tests 

The objective of this section is to assess the effect of coupon and element tests on reducing 

uncertainty, estimating conservative allowables, and weight penalty. For that purpose, a single 

set of test results is generated to calculate the conservative estimate of the mean strength and also 

to compute the weight penalty due to conservativeness. These results are compared with the 

weight obtained with an infinite number of coupon and element tests. It is also checked that if the 

resulting design is actually conservative as expected. Since the results with a single set of test 

measurements are likely to be biased due to sampling error, the above process is repeated 

(100,000 times) to deduce the average weight penalty and the probability of unconservative 

design (PUD).  

The 5
th

 percentile of the marginal PDF for the mean of element strength is a conservative 

estimate that is expected to be less than the true mean of element strength with the 95% 

confidence level, and its mean is a conservative estimator of the true mean of element strength 

,( 0.95)e true  . The 5
th

 percentile of the mean element strength, 0.05 , can be calculated using Eq. 

(15) as 

 
 

0.05

,0.05





 
upd

e Ptruef x dx  (16) 

With an infinite number of tests, prediction should be the same with the true element mean, 

,e true , regardless of variability. If a truss member is designed with an axial load and the mean of 

element strength, the weight penalty due to the conservativeness in the 5
th

 percentile is calculated 

as 

 
 ,0.05 0.05

, 0.05

/
1 100 1 100 1 100 %

/



 

    
              
    

i i
e true

i i

e true

A F
w

A F  

(17) 

where the index i represents i
th

 set of tests results. 

 

 
Figure 3. Distribution of weight penalty due to the variability in tests 

Weight 

penalty (%)
Mean 

of distr. 

(0.05)

95% weight 

penalty 

(w0.95)

Distribution of 

weight penalty

0%

PUD 0.05
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When iw  is 3% for (10/5), it means that a design with 10 coupon tests and 5 element tests is 3% 

heavier than a design with an infinite number of tests. Negative weight penalty indicates that the 

design is unsafe because it implies that the 5
th

 percentile mean strength is less than the true mean. 

The area of the weight penalty distribution on the left side to zero is the probability of 

unconservative design (PUD) (see Fig. 3). 

Figure 3 illustrates the weight penalty distribution, mean weight penalty, 95% weight penalty 

and probability of PUD. The 0% weight penalty (the black filled circle) represents design weight 

with an infinite number of tests. The mean of the weight penalty (the hollow circle) represents 

expected conservativeness in the design. The 95% weight penalty (the grey filled circle) can be 

interpreted as a possible very conservative design weight with 5% probability. PUD (the area left 

to 0% weight penalty) is the true probability of unsafe design. When we design the truss with 5
th

 

percentile mean strength, we expect that the design will be unsafe with only 5% probability. 

PUD shows the actual probability of unsafe design. Those measures are calculated from N sets of 

test results, or N repetitions (N = 100,000 here) as follows: 

 
0.05

1

1




 
N

i

i

w
N

 (18) 

  0.95

1

1
0.95



 
N

i

i

I w w
N

 (19) 

  0.05 ,

1

1
PUD

N
i

e true

i

I
N

 


   (20) 

This procedure needs to be performed for different realizations of the epistemic uncertainty. 

Here, for illustration, we repeat it only for four values, 1% and 5% unconservative errors and 1% 

and 5% conservative errors. These appear to be sufficient to illustrate the effect of different 

values of the epistemic uncertainty. 

V. Illustrative Example 

In this section, the effect of the number of tests is investigated in two steps. First, the 

conservative mean of the element strength is predicted using a single set of tests, and then, 

average prediction is estimated with multiple sets of tests. 

 

 

 

A. The effect of the number of tests with a single set of tests 

In this section, estimation of mean element strength is illustrated with a single set of coupon and 

element tests. The test results were randomly generated from the true distributions defined in 

Table 2. The difference between the element mean and the coupon mean represents error in the 

failure theory as assumed in Eq. (7). Since 3 , 1.0d calck   is assumed in this paper and 
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3 , , ,/d true e true c truek    is 0.95, the failure theory overestimates the element strength; that is, the 

error in the failure theory is unconservative. Randomly generated test results are given in Table 3. 

For example, for 10 coupons and 3 elements (10/3), the mean and standard deviation of coupons 

were 0.972 and 0.091, respectively, and the three element test results were first three data (i.e., 

0.945, 0.955 and 0.987). The true distribution is only used for the purpose of simulating tests. 

  

Table 2. True distributions of coupon and element tests 

Test Distribution Parameters 

Coupon test Normal ,c true = 1.0, COV 7%  

Element test Normal ,e true = 0.95, COV 3%  

 

Table 3. Statistics for coupon and element tests 

No. of 

coupon tests 
Coupon test Element tests (order by sequence) 

10 ,c test = 0.972 , ,c test = 0.091 
0.945, 0.955, 0.987, 0.953, 0.935 

,e test = 0.955 , ,e test = 0.0193 

50 ,c test = 1.004 , ,c test = 0.073 
0.896, 0.981, 0.939, 0.998, 0.957 

,e test = 0.954 , ,e test = 0.039 

90 ,c test = 1.001 , ,c test = 0.070 
0.917, 0.989, 0.954, 0.939, 0.948 

,e test = 0.949 , ,e test = 0.026 

 

To estimate the mean of element strength, the prior is constructed based on the coupon test 

results and error bounds as shown in Eqs. (10) and (11). Table 4 gives the standard deviation of 

normal error distribution for mean and bounds for standard deviation ,lower upper

e e    . Recall that 

the error bounds represent the current estimate of the maximum error in the failure theory and the 

error bounds are used to establish the normal error distribution that the error bounds and 

symmetric 95% confidence interval have the same domain. Detailed procedure of numerical 

calculation is given in Appendix B. 

 

Table 4. Error distributions of element tests 

Error  Distribution Std / Bounds 

eb  Normal  0.1/ 0.975  

 ,lower upper

e e     Uniform [0,0.04]  

 

Table 5 summarizes the 5th percentile value ( 0.05 ) and the weight penalty after Bayesian 

update. It is observed that the effect of element tests is more significant than that of coupon tests. 

As the number of element tests increases between ne = 1 and ne = 5, weight penalty decreases 

from 4-6% to 1.4-2.3%, and 5
th

 percentile strength converges to 0.95 monotonically. However 

the effect of the number of coupon tests is ambiguous and no clear trend is observed. This is 

because the error in the failure theory (Table 4) is much larger than that in measuring uncertainty 

D
ow

nl
oa

de
d 

by
 K

O
R

E
A

 A
E

R
O

SP
A

C
E

 U
N

IV
E

R
SI

T
Y

 o
n 

A
pr

il 
19

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

18
19

 

 Copyright © 2013 by Chanyoung Park. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



 

 

 

13 

of coupons. For the 50 and 90 coupons cases, ne = 1 estimates more conservativeness than ne = 0 

because the particular element test results happen to be very conservative, as shown in Table 3 

(0.896 and 0.917 from a normal distribution with the mean of 0.95 and the standard deviation of 

0.0285).  

 

Table 5. Estimates of the conservative element strength and the resulting weight penalty 

(compared to infinite number of tests) from a single set of test results  

( ,e true = 0.95: Unconservative +5% error in failure theory) 

 
        ne 

nc 
0 1 3 5 

5
th

 percentile  
10 

0.879 0.916 0.938 0.938 

Weight penalty 8.1% 3.7% 1.2% 1.3% 

5
th

 percentile 
50 

0.917 0.882 0.917 0.934 

Weight penalty 3.5% 7.7% 3.6% 1.7% 

5
th

 percentile 
90 

0.916 0.900 0.930 0.932 

Weight penalty 3.7% 5.6% 2.1% 1.9% 

B. The effect of the number of tests averaged over multiple sets of tests 

The results from the previous subsection depend on the particular samples of coupons and 

elements. In order to measure the expected effect of tests, the same process is repeated 100,000 

times. Different test results are randomly generated and used for each time. Weight penalties are 

generated with the 100,000 test sets. The effects of the number of tests on the weight penalty are 

analyzed with three measurements, mean of the weight penalty, 95
th

 percentile of the weight 

penalty, and probability of unsafe design (PUD), described in Section IV. Two scenarios 

associated with epistemic uncertainty in the failure theory are considered. The first scenario 

addresses the effect of relatively large epistemic uncertainty in the failure theory ( eb = 10% ) 
compared to that in coupon samples. With 7% COV in material strength, the uncertainty in the 

mean coupon strength is small even with 10 coupons. The second scenario examines the effect of 

relatively small epistemic uncertainty in the failure theory ( eb = 2% ). Note that the bounds are 

used to establish normal error distributions. Each scenario is further divided into two cases: 

unconservative and conservative failure theory. The true mean of element tests and its error 

bounds are set to reflect each scenario as shown in Table 6, the other settings are the same with 

the previous single set example.  

 

Table 6. Four scenarios associated with epistemic uncertainty in failure theory and 

corresponding example settings (COV of 7% in material strength is assumed) 

Magnitude of error 

in failure theory 
Failure theory 

True mean of 

element test 
Error distribution 

Large epistemic 

uncertainty in 

failure theory 

Unconservative ,e true = 0.95  (0,0.1/ 0.975)N   

(standard deviation of 

5.1% error) 
Conservative ,e true = 1.05
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Small epistemic 

uncertainty in 

failure theory 

Unconservative ,e true = 0.99  (0,0.02 / 0.975)N   

(standard deviation of 

1.0% error) 
Conservative ,e true = 1.01

 

 

When the failure theory has relatively large epistemic uncertainty, the distributions of the 

weight penalties as functions of the number of tests are shown in Fig. 4 for both conservative and 

unconservative failure theories. nc=50 and ne=3 are assumed as the nominal numbers of tests. 

The effects of the number of element tests and the number of coupon tests are shown around the 

nominal numbers. Figure 4 shows that ne is far more influential than nc for shifting the 

distribution to less conservative region and narrowing it.  

With no element tests, the distribution is narrow, since it represents only the sampling 

uncertainty in 50 coupon tests. As the number of element tests increases, the distribution is first 

widened for a single element test, because a single test is quite variable, and then, gradually 

narrowed. The updated distribution is also shifted closer to 0% weight penalty. For the 

unconservative case, Figure 4(a), the shift is small, because the conservativeness in the design 

with the unconservative failure theory is small. However, for the conservative case, Figure 4(c), 

the shift is large since the conservative failure theory provides very conservative design. 

 

  
(a) ne = 0,1,3,5 with nc = 50 

( ,e true = 0.95 and eb = 10% ) 

(b) ne = 3 with nc = 10,50,90 

( ,e true = 0.95 and eb = 10% ) 
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(c) ne = 0,1,3,5 with nc = 50 

( ,e true = 1.05 and eb = 10% ) 

(d) ne = 3 with nc = 10,50,90 

( ,e true = 1.05 and eb = 10% ) 

Figure 4. Distributions of weight penalties for comparison between the number of coupon 

tests and the number of element tests 

 

Tables 7 and 8 summarize the distributions with three statistics, mean weight penalty, 95% 

weight penalty and PUD in terms of the number of tests. 

 

Table 7. Mean, 95
th

 percentile of weight penalties and probability of unsafe design (PUD)  

( ,e true = 0.95: Unconservative +5% error in failure theory) 

 0 1 3 5 

 Mean 

10 4.6% 4.3% 3.0% 2.3% 

50 3.9% 3.8% 2.8% 2.3% 

90 3.8% 3.7% 2.8% 2.2% 

 
95

th
 perc. of weight penalty factor 

(extreme design weight) 

10 8.6% 7.5% 5.8% 4.7% 

50 5.6% 5.9% 5.2% 4.4% 

90 5.1% 5.7% 5.2% 4.4% 

 Probability of unsafe design (PUD) 

10 2.2% 1.0% 3.6% 4.5% 

50 0% 0.3% 3.7% 4.6% 

90 0% 0% 3.7% 4.6% 

 

Table 8. Mean, 95
th

 percentile of weight penalties and probability of unsafe design (PUD)  

( ,e true = 1.05: Conservative -5% error in failure theory) 

 0 1 3 5 

 Mean 

10 15.6% 13.2% 7.7% 4.3% 
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50 14.9% 12.6% 7.4% 4.2% 

90 14.8% 12.6% 7.4% 4.2% 

 
95

th
 perc. of weight penalty factor 

(extreme design weight) 

10 20.0% 17.5% 12.1% 7.5% 

50 16.8% 14.5% 10.4% 7.0% 

90 16.2% 14.0% 10.2% 6.9% 

 Probability of unsafe design (PUD) 

10 0%  0%  0.2%  1.0%  

50 0% 0% 0.2% 0.9% 

90 0% 0% 0.2% 0.9% 

 

We first consider the case of minimal testing with only 10 coupon tests and no element tests. 

For the case of unconservative failure theory, Table 7, minimal testing will cost us 4.6% weight 

penalty on average, and 2.2% chance that we will end up with unconservative design. For the 

case of conservative failure theory, Table 8, the weight penalty shoots up to 15.6% and we do not 

run the chance of unconservative design. The weight penalties with the 95
th

 percentiles 

(corresponding to tests that happen to be on the conservative side) are about 11% higher.  

Both the weight penalties and the PUD continue to drop substantially with more element tests. 

On the other hand, the effect of adding coupon tests is much smaller, and going from 50 to 90 

coupon tests hardly make any difference.  

The fact that for this example, element tests are more important than coupon tests can be 

understood by observing the magnitude of two epistemic uncertainties. The variability in the 

strength is 7% (see Table 2), so even with 10 coupon tests, the standard deviation of the mean 

coupon strength is only 2.2% which is epistemic uncertainty in sampling. On the other hand, 

with ±10% error bounds, the standard deviation of the epistemic uncertainty in the failure theory 

is 5.1%. This is why element tests were more significant in reducing uncertainty. If, on the other 

hand the failure theory was much more accurate, then it is expected element tests to be less 

significant. For example, ±2% error bounds, the magnitude of the epistemic uncertainty in failure 

theory is merely 1.0%. With such an accurate failure theory, it turned out that the number of 

coupon tests becomes more influential than the number of element tests.  

It turned out that increasing the number of element tests is more important than increasing the 

number of coupon tests when we have the large epistemic uncertainty (±10%) in the failure 

theory. However, when the epistemic uncertainty is small (±2%), the number of coupon tests 

becomes more influential than the number of element tests. In parallel to Fig. 4, Fig. 5 shows a 

comparison between the effect of nc and the effect of ne on the weight penalty when the error in 

the failure theory is small. It is clearly seen that the effect of the number of coupon tests is more 

influential than the number of element tests for decreasing chance of having very conservative 

designs and reducing the variation of design. 
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(a) ne = 0,1,3,5 with nc = 50 

( ,e true = 0.99 and eb = 2% ) 

(b) ne = 3 with nc = 10,50,90 

( ,e true = 0.99 and eb = 2% ) 

 

  
(a) ne = 0,1,3,5 with nc = 50 

( ,e true = 1.01 and eb = 2% ) 

(b) ne = 3 with nc = 10,50,90 

( ,e true = 1.01 and eb = 2% ) 

Figure 5. Distributions of weight penalties for comparison between the number of coupon 

tests and the number of element tests 

 

Compared to Tables 7 and 8, the increased accuracy of the failure theory reduces substantially 

the penalty associated with no element tests. For 10 coupon tests, the weight penalty for no 

element tests is reduced from 4.6% to 3.2% for unconservative error (Tables 7 and 9) and from 

15.6% to 5.2% for conservative errors (Tables 8 and 10). Also, because the epistemic 

uncertainties associated with the failure theory are no comparable to the epistemic uncertainties 

in the mean of the coupon tests, the effect of the number of coupon tests and element tests 

becomes comparable. Going from one element tests to five element tests for 10 coupon tests 

reduces the weight penalty from 3.2% to 2% (Table 9) and from 5.2% to 3.0% (Table 10). In 

comparison, increasing the number of coupon tests from 10 to 90 for one element test, reduces 

the 3.2% and 5.2% to 1.2% and 3.2%, respectively. 
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Table 9. Mean, 95
th

 percentile of weight penalties and probability of unsafe design (PUD) 

( ,e true = 0.99: Unconservative +1% error in failure theory) 

 0 1 3 5 

 Mean 

10 3.2%  3.0%  2.4%  2.0%  

50 1.4%  1.4%  1.3%  1.2%  

90 1.2%  1.1%  1.1%  1.1%  

 
95

th
 perc. of weight penalty factor 

(extreme design weight) 

10 7.4%  6.8%  5.4%  4.3%  

50 3.1%  3.1%  2.9%  2.7%  

90 2.4%  2.4%  2.4%  2.3%  

 Probability of unsafe design (PUD) 

10 10.0%  8.9%  8.0%  7.0%  

50 8.0%  7.6%  8.3%  7.9%  

90 6.1%  6.2%  7.6%  7.5%  

 

Table 10. Mean, 95
th

 percentile of weight penalties and probability of unsafe design (PUD)   

( ,e true = 1.01 Conservative -1% error in failure theory) 

 0 1 3 5 

 Mean 

10 5.2%  4.9%  3.8%  3.0%  

50 3.5%  3.3%  2.9%  2.5%  

90 3.2%  3.1%  2.7%  2.4%  

 
95

th
 perc. of weight penalty factor 

(extreme design weight) 

10 9.6%  8.9%  7.3%  5.8%  

50 5.2%  5.1%  4.5%  4.0%  

90 4.5%  4.4%  4.0%  3.6%  

 Probability of unsafe design (PUD) 

10 1.5%  1.4%  1.9%  2.1%  

50 0%  0%  0.2%  0.5%  

90 0%  0%  0%  0.2%  

 

C. The accuracy of convolution integral on calculating a conditional distribution 

It has been shown that a double-loop MCS can be used to calculate the distribution in Eq. (9). 

However, MCS has a computational challenge in the tail region (low-probability region) as well 

as sampling error. For example, 10
-4

 level of probability can be hardly estimated with 10,000 

samples. Different from MCS, convolution integral can calculate a nearly exact distribution 

without having sampling errors. In this section, the accuracy of convolution integral is compared 

with that of MCS. 
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In order to illustrate the advantage of convolution integral, the probability of the product of 

two random variables, ˆ ˆ ˆZ X Y  , are used. It is assumed that the two independent random 

variables are defined as ˆ ~ (1.1,0.0096)X N  and ˆ ~ (0.9,1.1)Y U . For MCS, one million samples 

are used to evaluate the probability at Z value of 0.955 and 0.975. Since MCS has sampling error, 

this process is repeated 1,000 times, and then, the mean and standard deviation are listed in Table 

11. For convolution integral, the entire range is divided by 50 segments, and three-point Gauss 

quadrature is used in integrating Eq. (9) with be=0.1, , 1.1c test  , and 
, / 0.0096c test cn  . The 

results only differ by 0.2% when 400 segments are used. Different from MCS, there is no need 

for repetition because convolution integration does not have sampling error. 

 

Table 11. Probability of Z at two different values 

Z value 0.955 0.975 

MCS 
Mean 2.34×10

-7
 6.77×10

-4
 

COV 210.7% 3.9% 

Convolution integral 2.40×10
-7

 6.78×10
-4

 

 

When the probability is of the order of 10
-4

, MCS has about 3.9% coefficient of variance 

(COV), while the convolution integral shows a very little calculation error. When the probability 

is of the order of 10
-7

, the MCS with 1 million samples is not meaningful as reflected in the COV 

value of 210%. However, the convolution integral is still accurate, and the value can be obtained 

by a one time calculation. Note that the estimated error in the mean PF with 1000 repetition can 

be calculated as 4.93×10
-7

/1000
0.5

 = 1.56×10
-8

.  

VI. Conclusions 

In this paper, the effect of the number of coupon and element tests on reducing 

conservativeness and weight penalties due to the uncertainty in structural element strength was 

studied. Two sources of epistemic uncertainties were considered: (a) the uncertainty in sampling 

in measuring material variability and (b) the uncertainty in the failure theory. A large number of 

coupon test reduce the uncertainty in measuring material variability, while element tests reduce 

the uncertainty in the failure theory. These uncertainties were combined using convolution 

integral, which is more accurate and robust than MCS. Then, Bayesian inference was used to 

update this uncertainty with element test results. Because test results can vary, a large number of 

simulations were used to obtain mean performance and distributions. 

For a typical case of  ±5% error in the failure theory, 7% and 3% coefficients of variation in 

material strength and element strength, element tests were found to be very important in reducing 

weight penalties from about 16% with no tests, to about 4% with five element tests. The effect of 

the number of coupon tests was much smaller because sampling uncertainty was much smaller 

than the uncertainty in the failure theory. For ±1% error in the failure theory and the same 

coefficient of variations in material strength and element strength, the effect of the number of 
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coupons became comparable to that of element tests. The methodology developed would thus 

allow designers to estimate the weight benefits of tests and improvements in failure predictions. 
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APPENDIX A: Statistical formulation of possible true distribution of mean and standard 

deviation of element strength 

The PTD of element mean failure strength can be expressed as 

 
     , , , , , , , ,| de Ptrue e Ptrue e Ptrue e Ptrue c Ptrue c Ptrue c Ptrue c Ptruef f f      




   (A1) 

which is in the form of the convolution integral. The conditional PDF  , , ,|e Ptrue e Ptrue c Ptruef    

corresponds to the distribution of 3 ,
ˆ

d Ptruek . In the following, the two PDFs in the integrand will be 

explained. 

In this paper, 3 , 1d calck   is used for simplicity, and it is assumed that ,k Ptruee  follows a normal 

distribution that has symmetric 95% confidence interval defined with ±be bounds as 

  
 

, , , | 0,
0.975

e
k Ptrue k Ptrue k Ptrue

b
f e e

 
    

 (A2) 

where the notation  | ,x a b  denotes the value of normal PDF with mean a and standard 

deviation b at x. 

By using Eq. (A2),  , ,e Ptrue e Ptruef  can be obtained from all possible combinations of random 

variables generated from  , ,k Ptrue k Ptruef e  and  , ,c Ptrue c Ptruef  . For a given sample of ,c Ptrue , the 

PTD of element failure strength can be regarded as a conditional PDF  
, , ,|

e Ptrue e Ptrue c Ptruef   , 

which is derived from Eq. (A2).    

   
 

,

, , , , ,| | ,
0.975

c Ptrue e

e Ptrue e Ptrue c Ptrue e Ptrue c Ptrue

b
f


    

 
    

 (A3) 

The PDF in Eq. (A3) represents the epistemic uncertainty in failure theory. The PTD 

 , ,e Ptrue e Ptruef   can be calculated by considering all possible values of ,c Ptrue with Eq. (A3). 
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PDF of the PTD of ,c Ptrue is calculated from coupon test results as 

    ,

, , , ,| ,
c test

c Ptrue c Ptrue c Ptrue c test

c

f
n




   

 
  

 
   

(A4) 

Samples of ,c Ptrue  are generated from Eq. (A4), which is then used in Eq. (A3) to generate 

samples of ,e Ptrue . Figure A1 illustrates the conditional PDF of ,e Ptrue for a given sample of

,c Ptrue , which is drawn from  , ,c Ptrue c Ptruef   based on ,c test . Note that ,e true is given as a 

unique value, and is expressed by the PTD  , , ,|e Ptrue e Ptrue c Ptruef   . 

 

 
With Eq. (A3) and Eq. (A4), the convolution integral in Eq. (A2) can be directly integrated as 

 

 
 

, ,

, , , , , , ,| , | ,
0.975

c Ptrue e c test

e Ptrue e Ptrue e Ptrue c Ptrue c Ptrue c test c Ptrue

c

b
f d

n


 
       





  
         


 

(A5) 

The PDF in Eq. (A5) is a prior distribution of mean failure strength of elements, which 

includes the effect of uncertainty from failure theory as well as that of a finite number of samples. 

APPENDIX B: Numerical scheme to obtain the presented results 

For the mean element strength, a range of [0.78, 1.22] was found to be large enough for 

capturing the updated joint probability distribution. Since the initial distribution for the mean 

element strength has very little influence on posterior distribution on both tails. The standard 

deviation is bounded in [0, 0.04] as noted in Table 4. In order to calculate the updated 

distribution from Bayesian inference, each range is discretized into 200 equal intervals, and this 

discretization generates a 200 by 200 grid. The updated joint PDF is calculated at each grid point 

 

Figure. A1: The possible true distribution of mean failures strength of 

specimens and the conditional distribution of the element mean failure strength.  

e

Probability 
density

,e true

, ,( )c Ptrue c Ptruef 

,c Ptrue

, , ,( | )e Ptrue e Ptrue c Ptruef  

,c test
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using Eq. (12). Then, the prior is updated using likelihood function with different numbers of 

element tests; i.e. ne= 1, 3, and 5. 

 

 
Figure. B1: A 8 by 8 grid for obtaining a joint PDF and its marginal PDFs 

 

The marginal updated distributions are obtained using the updated joint distribution as 

expressed in Eqs. (14) and (15). For the updated marginal element mean distribution, conditional 

PDFs for given 201 mean element strength are integrated over 201 points using Gaussian 

quadrature with 2 points. Figure B1 shows an equivalent example that has 8 by 8 grid. The 

marginal distribution of the updated mean element strength is formed by calculating PDF values 

on 9 given mean values.  3

, ,

upd

e Ptrue e Ptruef  is equal to a value obtained by integrating a conditional 

PDF of the standard deviation for 3

, ,e Ptrue e Ptrue   over the vertical arrow. 

 

 , 1,2,...9i
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