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Abstract 

In this paper, a stress-resultant based elasto-plastic model for a concrete plate is presented as a substitute 

of a layered model, which is commonly used and requires many sub-layers in order to describe a 

nonlinear stress distribution over the thickness. Iliushin’s failure function is extended to a concrete plate 

based on the Drucker-Prager yield criterion after a modification from a parametric study. Two new 

parameters are introduced to the yield function in order to describe the non-symmetric, fully plastic 

moment of a concrete plate and the coupled behavior of membrane and bending actions. General plastic 

rules are applied to the stress-resultant based yield criterion. In addition, an integrated section method 

using equivalent material coefficients is presented for the stress-resultant based concrete plate for steel 

rebar reinforcement. Several numerical test models are compared with the layered model for the purposed 

of verification.  

Keywords: Stress-resultant model, Concrete plate, Elasto-plastic plate, Integrated section method.  

1. Introduction 

According to the development of CAD/CAE technology, nowadays, many structural engineers want to 

simulate their structures as it stands without any simplification, and thus, the modeling of a building or 

civil structure become more detail and sometime requires several tens of thousands of elements. 

Therefore, a huge amount of numerical calculation is required to obtain a reasonably accurate resistance 

for a structure against various internal and external loadings. Currently developed numerous computer 

systems and numerical methods make it possible to conduct such a large amount of calculation.  

 Generally, civil structures are designed to be elastic to maintain structural integrity under ordinary 

and predictable loading scenarios. Sometimes, however, simulations beyond the elastic limit are also 

required to estimate collapse patterns and weak points under unexpected loading, such as earthquake. 
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Finding weak points can be useful for an evenly distributed collapse mode, which creates a safe structure 

in severe conditions. Numerical simulations beyond the elastic limit require much more calculation.  

 The nonlinear material behavior of plates and beams can be described in different ways, as 

illustrated in Figure 1. Since traditional failure criteria of materials are defined using local stress-strain 

relations, the solid model in Figure 1(a) is the most ideal for the simulations beyond the elastic limit, but 

with the expense of the most computational resources. The failure state can be estimated in each solid, 

layer, or section, depending on whether the solid, layered or section models are used. When it comes to a 

real multi-story building or a multi-span bridge under earthquake loadings, the solid model is nearly 

impossible due to a huge amount of numerical calculations involved; elasto-plastic stress-strain relation 

must be calculated at every integration point. Therefore, computationally more efficient nonlinear 

simulation methods are required to reduce the simulation cost. For that purpose, the layered model is 

commonly used for a plate element, and the fiber or resultant section models are used for a frame element 

[8, 13]. However, the layered model and the fiber section model also require lots of numerical calculation 

and information storage because integration needs to be performed at each layer and fiber. To apply the 

nonlinear analysis to a large structure, more efficient methods are required, and thus, the stress-resultant 

based methods are develped in this paper.  

 

      Figure 1: Modeling methods for nonlinear simulation of a structural member. 

A frame element has been a major objective for modeling a nonlinear behavior by many researchers 

due to the fact that lots of types of structures can be modeled by the frame element. Sectional material 

nonlinearity of a frame element is considered by two different models: the resultant section model and the 

fiber section model. The resultant section model which defines the sectional nonlinear response using 

moment-curvature relations has been presented by Takeda et al. [3], Hilmy and Adel [4], Hajjar and 

Gourley [5] and El-Tawil and Deierlein [7]. The fiber section model estimates the response of section 

based on the uni-axial stress-strain relation of each fiber cell consisting a frame section. The uni-axial 
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constitutive model of concrete has been presented by Kent and Park [9], Mander et al. [10] and El-Tawil 

and Deierlein [6].  

In plate elements, material nonlinearity can be simulated by either the layered model or the stress-

resultant based model. In general, the layered model can be used for any type of failure criteria because it 

is based on the local stress-strain relation. On the other hand, the stress-resultant based model has mainly 

been applied to metal plates based on von-Mises criterion. Firstly, the yield function based on stress-

resultants was suggested by Iliushin [11], and it has been modified to describe the Bauschinger effect by 

Bieniek and Funaro [17]. The progressive development of plastic zone under bending moment was 

described by a plastic curvature parameter suggested by Crisfield [12]. The influence of transverse shear 

forces on the plastic behavior was incorporated into the stress-resultant yield function by Shi and 

Voyiadjis [13].  An extension from a frame yield criterion to the reinforced concrete plate was presented 

by Koechlin et al. [15]. However, since the yielding moment is a function of membrane forces in 

combined loadings, it is limited to be used in general applications. Most research on stress-resultant based 

elasto-plastic behavior is so far focused on a metal plate. In this paper, the stress-resultant based model 

for a concrete plate is presented. An appropriate yield function is proposed based on theoretical and 

parametric studies, and general plasticity rules are applied to the yield function. In addition, steel 

reinforcement is modeled as an integrated section method using equivalent material coefficients. 

This paper is organized as follows. Section 2 describes the stress-resultant model for a concrete plate 

where a yield function using stress-resultants based on the Drucker-Prager failure criterion is presented. 

Plastic behaviors such as flow rule and plastic consistency parameter are also derived for the proposed 

yield function. Section 3 explains a steel rebar model which is combined with the stress-resultant model 

for concrete reinforcement. Section 4 shows numerical comparisons between the proposed model and the 

layered model with a unit element and a bridge structure, followed by conclusions and discussions in 

Section 5. 

2. Elasto-plastic analysis of a plate element 

In this section, an efficient elasto-plastic model based on the stress resultants for a concrete plate is 

introduced. Generally, for the elasto-plastic behavior of a plate, the layered model is used to take into 

account the nonlinear stress distribution through the thickness [13]. Stresses at each layer are calculated 

based on the strains that are assumed linearly distributed. The yield criterion for the elasto-plastic 

behavior is applied to calculate stresses and tangent stiffness at each layer, which are integrated over the 

thickness to calculate internal forces and stiffness of the element. The concept of layered model is 
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described in Figure 2(a), where the constitutive relation between element stresses and strains of a single 

layer can be written as 
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subscripts , ,x y xy  represent the local directions of the components. Once the elasto-plastic stress-strain 

relationship at each layer is calculated, the relation between stress resultants and the mid-plane strains can 
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 The accuracy of the above relation depends on the number of layers, which often goes beyond 15. 

Although reasonable results can be expected in a layered model, a lot of calculation is required because 

the complicated elasto-plastic behavior should be estimated in every layer at each integration point. In the 

case of a large structure with tens of thousands of elements, the cost for analysis could be significant.  

For efficient calculation of the elasto-plastic behavior of a plate element, the stress-resultant model 

was proposed, which is based on the Iliushin’s yield function [11]. For metals using the von-Mises 

criterion, a modified yield criterion was suggested by Voyiadjis and Woelke [14]. The concept is 

described in Figure 2(b), whose yield criterion is explained in the following sub-section. In this model, 

the yield criterion consists of stress resultants instead of stresses; therefore, no layer-by-layer integration 

is required. A modified Iliushin’s yield function expressed in terms of stress resultants for metal (von-

Mises criterion) are applied for the development of plastic deformations across the thickness [14]. In this 

paper, a modified yield criterion based on Iliushin’s yield function for concrete (Drucker-Prager criterion) 

is proposed for concrete buildings and civil structures. The basic concepts for flow rules are based on the 

paper of Voyiadjis and Woelke [14]. 
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(a) Layered model 
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(b) Stress-resultant model 

Figure 2 Local coordinate and nonlinear models for elasto-plastic behavior of plate 

2.1 Stress resultants based yield function for a concrete plate 

For a concrete material, the following form of Drucker-Prager yield criterion is often used: 

   22 1
: 0
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where A and B are material constants, defined as 

    
   
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where   and c are, respectively, the friction angle and cohesion [2]. For a concrete material, the constant 

B can be calculated using tensile and compressive yield stresses as 
 
2

3
c t

c t

B
 
 




. The first term on 

the right-hand side of Eq. (3) corresponds to the first invariant of stress tensor, and the second term is the 

second invariant of stress deviator. 
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 The objective is to develop a stress results-based yield criterion from the stress-based criterion in 

Eq. (3). When a material is in the elastic state, the stresses at the top and bottom of a plate can be 

expressed in terms of stress resultants as 

 2

6
,  , 1,2  ij ij

ij

N M
i j

h h
                                        (5) 

where h is the thickness of the plate and ijN  and ijM  are membrane and moment resultants, respectively. 

In order to derive the stress resultants based yield criterion, these stresses are substituted into Eq. (3) to 

yield 
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where and B0 is initial uni-directional yield stress. In the expression of the yield function, the stress 

resultant intensities, N and M, are given as   
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 Since Eq. (6) is the criterion for the initial yielding, it should be modified for a continuous elasto-

plastic behavior of a concrete plate. In the plastic state, the superposition between the membrane and 

bending actions is not allowed. In addition, the plastic zone starts from the top and bottoms surfaces and 

gradually move toward inside until the entire cross-section becomes fully plastic. Because of different 

roles of membrane and bending stress resultants, the moment term of the first invariant of resultants, 

2

6
xx yy

o

A
M M

B h
 , is removed due to the fact that this term has both compressive and tensile stresses at 

the same time even though it comes from the first invariant of stresses, hydrostatic stress. Indeed, this 

term will show a discrepancy with the reference model in numerical comparison shown in the next 

section. In addition, the coupled term between membrane and moment components, 
2 3

12

o

NM
B h

, is also 

removed through a parametric study and numerical tests. This term was also deleted in the previous 

research of metal plate based on von-Mises yield criterion for kinematic hardening problem by Armstrong 

and Frederick [17].  
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 In a concrete plate, the neutral plane deviates from the geometric mid-plane due to plastic 

deformation. This happens because the tensile yield stress is much less than the compressive one. Three 

parameters, , k and  are introduced for progressive plastic deformation, unsymmetric stress distribution 

and the coupled behavior of membrane and bending resultants. The proposed form of stress-resultants 

based yield function of a concrete plate can thus be written as 
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where N0 and M0 are nominal yield membrane and moment resultants of the cross-section, respectively, 

given as 
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The linear stress expression in Eq. (3) is valid until the initial yield point. Yielding by bending is 

propagated from the top and bottom planes to the mid-plane as the bending moment increases beyond the 

initial yielding moment. A specific parameter is required to describe the continuous yielding beyond the 

initial yielding point. In this paper, followed by Crisfield [12], the plastic curvature parameter α is 

designed for progressive development of plastic zone under a bending moment as 

1 8 1 8
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where 
p  is the equivalent plastic curvature defined by 
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and , ,p p p
x y xy      are the incremental plastic curvatures of each direction. The equivalent plastic 

curvature 
p  is accumulated value from initial plastic deformation by bending. Therefore, it should be 

set by zero when it meets an elastic state, which is described in Figure 3. The parameter 
p  is calculated 

based on the equivalent plastic curvature. 

For a metal plate, the coefficient 1/3 in Eq. (12) is based on symmetric progressive yielding and it is 

theoretically calculated. The coefficient 1/2.5 in Eq. (12) for concrete is based on unsymmetric yielding of 

a concrete plate due to the gap between tensile and compressive yielding, and it is numerically estimated 

by the progressive yielding of a layered concrete plate. For a metal material, yielding is initiated at top 

and bottom surface at α = 2/3, 
p = 0, and entire section yielding is occurred at α = 1, 

p =  . For a 
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concrete plate under bending, initial yielding always occurs at the tensile part and the value of α is 0.6 and 

p = 0.  

 

Figure 3 Initializing equivalent plastic curvatures, 
p   

In concrete plates, the stress distribution through the thickness is not symmetric contrary to the metal 

under elasto-plastic status. The fully plastic moment of a concrete plate cannot be estimated by 

conventional fully plastic moment, Mo in Eq. (11), due to non-symmetric distribution of stress. In the 

Drucker-Prager yield criterion, the compressive strength is much larger than the tensile strength, and thus, 

the neutral axis is shifted to the compressive part. In this paper, parameter k is added to express the fully 

plastic moment based on Mo in a concrete plate. 

In order to derive the parameter k, it is assume that the concrete is in yielding under bending with zero 

membrane forces. It is also assume that there is no work hardening during plastic deformation. The yield 

function must satisfy when the material is in the fully plastic state, in which the fully plastic bending 

moment Mp is applied and the plastic curvature parameter  becomes one. Then, the yield function in Eq. 

(10) can be expressed as 
 

2

2

1
1 0

3
p

o

M

kM
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 from which the moment calibration parameter, k, is 

calculated as 
1

3p ok M M    
 

. The fully plastic moment, Mp, can be calculated by a numerical 

analysis; for example, the layered model. 

In addition to the two parameters, α and k, the yield criterion is further modified in order to match the 

results with the layered model under combined axial and bending loadings. For that purpose, parameter 

studies, described in the following section, are conducted and the exponent of the moment term  is 

introduced. 
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2.2 Parametric study for a modified yield criterion of a concrete plate 

Parametric studies are performed to check the proposed yield function for a concrete plate under 

combined cases of axial and bending loadings. The parametric studies are executed using pre-axial 

bending loading and pre-moment axial loading tests. Through comparison between the results of the 

layered model and those of stress-resultant model, appropriate values of parameters can be found. In this 

paper, the results from the layered model are considered as a reference. For the purpose of parameter 

study, the original failure function in Eq. (6) is modified to have three parameters, , k and , as 

 
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          (14) 

As explained in the previous section, the two underlined terms are expected to be removed. The first term 

(I1_M) is from the first invariant of stress tensor and the second term (J2_NM) is from the second 

invariant of deviatoric stress tensor. These two terms are tested and compared with the reference results in 

Figure 4(a) with parameter  = 1.0. When the yield function includes these terms, the yielding moments 

under pre-axial loading show different patterns compared to the results of the layered model. The I1_M 

term makes the maximum yielding moment to occur at different pre-axial loadings, while the J2_NM 

term makes the maximum occurs at zero pre-axial loading. Although the curve without these two terms is 

still different from the curve form the layered model, it is found that this curve follows the trend correctly. 

Based on the numerical results with and without I1_M and J2_MN terms in Figure 4(a), these two terms 

are excluded from the failure function. Now, in order to calibrate the difference in amplitude between the 

layered model and the proposed failure function, an exponent, β, is introduced for moment term of the 

second deviatoric stress invariant tensor. In the parameter study of the exponent β in Figure 4(b), it turned 

out that the value of 0.39 matches well with that of the layered model, which is used for the following 

analysis. Also, the pre-moment tensile and compressive axial loading cases are investigated in Figure 4(c) 

and (d). The results of the modified yield function well coincide with those of the layered model when the 

exponent β is 0.39. 
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     (a) Yielding Moment on Pre-Axial                  (b) Yielding moment with the exponent β 

       

      (c) Tensile Yielding on Pre-Moment                 (d) Compressive Yielding on Pre-Moment 

Figure 4 Yielding stress resultants in combined loading cases  

2.3 General plastic rule 

To describe the behavior of elasto-plastic plates, the constitutive law and the flow rule are required. The 

hypo-elastic constitutive relation is written in the rate form as  

  p s E e e                                                                        (15) 

where the rate of stress resultant s  and that of strain rate e  are defined as 
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In addition, in Eq. (15), pe  is the rate of plastic strain, and E describes the relation between the 

stress resultant rate and mid-plane strains rate in a plate as 
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where E,  and h are, respectively, the elastic modulus, Poisson’s ratio and thickness of a plate. For an 

elastic response, it is clear that membrane, bending and transverse shear are not related each other.  

The elasto-plastic behavior of the stress-resultant model follows a similar formulation with the stress-

based flow rule. In the associated flow rule, the mid-plane plastic strain rate is proportional to the gradient 

of plastic potential, which is identical to the yield function, as 

p F 



e

s
                                                                        (18) 

where   is the plastic consistency parameter. Plastic deformation is in the direction normal to the yield 

surface, and the amount of plastic deformation is decided by the plastic consistency parameter.  

In general, the plastic consistency parameter is non-negative, 0  : positive during plastic 

deformation and zero for elastic deformation. On the other hand, the yield function is always non-

positive: 0F  for the elastic state and 0F   for the plastic state. In optimization, this is called the 

Kuhn-Tucker condition and can be expressed as  

0, 0, = 0F F                                                          (19) 

The non-positive property of the yield function is regarded as a constraint, and the plastic consistency 

parameter plays the role of the Lagrange multiplier corresponding to the inequality constraint. The Kuhn-

Tucker condition satisfies all possible states of a material. When the state varies, the condition can have 

three cases. 

(a) Elastic loading 0, 0 = 0F F       

(b) Neutral loading 0, 0 = 0F F       
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(c) Plastic loading 0, 0 = 0F F       

When the stress is on the yield surface, = 0F  is equivalent to = 0F  . In elastic and neutral 

loadings, 0  and there is no plastic deformation. During plastic loading, F  is zero which means that 

the yield function remains zero, and the following condition can be obtained: 

 , : 0p p
eq eqp

eq

F F
F  


 

  
 

s s
s

                                                 (20) 

where the rate of equivalent plastic strain can be defined as 

      2 2 22
2

3
p p p p

eq x y xy                                                    (21) 

2.4 Newton-Raphson algorithm for the plastic consistency parameter 

In numerical analysis, the rate of plastic consistency parameter is converted into an increment by 

multiplying it with time increment: t    . In a similar way, all rates in the previous section can be 

considered as increments. In the following derivations, an increment will be used instead of rates. When a 

concrete has no strain hardening, the plastic consistency parameter can be calculated after substituting 

Eqs. (15) and (18) into Eq. (20), as 

: : : :
TF F F

   
   

   
E e E

s s s
                                        (22) 

: :

: :

T

T

F

F F




 
  
   


E ε

s

E
s s

                                                             (23)  

where the components of 
F
s

 are listed in the following equation:  
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 
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 

  
 

 
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 

 
   

 
 

             (24) 

From the incremental form of Eq. (15), the incremental stress resultant forces can be calculated using 

the plastic consistency parameter as  

: :
:

: :

T

T

F F

F F

   
              

D
s ss E I ε

D
s s

                                                           (25)   

from which the elasto-plastic tangent stiffness can be obtained as 

: :

: :
ep T

F F

F F

            
  
   

E E
s s

E E

E
s s

                                                              (26)   

The procedure to decide the plastic consistency parameter   is displayed as a flow chart in Figure 5. 

Flow chart for   and stresses and strains at each integration point 



 

14/24 

No

No

Yes

Convergence

Yes

 x y xy x y xy xz yz                e

  e B d

: :

: :
ep T

F F

F F

            
  
   

E E
s s

E E

E
s s

 1n n p        s s s s E e e



   
0 pF F

F
F
 

      
 



  



e
s

0F 

tr n  s s s

 p   s E e e

 x y xy x y xy xz yzN N N M M M Q Q         s

   
 

2 2

2

1
, 1

3
tr

xx yy
o o o

A N M
F N N

N N kM






  
            

s

0 : , 0 :F F Elastic status Plastic status

 

Figure 5 Flow chart for calculating plastic consistency parameter and updating stress resultant 

3. Reinforcement of steel rebar 

Steel rebar reinforcement is a common way of increasing the strength and ductility of a concrete plate. 

Since concrete has much less strength in tension than compression, a steel rebar is used for reinforcement 

of tensile part of concrete. In addition, since concrete is a brittle material, the steel rebar is also used for 

increasing ductility. Generally, the effect of the steel reinforcement of plate can be considered by two 

methods. The first is a smeared layer method in which the rebar is assumed as one layer of the plate, and 

the strains and stresses are calculated with the same way of each concrete ply. The second is an integrated 
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method in which the effect of rebar is considered by modifying material properties. The smeared method 

is reasonable for the layered model in which the strain of a rebar can be estimated accurately. The 

integrated model is applicable to stress-resultant model in which global response is focused rather than 

individual layer’s response.  

A general configuration of rebar can be shown in Figure 6(a) with the stress-strain curve in Figure 

6(b). There are some assumptions: (i) rigid bond between the rebar and concrete; (ii) linear strain 

distribution in a section, and (iii) the evenly distributed steel reinforcement in an element. The equivalent 

thickness of rebar layer is simply calculated using Eq. (27). 

                , ysxs
x y

xs ys

AAt tl l                                              (27) 

where  
,xs ysA A

 
: Section area of a ,x y direction rebar 

,xs ysl l
 

: Space of ,x y direction rebar 

,x yt t
 

: Equivalent thickness of ,x y direction rebar 
 

t p

EH Δσ
E = , H=

E+H Δε

y




y

syf

syf

tE

E

 

          (a) Geometric shape of rebar                   (b) stress-strain curve of steel rebar 

Figure 6 Geometric shape and stress-strain curve of a rebar 

3.1 The smeared layer method of rebar reinforcement 

A rebar has only one-directional strength and thus the constitutive equation of the rebar layer part can be 

expressed as Eq. (25). The Eq. (2) can be used for superposition of the results of a rebar layer. In elastic 

domain, xE and yE , the moduli of constitutive equation, are elastic modulus ( E ) and the tangential 

modulus ( tE ) is used in elasto-plastic domain. 
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y y y y
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E

                         

  
  

                                                    (28) 

where i , i  and p
i are incremental stress, strain and plastic strain vectors respectively. 

The yield function of steel rebar can be expressed as Eq. (29) at n step, and at the next step, stress, 

back stresses and plastic deformation are expressed as Eq. (30). In the elastic range, the stress and back 

stress can be easily calculated as Eq. (31). In the plastic range, since the yield function should be zero, the 

incremental plastic deformation and stresses can be calculated as Eq. (32) and the stress, back stress and 

plastic deformation at n+1 step can be estimated as in Eq. (29). The elasto-plastic tangent modulus is 

calculated as in Eq. (32). 

   , ,          n n n p n n n p
o Hf H                                     (29) 

where n , n , n p  are stress, backstress and plastic strain at n step, and o , H  are initial yield stress, 

plastic modulus respectively.  

 
 

1

1

1

1

n n n p

n n n p
H

n p n p p

E

H

     

     

  







       

      

  

                                                      (30) 

Elastic predictor  

, ,tr n tr n tr tr tr n
oE f             

 

In elastic range: 0f   

1 1 1, ,n tr n n tr n n p n pE                                              (31) 

In elasto-plastic range: 0f   

       1 1 1, , 0n n n p n n n p p
o Hf E H E H                                     (32) 

1 1
, 1 , 1

tr tr tr
p

t

f f f
E E E

E H E H E H

   
           

        

  
  

                (33) 

3.2 The integrated section method of rebar reinforcement  

The rebar reinforcement increases the strength of concrete plate by the strength of itself and the constraint 

of concrete plate. In elasto-plastic status of a concrete plate, one directional deformation can cause 

expansional deformation of the orthogonal direction and thus the steel reinforcement gets some tension 

and the concrete plate has compression at that direction. The constraint of concrete could increase the 
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strength of yielding. Therefore, the axial yield strength of a reinforced concrete plate is difficult to be 

estimated using simple analytical equation due to the constraint of rebar reinforcement. In this integrated 

model, the effect of rebar reinforcement is incorporated with the concrete plate as modified equivalent 

material coefficients. Since the yield compressive and tensile strength depends on two parameters ( ,A B ) 

of the Drucker-Prager criterion and material coefficients ( ,c  ) have a relation with the two parameters, 

the equivalent material coefficients can be estimated based on the axial behavior of a reinforcement 

concrete plate. In this research, the uni-axial strengths of a reinforced concrete plate are estimated by a 

numerical analysis using the layered model. The uni-axial tensile and compressive stress resultants of a 

concrete plate is derived from Eq. (6) and expressed as in Eq. (34) using the two parameters of the 

Drucker-Prager criterion. The parameters are estimated based on the uni-axial yield stress resultants as in 

Eq. (35) and the equivalent material coefficient, the cohesion ( c ) and internal friction angle ( ), can be 

estimated by the relation with the two parameters as in Eq. (36) and Eq. (37).  

   
3 3

( ) , ( )
1 3 1 3

o o

Bh Bh
N N

A A
   

  
                                                  (34) 

 
   

( ) ( ) 2 ( ) ( )
,

3 ( ) ( ) 3 ( ) ( )
o o o o

o o o o

N N N N
A B

N N h N N

    
 

     
                                         (35) 

   
12 sin 3 3

sin
3 3 sin 2 3

A
A

A

   
 

 


                                                    (36) 

 
 3 3 sin6 cos

6 cos3 3 sin

Bc
B c


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




                                                     (37)  

where ( )oN  and ( )oN  are the tensile and compressive yield strength of a reinforced concrete plate, and 

A  and B are parameters of the Drucker-Prager criterion respectively. 

In addition, the elastic modulus is also modified to get the effect of reinforcement as in Eq. (38) 

 1
eq c c s sE E h E h

h
                                                                   (38) 

where cE and sE are the elastic modulus of concrete and steel , and ch and sh are thickness of concrete 

and steel parts respectively. 

4. Numerical Examples 

4.1 Tests of unit element  

Results of the stress resultants yield model based on the Drucker-Prager criterion are compared with those 

of the layered model for a concrete plate nonlinear behavior. Geometry of reinforced concrete plate and 
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detailed information of reinforced steel rebar are described in Figure 7 and loading conditions are 

explained in Figure 8. The material coefficients of concrete based on the Drucker-Prager criterion are 

initial cohesion (c) and initial friction angle (Ф) and both parameters are assumed as c = 4.658 Mpa and Ф 

= 59.78o. Those coefficients are estimated based on the compressive and tensile yield strengths. The 

compressive yield strength (fc) is assumed 34.5 Mpa and the tensile strength (ft) is estimated by 3.64 Mpa 

using a formula of ACI-318-08 for a design of concrete floor systems, (Mpa)t cf 0.62 f . The area ratio 

of steel reinforcement is around 1% of concrete section for x and y directions. The elastic modulus of the 

concrete is assumed as E = 2.70ൈ104 Mpa. Generally the concrete does not have strain hardening. 

Therefore, hardening is not considered in these tests. For the layered model, steel reinforcement is model 

as a smeared layer and material nonlinearity of rebar is modeled using von-Mises criterion. The elastic 

modulus and the initial yielding stress of reinforced steel are assumed as E = 2.10ൈ105 Mpa and σo = 210 

Mpa. For the stress-resultant models, steel reinforcement is considered by the integrated section method 

using modified material coefficients of concrete. Those values are estimated by Eq. (33) and Eq. (34) and 

listed in Table 1 according to the area ratio of reinforcement. The hardening effect of reinforced steel is 

not considered.  
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0m
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200mm

70mm

70mm

Rebar #16(A=200mm2)

teq_x = Asx/Lx=1mm

teq_y = Asy/Ly=1mm

Ly

Ly

Lx=200mm

Lx Lx

 

Figure 7 Geometry of a steel reinforced concrete plate 

Table 1 Material coefficient for the Drucker-Prager criterion based on integrated method 

Rebar reinforcement No Rebar 0.5% Rebar 0.75% Rebar 1% Rebar 

Tensile yield strength (Mpa) 728 960 1070 1175 

Compressive yield strength (Mpa) 6900 8540 9350 10160 

Cohesion (Mpa) 4.66 5.96 6.58 7.19 

Internal friction angle 59.78 58.82 58.54 58.38 

Modified elastic modulus (Mpa) 27000 28000 28540 29060 
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(a) Pure axial                                                   (b) Pure bending 

    

(c) Pre-moment axial                                         (d) Pre-axial bending 

Figure 8 Test models of stress resultants yield criterion 

The results of stress-resultant model based on the Drucker-Prager yield criterion have good agreement 

with those of the layered model in all unit cases. Those comparisons are shown from Figure 9 to Figure 

11. The results of pure axial and pure bending tests under reinforcement show almost same with each 

other in Figure 9(a) and 9(b). The tensile yield strength of the reinforced concrete plate is around 1170 

N/mm which is similar with a simple summation of that of concrete and steel rebar, 1148 N/mm. The 

compressive yield strength of the plate is around 10160 N/mm which is much larger than a simple 

summation of that of concrete and steel rebar, 7320 N/mm. The increment of 35% in compressive yield 

strength is due to the orthogonal direction’s confining effect by the rebar. 

The comparisons of results of pre-moment axial and pre-axial bending cases are shown in Figure 10 

and Figure 11. The Figure 10(a) and 11(a) show the results of without reinforcement and the comparison 

results under reinforcement are shown in the Figure 10(b) and 11(b). The orthogonal direction confining 

effect also can be found in bending tests shown in Figure 9(b) in which the bending yield strength is 

larger around 10%, 106000 N-mm/mm, than a simple summation of concrete and steel strength, 96150 N-

mm/mm. 

The stress-resultant model under several loading tests shows well matched results compared with the 

layered model regardless of rebar reinforcement. From these results, the stress-resultant model can be 

expected to have available accuracy for the material nonlinear behavior of a concrete plate.  
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(a) Pure axial loading                                       (b) Pure bending loading 

Figure 9 Stress resultants vs. strains in pure loading 

    

(a) Axial with pre-moment(1/2Mp) w/o Rebar   (b) Axial with pre-moment(1/2Mp) w/ Rebar 

Figure 10 Axial stress resultants vs. strain in pre-moment axial loading 

  

(a) Bending with pre-axial (1/2Np(-)) w/o Rebar    (b) Bending with pre-axial(1/2Np(-)) w/ Rebar 

Figure 11 Bending stress resultant vs. rotation in pre-axial bending loading 
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5. Conclusions 

A stress-resultant based elasto-plastic analysis for a concrete plate is suggested and is compared with the 

layered model which is commonly used in practical design. A yield function based on stress resultants is 

derived for the Drucker-Prager criterion which is widely used for a concrete material. Through a 

parametric study the basic derived yield function is modified. To get reasonable results using the derived 

yield function, the moment calibration parameter k  and the exponent of the moment term   are 

introduced. The general plastic flow rule is applied to this failure function. In addition, a steel rebar model 

is added for the reinforcement of a concrete plate. The smeared layer method is introduced to the layered 

model and an integrated section method using equivalent material coefficients is suggested for the stress-

resultant plate model. Several tests of unit element show that the proposed method has reasonable results 

under cyclic loading compared with the layered model regardless of reinforcement. In the practical 

example of a concrete bridge, the suggested stress-resultant model shows available accuracy and 

efficiency compared with the layered model.  
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