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Abstract 

In probabilistic damage tolerance design, the choice of aluminum alloy may be influenced by 
the uncertainty/scatter in the crack growth rate and corresponding failure life. The 
epistemic uncertainty (due to limited test data) in the crack growth model parameters may 
play a major role in the decision making along with the aleatory uncertainty (due to material 
variability). In this study, we estimate the epistemic uncertainty (via bootstrapping) and the 
aleatory uncertainty in the crack growth model parameters for 7475-T7351 and 7050-T7451 
aluminum alloys. The choice between the alloys is made by comparing the reliability index 
estimated from respective crack growth failure life distributions. Finally, weight savings due 
to superior crack growth failure life of one alloy than other is estimated.   

 
Introduction 

The design of aircraft structures using probabilistic damage tolerance analysis (PDTA) involves modeling and 
propagation of uncertainties in the crack growth model inputs e.g. uncertainty in crack growth rate (i.e. da/dN vs. 
ΔK). We rely on experiments to estimate the best fit parameters of a crack growth model (e.g. Paris law, Walker 
equation). To estimate the uncertainty in fatigue crack growth life/failure life, these best fit parameters are treated as 
random variables and are the major source of aleatory uncertainty (due to material variability) and epistemic 
uncertainty (due to limited test data). Selection of aluminum alloy for a particular damage tolerance application (e.g. 
wing spar) is typically based on the compromise between various material properties, such as fracture toughness, 
crack growth rate, yield strength, and stress corrosion cracking behavior. Of all these, the crack growth rate plays an 
important role in designing a light weight structure. A designer needs to choose an alloy that would satisfy a given 
probability of failure/risk constraint (e.g. 10-4) with minimum weight penalty. The choice could possibly depend on 
the uncertainty (amount of scatter) present in the crack growth rate/model parameters and corresponding failure life. 
Therefore, it is important to quantify and compare the uncertainty (i.e. total uncertainty by combining aleatory and 
epistemic uncertainties) in the crack growth life for various aluminum alloys. In this study, we compare the 
uncertainty in crack growth life for the two most common aerospace aluminum alloys i.e. 7475-T7351 and 7050-
T7451 plate materials. We compare both alloys under constant amplitude loading spectrum. 

The comparison is based on comparing the reliability indices (β’s) that are estimated from the crack growth 
failure life distribution for nominally identical specimen geometry. Then, weight savings due to better crack growth 
rate behavior is estimated i.e. an alloy with superior (larger) failure life will satisfy a given probability of failure 
constraint with lesser cross-sectional area, resulting in weight savings over other alloy. 

   
Test Data and Crack Growth Model 

Crack Growth Test Data 
The crack growth rate data (da/dN vs. ΔK) is derived from the crack length (a) vs. load cycle (N) data. The a vs. 

N data is obtained by laboratory testing of crack test specimens e.g. middle tension M(T) crack test specimen shown 
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in Figure 1. A symmetric double through crack of total length (2c) is grown from a small hole of diameter (d) 
centered in a rectangular aluminum plate of width (W) and thickness (B). These tests are typically performed under 
constant amplitude loading (ΔP = Pmax – Pmin = constant) that are then used to predict the crack growth life under 
variable amplitude loading. In order to capture the stress ratio (R)/mean stress effects, tests are repeated at specific 
stress ratios (e.g. at R = 0.05, 0.3, 0.5, and 0.7). The stress ratio (R) is defined by the following relationship, 
 

min min

max max

S P
R

S P
   .         (1) 

 
Where, Smin and Pmin are the minimum stress and load for a given load cycle; Smax and Pmax are the maximum stress 
and load occurring in a given load cycle. 

The crack growth rate (da/dN) is defined as the rate of crack extension with number of applied load cycles. The 
slope of a vs. N data is converted into da/dN vs. ΔK data by various data reduction techniques. We have used 
ASTM’s quadratic 7-point incremental polynomial method [1] for deriving crack growth rate data. A sample a vs. N 
data for 7475-T7351 alloy for 25 specimens tested under four different stress ratios is shown in Figure 2, and 
corresponding da/dN vs. ΔK data is shown in Figure 3.  

 

 
Fig. 1 Middle tension M(T) crack specimen. 

 

 
Fig. 2 Crack length (a) vs. load cycles (N) data for 7475-T7351 alloy. 
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Fig. 3 Crack growth rate data for 7475-T7351 alloy. 

 
Crack Growth Model 

The crack growth life for design applications is predicted by fitting a crack growth model to the laboratory test 
data. Detailed fitting procedure is discussed in the next section. The scatter/uncertainty in failure lives is usually 
estimated via Monte Carlo Simulation [2-5]. This first requires the estimation of uncertainty in the crack growth 
model parameters e.g. estimation of the statistical distributions of C and n if Paris law is used,  

 nda
C K

dN
  .          (2) 

 
Where, da/dN is the crack growth rate; ΔK is the stress intensity; C is Paris constant; and n is Paris exponent. The 
crack tip stress intensity is the function of loading/stress range (ΔS) and specimen geometry, 
 

CFK G S a   .     (3) 

 
The stress range (remote stress) is related to applied load and geometry by the following relationship, 
 

   
max min

  
P PP

S
BW BW

.           (4) 

 
Half crack length a (inch.) is related to the specimen geometry as follows, 
 

 1
2

2
a c d c r    .     (5) 

 
The geometric correction factor GCF is a function of infinite plate solution GCF∞ and finite width correction factor 
FWC, 

CF CF WCG G F ,             (6) 
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A reliable estimation of the distributions of the crack model parameters requires sufficient test data at a given 
test condition i.e. combination of (ΔS) and stress ratios (R). In the absence of sufficient data for a particular test 
condition, estimation of the distributions of crack model parameters can be aided by pooling data from other 
combinations of test conditions [4].  
 
Crack Growth Model 
We have used walker equation for modeling the crack growth rate and predicting the failure lives. The usefulness of 
walker model is due to its ability to account for stress ratio effects [6] while retaining the simplicity of the Paris law.   
 


  1
1

    
nmda

C K R
dN

            (9) 

 
Where, m is the walker constant that varies between 0 and 1. A value of m closer to 0 shows strong stress ratio 
effect, and for m=1 the above equation reduces to the Paris law i.e. no stress ratio effect.  

 
Fig. 4 Original crack growth data for 7050-T7451 

 
Walker Equation Fitting 

In practice, a segmented (multi-slope) walker equation is used to fit the crack growth rate data [], which is 
useful for the purpose of more accurate life prediction. But, for the purpose of comparing different alloys, a single 
slope walker equation would be sufficient. A closer look at the Figure 5  shows that differences between alloys can 
be expected when cracks are small or when crack growth rate values are small (i.e. when da/dN < 10-6 in./cycle). 

A crack usually spends significant portion of its life growing in smaller da/dN vs. ΔK region, so it is important 
to capture the variability in growth rate more accurately for this region. With single slope fit, if sum of error squares 
in da/dN is minimized, then fit is naturally more accurate for higher da/dN vs. ΔK region. But, fit can be made more 
accurate for lower da/dN vs. ΔK region by simply minimizing the sum of error square in the inverse da/dN (i.e. 
dN/da). The L-2 norm of the errors in inverse crack growth rate prediction is given as follows, 
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Where, ns is number of specimens; nR is number of different stress ratios; and np is the number of data points for ith 

specimen with jth stress ratio.  
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Fig. 5 Crack growth rate comparison between alloys [8]. 

 
The walker equation is nonlinear in parameters. So, the minimization of L-2 norm is an iterative process, which 

requires an optimization procedure to find the best fit parameters. The minimization is carried out by using 
‘fminsearch’ function available in the optimization toolbox of the MATLAB. The best fit walker parameters (listed 
in Table) consolidates/collapses the original test data (shown in Figures) onto the best fit walker line (for R =0) is 
shown in Figure 6 for 7475-T7351 and Figure 7 for 7050-T7451.    
 

Table 1 Best fit Walker parameters 
Alloy C* n* m* 

7475-T7351 2.526×10-10 4.240 0.534 
7050-T7451 2.458×10-09 3.254 0.647 

 
 

 
Fig. 6 Collapsed crack growth data and Walker fit for 7475-T7351 alloy. 
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Fig. 7 Collapsed crack growth data and Walker fit for 7050-T7451 alloy. 

 
Uncertainty Sources 

The most common classification of uncertainty in the risk analysis community categorizes it into aleatory and 
epistemic uncertainty [9].  

1. Aleatory Uncertainty 
Aleatory uncertainty is due to inherent variations or randomness, which in this case is due to variability in 
the crack growth rate. Aleatory uncertainty is also sometimes referred as irreducible uncertainty, in the 
context that it cannot be reduced by collecting more test data. While, aleatory uncertainty can be reduced 
by improving the quality control. This type of uncertainty is generally characterized by the probability 
distributions that are estimated by fitting various continuous parametric distributions to the data. However, 
we have directly used the discrete sample set (i.e. test data) to model the aleatory uncertainty.  
  

2. Epistemic Uncertainty 
Epistemic uncertainty is due to the lack of knowledge, which in this case is due to the limited amount of 
test data e.g. 25 test samples for 7475-T7351 alloy. The best fit parameters of the walker equation are 
estimated from only 25 samples, but the true value (i.e. population based estimate) of the best fit 
parameters would be any possible value about the sample based estimate of the best fit parameters. 
Therefore, this kind of uncertainty can be reduced by collecting more test data. We have estimated the 
epistemic uncertainty via non-parametric bootstrapping. It allows us to estimate the sampling distribution 
(representing epistemic uncertainty) of the best fit parameters without making assumptions about the form 
of the population. The procedure is discussed in detail in the next section.    

 
Uncertainty Propagation 

The aleatory and epistemic uncertainty in the walker equation parameters is propagated by Monte Carlo 
simulation. It is a double loop process, where epistemic sample is first generated via non-parametric bootstrapping. 
Then aleatory uncertainty is estimated for each epistemic sample, which gives the total uncertainty in the best fit 
parameters and corresponding failure life.  
 
Epistemic Uncertainty Estimation via Bootstrapping       

The epistemic uncertainty is estimated via bootstrapping i.e. resampling (with replacement) the specimens 
tested for different stress ratios (R), and fitting walker equation to each bootstrap sample. The detailed procedure is 
shown in Figure 8, where first step is to estimate the best fit walker parameters (i.e. C*, n*, m*) by using the 
original test data. Then bootstrap samples are generated by resampling the test specimens from the original sample. 
The walker equation is then refitted to each bootstrap sample, where walker constant ‘m’ is fixed for each bootstrap 
sample, and is fixed to the best fit value (i.e. m*) that was estimated from the original sample. The only purpose of 
walker constant is to collapse data onto single line (as shown in Figures 6-7). The bootstrapping is repeated a million 
times, which gives sampling distribution of the best fit parameters. The sampling distribution of ‘C’ and ‘n’ for both 
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alloys (7475-T7351 and 7050-T7451) representing epistemic uncertainty in the parameters is shown in Figures 8-11. 
The statistics of sampling distributions are listed in Table 2, where coefficient of variation (COV) for 7475-T7351 
(22.6% for C, and 3.08% for n) is higher than for 7050-T7451 (7.34% for C, and 1.4% for n), partly due to 
difference in the number of samples available for fitting i.e. 25 vs. 30 samples, and partly due to more repeatable 
data available for 7050-T7451.  

 
Table 2 Statistics of sampling distributions of walker model parameters 

Alloy 
Paris constant (C) Paris exponent (n) Correlation 

µ σ COV µ σ COV ρ 
7050-T7451 2.4393×10-9 1.7897×10-10 7.34% 3.260 0.048 1.4% -0.980 
7475-T7351 2.5361×10-10 5.7340×10-11 22.6% 4.253 0.131 3.08% -0.964 

 

 
Fig. 8 Sampling distribution of C for 7475-T7351 alloy. 

 

 
Fig. 9 Sampling distribution of n for 7475-T7351 alloy. 
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Fig. 10 Sampling distribution of C for 7050-T7451 alloy. 

 

 
Fig. 11 Sampling distribution of n for 7075-T7451 alloy. 

 
Aleatory Uncertainty Estimation  

The aleatory uncertainty in the best fit walker equation parameter (C) is estimated by fixing the Paris exponent 
n (m is already fixed to m*), where n is drawn (i.e. epistemic sample) from the sampling distribution determined 
earlier. The walker equation is then fitted separately to the data from each individual test specimen in the original 
sample [5]. For example in Figure 14, if we consider the best fit parameters for the original sample as one instance 
of the epistemic uncertainty/bootstrap sample, then while estimating the aleatory uncertainty (by refitting each 
individual test specimen data separately with the walker equation) n and m will be fixed to n* and m*, with only 
variable allowed to change being C. This gives one possible realization (i.e. distribution) of the aleatory uncertainty 
in C. The aleatory uncertainty in C estimated for the original sample is shown in Figure 12 for 7475-T7351 (COV = 
25.7%) and in Figure 13 for 7050-T7451 (COV = 28.6%). Related statistics are shown in Table 3.  
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Fig. 12 Aleatory uncertainty in C for 7050-T7451 alloy (30 samples) 

 

 
 

Fig. 13 Aleatory uncertainty in C for 7475-T7351 alloy (25 samples) 
 
 

Table 3 Statistics of aleatory distribution of walker model parameters 

Alloy 
Paris constant (C) Paris constant (n) Walker constant (m) 

µ σ COV  
7050-T7451 2.8509×10-9 7.3360×10-10 25.7% 4.240 0.534 
7475-T7351 3.0722×10-10 8.6605×10-11 28.6% 3.254 0.647 

 

1.5 2 2.5 3 3.5 4 4.5

x 10
-9

0

1

2

3

4

5

6

7

Paris constant (C)

Fr
eq

ue
nc

y

1.5 2 2.5 3 3.5 4 4.5 5

x 10
-10

0

0.5

1

1.5

2

2.5

3

3.5

4

Paris constant (C)

Fr
eq

ue
nc

y



10 
 

 
Fig. 14 Epistemic and aleatory uncertainty propagation 

 
Total uncertainty 

Estimating the aleatory uncertainty in parameter C by using the procedure shown in Figure 14 for every 
bootstrap sample (with n fixed to best fit estimate ni of that particular bootstrap sample) gives us the total 
uncertainty in parameter C. The total uncertainty in C for 7475-T7351 and 7050-T7451 is shown in Figures 15-16. 
Associated statistics are listed in Table 4. 
 

Table 4 Total uncertainty statistics for Paris constant C.  

Alloy 
Paris constant (C) 

µ σ COV 
7050-T7451 2.8283×10-9 7.5725×10-10 26.8% 
7475-T7351 3.0827×10-10 1.1367×10-10 36.9% 

 
Bi-modal shape of the distribution shown in Figure is due to the uneven aleatory distribution of the original data 

set (i.e. notice large gap in Figure 12). For different values of n (i.e. epistemic samples from bootstrapping), the 
distribution of C keeps on building around the original distribution, such that big gap does not get filled up. Such 
phenomenon is not seen for 7475-T7351 due to more evenly spaced aleatory distribution i.e. very small gaps in the 
histogram of C as shown in Figure 13.   
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Fig. 15 Total uncertainty in C for 7050-T7451 alloy. 

 

 
Fig. 16 Total uncertainty in C for 7475-T7351 alloy 

 
Test Geometry and Stress Spectrum for Simulation 

The total uncertainty in best fit model parameters (C and n) found in the previous section need to be converted 
into uncertainty in the crack growth life/failure life. In order to compare the two alloys, a reliability index will be 
calculated using the failure life distributions. These distributions will be determined for nominally identical 
specimen geometry, and load spectrum.   

In practice, the reliability based design procedure requires a given risk/probability of failure (Pf) constraint to be 
satisfied on the failure life (e.g. Pf ≤10-7), where failure life (Nf) is at least equal to the design service goal (Ndsg); i.e., 
Nf  ≥ Ndsg. Ndsg of 24,000 flight hours (FH) is a typical design service goal for a mid-size business jet. Basically, 
structural sizing is done to meet the design service goal while maintaining certain acceptable probability of failure. 
In this case, Pf ≤ 10-4 is thought to be adequate due to the conservative assumptions made for the other inputs e.g. 
rogue flaw size (arf) of 0.05”. 
 
Test Geometry 

The specimen geometry used for comparing the failure life distributions of the two alloys has the same 
configuration as that of the middle tension M(T) crack specimen shown in Figure 1. The width (W) of the specimen 
is fixed at 4” because 7475-T7351 alloy plate material is not available in thickness greater than 4”, and diameter of 
the hole is d= 0.05”. The thickness (B) of the test geometry is a free variable that is found such that 0.01 percentile 
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failure life (Nf0.01%) should be greater than 24,000 flight hours (FH). The Nf0.01% translates into the probability of 
failure (Pf) constraint of 10-4.  
 
Constant Amplitude Stress Spectrum  

The constant amplitude load spectrum is used for executing the crack growth analyses. It allows using the 
integral form of the walker equation to estimate the failure life instead of using a cycle-by-cycle integration scheme, 
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Where, arf is a rogue flaw of length 0.05”, and af is a failure causing crack length estimated by Kmax failure criterion 
i.e. Kmax ≥ KIC (KIC is plane strain fracture toughness). The integrand in the above equation is solved by the 
numerical integration. A comparison between the alloys is made for two different loading conditions shown in Table 
5.    

Table 5 Test conditions defining constant amplitude load spectrum 
Test condition Max. load (Pmax, kips) Stress Ratio (R) 

1 3.456 0.05 
2 7.290 0.7 

   
Failure Life Distribution, Reliability Index, and Weight Savings 

The failure distributions for both alloys using nominally identical geometry and test condition 1 are shown in 
Figures 17-18, and corresponding statistics are listed in Table 6. 

The distribution of 7050-T7451 turns out to be bi-modal due to bi-modal shape of parameter C distribution as 
shown in Figure. Notice that 0.01 percentile failure life (Nf0.01%) satisfies the requirement of being above design 
service goal of 24,000 FH for both the alloys. The coefficient of variation (COV) for 7475 (35.8%) is higher than 
that of 7050 (24.1%) indicating more scatter in the 7475 data. The mean failure life (µNf) of 7475 is about 6.9 times 
higher than of 7050 for the nominally identical geometry. Also, uncertainty/standard deviation for 7475 is about 
10.2 times higher than that of 7050. The reliability index (β) is calculated by using the following equation, 
 

Nf dsg

Nf

N





 .      (12) 

The reliability index of 7475-T7351 is greater than that of 7050-T7351, which indicates the usefulness (through 
weight savings) of choosing 7475-T7351 for probabilistic damage tolerant design. Similar trend is seen for the test 
condition 2; the statistics are shown in Table 7.  

 
Fig. 17 Failure life distribution for 7050-T7451 alloy 
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Fig. 18 Failure life distribution for 7475-T7351alloy 

 
Table 6 Failure life distribution statistics for test condition 1  

Alloy 
Failure life (Nf, flight hours) Reliability index 

µ σ COV ρ 
7050-T7451 49,546 11,950 24.1% 2.14 
7475-T7351 3, 42,148 1, 22,308 35.8% 2.60 

 
Table 7 Failure life distribution statistics for test condition 2 

Alloy 
Failure life (Nf, flight hours) Reliability index 

µ σ COV ρ 
7050-T7451 49,356 11,904 24.1% 2.13 
7475-T7351 1,95,177 67,576 34.62% 2.53 

 
Next logical step is to estimate the weight savings if 7475-T7351 is used in the design. The weight savings are 

achieved by decreasing the thickness of specimen (i.e. allowing for higher stress) while satisfying the failure life 
constraint (Nf0.01% ≥ Ndsg) as closely as possible. The thickness reduction of 0.128” (0.45”-0.322”)/28% is estimated 
for test condition 1, and 0.9” (0.45”-0.36”)/20% for the test condition 2 (see Table 8). Notice that the ratio of 
Nf0.01%/Ndsg is higher for 7475 (1.18) than 7050 (1.07), indicating that thickness could further be reduced. It will 
bring weight reduction estimates from both test conditions much closer. 

 
Table 8 Statistics of failure distribution for 7475-T7351 alloy after thickness reduction, and weight savings 

Test  
condition 

Failure life (Nf, flight hours) 
Reliability 

index 
Initial 

thickness 
Final 

thickness 
Weight 
savings 

µ σ COV Nf0.01% ρ (B, inch.) (B, inch.)  
1 74, 867 24, 638 33% 28, 290 2.06 0.45 0.322 28.4% 
2 75, 180 24, 746 33% 28,399 2.06 0.45 0.360 20.0% 

 
 

Concluding Remarks 
The uncertainty/scatter in the failure life for 7475 was found to be higher than that of 7050-T7451 alloy. Instead of 
higher uncertainty, the reliability index of 7475-T7351 was higher than that of 7050-T7351, indicating higher mean 
life compensating for the higher uncertainty. It is concluded that for the data used in this study, 7475-T7351 will 
provide structure with lower weight than 7050-T7351 when probabilistic damage tolerant design methods are 
employed.   
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Total uncertainty (Nf)

Ndsg = 24,000 FH

Nf0.01% = 1,13,589 FH

Nf = 3,42,148 FH

µNf - Ndsg 
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Future Work 
We will repeat the procedure using variable amplitude load spectrum taken from the wing location of a business jet. 
Also, we will attempt to calculate B-basis values of fatigue crack growth life, which penalizes epistemic uncertainty 
more than the aleatory uncertainty.  
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