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Neural network (NN) is a representative data-driven method, which is one of prognostics 
approaches that is to predict future damage/degradation and the remaining useful life of in-
service systems based on the damage data measured at previous usage conditions. Even 
though NN has a wide range of applications, there are a relatively small number of literature 
on prognostics compared to the usage in other fields such as diagnostics and pattern 
recognition. Especially, it is difficult to find studies on statistical aspects of NN for the 
purpose of prognostics. Therefore, this paper presents the aspects of statistical 
characteristics of NN that are presumable in practical usages, which arise from 
measurement data, weight parameters related to the neural network model, and loading 
conditions. The Bayesian framework and Johnson distribution are employed to handle 
uncertainties, and crack growth problem is addressed as an example. 

I. Introduction 
ROGNOSTICS illustrated in Figure 1 is to predict future damage/degradation and the remaining useful life 
(RUL) of in-service systems based on the damage data obtained at previous usage conditions, which facilitate 

condition-based maintenance known as cost effective maintenance strategy in company with diagnostics. Once a 
damage model (black solid curve) is determined based on damage data at previous times under a given usage 
condition (black dots) or under the various usage conditions (grey dots), RUL which is remaining time/cycles before 
required maintenance can be predicted by progressing the damage state until it reaches the threshold. In general, 
prognostics methods can be categorized into data-driven,1 physics-based,2 and hybrid3 approaches, based on the 
usage of information. Data-driven approaches use information from collected data to identify the characteristics of 
damage state without using any specific physical model; physics-based ones combine the physical model describing 
the behavior of damage with measured data; and hybrid ones integrate the other two methods to improve the 
prediction performance. 

Since the physical model describing the behavior of damage rarely exists, data-driven approaches have a wide 
range of applications. It includes neural network (NN),4,5 Gaussian process regression,6,7 relevance vector machine,8 
least square regression,9 etc. Among these algorithms, NN is a representative data-driven method, in which a 
network model learns a way to produce a desired output such as future damage level reacting to given inputs such as 
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previous damage level and usage conditions instead of physical model. The learning process is the same as finding 
weight parameters associated with the network model by minimizing the mean square error between measurement 
data and network outputs, which is called training process, and the data used for training expressed as dotted 
markers in Figure 1 is called training data. 

In general, weight parameters are obtained as deterministic values by using an optimization process, and 
prediction uncertainties are added with confidence bounds based on nonlinear regression and/or the error between 
NN outputs and training data.10-13 It, however, is difficult to find global optimum of parameters due to measurement 
noise, a small number of data compared to the number of parameters, and the complexity of damage growth, which 
can yield a significant error in prediction results. On the other hand, Bayesian NN (BNN)14,15 has been proposed to 
resolve local optimum problem, which provides distribution of prediction results caused by measurement error and 
uncertainty in parameters that are identified as distributions based on Bayes’ theorem instead of deterministic values 
given by an optimization process. There are no literatures that employ BNN for the purpose of prognostics, though. 
Liu et al.16 repeated NN process 50 times to predict battery’s RUL, which is similar to BNN in a sense of employing 
randomness of weight parameters. 

In addition to general statistical aspects mentioned in the previous paragraph, additional issues that are 
presumable in practical usages are also addressed. Data used for input variables have mostly been considered as 
deterministic values, but they can be distributed. In such a case, there are no clear damage indicators, many number 
of damage data are given at the same usage conditions from the same system, and usage conditions such as loading 
conditions can also have uncertainties and need to be considered as distributions. This case as well as general 
statistical aspects will be considered with a crack growth example. 

The paper is organized as follows: in Section II, the process of NN is explained for the purpose of prognostics 
with a crack growth example; and in Section III, statistical aspects are considered based on the understanding of NN, 
followed by discussions and conclusions in Section IV. 

 

 
Figure 1. Illustration of prognostics. 

 

II. Neural Network 

A. Typical Network Model 
A typical architecture of NN is feed-forward neural network (FFNN),17 which is illustrated in Figure 2. In the 

figure, circles represent nodes (also called neuron or unit), and each set of nodes in the same column is called a 
layer. The nodes in the input and output layer, respectively, represent input variables and response variable. Since 
the given information for data-driven approaches are only measurement data, previous damage data and the current 
damage data are, respectively, usually employed for input and output variables. And then, the number of nodes in 
the hidden layer can be adjusted to properly express the mechanism between input and output by receiving signals 
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from input layers and forwarding them to the output layer. Even though the network model that includes selecting 
the number of hidden nodes, hidden layers and input nodes has an effect on the prediction results, it is not 
considered here because the network problem is a different issue from statistical ones as well as trial-and-error 
methods are often used to determine a suitable network model. 

Once the network model is determined, the model is functionalized using transfer functions and weight 
parameters. Transfer functions characterize the relationship between each layer, and several types of transfer 
function are available such as sigmoid, inverse, and linear function.18 Usually, the tangent sigmoid and pure linear 
functions are employed as a common way. Weight parameters include weights for the interconnected nodes and 
biases that are added to inputs of transfer functions,16,19 which are shown as rectangles and ellipses in Figure 2, 
respectively. The process of finding the weight parameters is called training or learning, and to accomplish that, 
usually many sets of training data are required. 

In general, FFNN is often called a back-propagation neural network (BPNN) because weight parameters are 
obtained through the learning/optimization algorithm20 that adjusts weight parameters through backward 
propagation of errors between actual output (training data) and the one from the network model based on gradient 
descent optimization methods. In other words, FFNN and BPNN are, respectively, to calculate the response forward 
and to update weight parameters based on the response backward. Once the network model learns enough the 
relationship between inputs and output, it can be used for the purpose of prognosis. In the following, the process of 
NN-based prognostics becomes specified with crack growth example. 

 
Figure 2. Illustration of typical network model: FFNN. 

 

B. The Process of NN with a Crack Growth Example 
Figure 3 shows an example of NN-based prognostics for a crack growth problem. The star markers are assumed 

as crack growth data measured at every 100 cycles in a fuselage panel under repeated pressurization loadings, which 
are generated based on Paris model21 with true damage growth parameters true 3.8m  , 10

true 1.5 10C   , the initial 

half crack size 0 10mma  , load magnitude  =80MPa, and random noise that is uniformly distributed between 

1.0- mm and 1.0+ mm. Note that the true values of parameters are used only for the purpose of generating 
measurement data in this paper. 

The network model is constructed based on aforementioned FFNN with two input nodes, one hidden layer with 
one node; and thus, the number of total weight parameters become 5 including three weights ( 2 1 1 1   ) and two 
biases (1+1). For input variables, damage data ( 2 1,k kx x  ) at the previous two 100 cycles are used, and the current 

damage data ( kx ) becomes the output, k  is the current time index. If 16k   (the current cycle is 1500 cycles), 14 

sets of input and output data are available, which are the training data used to obtain weight parameters via 
optimization process. Then future damages ( 1 2 3, , ,...p p p

k k kx x x   ) are predicted based on the obtained weight 

parameters and the previous damage data, i.e., input variables. According to the previous damage data used as 
inputs, prediction methods can be divided into short term prediction and long term prediction. Short term prediction 
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is one-step ahead prediction since it uses only measured data for input, e.g., 1 2,k kx x   are inputs to predict 3
p
kx  . On 

the other hand, long term prediction is multi-step ahead prediction since it utilizes predicted results as inputs, e.g., 

1 2,p p
k kx x   are inputs to predict 3

p
kx  .  

Future damage prediction results are shown in Figure 3. In the figure, thick dotted curve and thick dashed curve 
are, respectively, the median of short term prediction and long term prediction obtained by repeating NN 30 times, 
and their thin curves mean 90% confidence intervals. The wide range of long term prediction interval means that the 
results become significantly different whenever the NN process is performed due to the local optimum problem, 
even though the training simulation results shown as circles are close to the training data shown as gray star makers. 
Nevertheless, NN can be used for the purpose of prognostics by employing proper statistical methods. Although 
repeating the process to obtain statistical distribution can be a way, a more logical method is introduced in the next 
section. 
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Figure 3. Example of NN-based prognostics with crack growth example. 

 

III. Statistical Aspects in NN 
In the following subsections, different statistical aspects that are presumable in practical usages are considered 

according to given information. 

A. Prediction Uncertainty 
The first case is a common condition caused by noise in measurement data and parameter identification, and it is 

to identify the weight parameters as distribution based on Bayesian framework. Bayesian inference is a statistical 
method in which observations are used to estimate and update unknown parameters such as weight parameters in the 
form of a probability density function (PDF). Bayesian inference is based on the following Bayes’ theorem:22 

     | |p L pz z                                                                            (1) 

where   is a vector of unknown parameters, z  a vector of observed data,  |L z   the likelihood,  p   the prior 

PDF of  , and  |p z  the posterior PDF of  �conditional on z . The likelihood is the PDF value of z  

conditional on given  , and the prior information can be given, assumed, or not considered. The reliability of 
posterior PDF increases as more data are used, which gives more accurate and precise prediction results of damage 
and RUL. 

Figure 4 shows the comparison between repeating NN (RNN) and Bayesian NN (BNN). Figure 4 (a) and (b) are 
the same condition as the previous example in Section II.B but with a larger level of noise,  5mm. Figure 4 (c) and 
(d) are also crack growth problem, but they are based on Huang’s model23 that express crack growth under variable 
amplitude loading condition, which is employed to show the case of complex damage model. In both cases, large 
noise and complex model, BNN outperforms RNN in terms of accuracy and precision of future damage prediction. 
The two cases means severe prediction conditions, but such conditions are more likely to be in real damage data. If 
the damage data have small level of noise and the damage growth increase monotonically, it will be more efficient 
to use RNN as Liu et al.16 did. There are two reasons why: (1) the results obtained by repeating NN more than 30 
times do not much change with other attempts, which gives more reliable results compared to use NN just one time 
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with confidence bounds, and (2) since it grows hard to identify the distribution of weigh parameters as the number 
of parameters depending on network model increases, BNN is interrupted to construct network model flexibly. 
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(a) RNN with large noise 
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(c) RNN with complex model 
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(b) BNN with large noise 
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(d) BNN with complex model 

Figure 4. Comparison example of NN-based prognostics with crack growth example. 
 

B. Input Variable Uncertainty 
Input variables of NN are composed of damage data and usage conditions that are considered as deterministic 

values, and never considered as distributions. However, input variables can be distributed in such cases: many 
number of damage data are given at the same usage conditions from the same system, usage conditions such as 
loading conditions are uncertain, and there are no clear damage indicators. Johnson distribution24 having four 
parameters, four quantiles corresponding to probabilities 0.0668, 0.3085, 0.6915 and 0.9332, is employed to 
prediction future damage distribution. Figure 5 shows examples of Johnson distribution in cases of normal and beta 
distribution. The black solid curves are exact probability density function (PDF) from each distribution, and the bars 
are the results from Johnson distribution using four quantiles represented as red star markers. Johnson distribution 
can express any other distribution types when the four quantiles are correctly given. 

The same crack growth example as the previous one is again employed to demonstrate the case of random input 
variable. Distributed synthetic data are generated from the load magnitude   =78MPa, the perturbation of Paris 

model parameter m  and small noise level:    ~ 3.8 0.027, 3.8 0.027 , ~ 1, 1m U noise U mm    , whose result is 

shown in Figure 6. Each cycle has 5000 samples as the measurement data, whose distribution at 0, 800, 1500, and 
2200 cycles are shown in Figure 6(b) with their true damage size shown as black squares. It is shown that the shape 
of distributions is changed as cycle increases. Four quantiles whose example at 2500 cycles is shown as red star 
markers in Figure 6(a) are used for input variables. Since there were two input variables and one output variable in 
the previous study, total number of input and output variables becomes eight and four, respectively. 

Figure 7 shows damage prediction results at 1500 cycles. In Figure 7(a), the median of future damage growth is 
very close to the true one, and 90% confidence interval also covers damage distribution at every cycle. Figure 7(b) 
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and (c) show comparison of damage distribution between predicted one and measured one at 1600 and 2400 cycles, 
and their errors are listed in Table 1. The maximum magnitude of error is 5.75% at 2400 cycles that is 900 cycles 
ahead prediction from 1500 cycles. These results show that NN using Johnson distribution is applicable for 
prediction of damage distribution. 

Lastly, Figure 8 shows real measurement data from the bearing provided by the Center for Intelligent 
Maintenance Systems.25 Vibration signal is monitored using accelerometer during one second with 20kHz sampling 
rate at specific intervals. The distributions in Figure 8(a) and Figure 8(b) are, respectively, observed from a bearing 
without failure and a bearing with failure. While the distribution of the case without failure does not changes much, 
the distribution with failure gets wider and its mode shift to the value greater than zero as cycles increase. Even 
though it has not been fully explored to consider the change of distribution as the damage indicator (there are no 
clear criteria of damage threshold yet), the results in this section show that this method has a possibility to be 
employed for prognosis when there are no clear damage indicators like this bearing problem. 
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(a) standard normal distribution 

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Random variable

P
D

F

 

 

Beta dist.
Johnson dist.
4-quantiles

 
(b) beta distribution with α=2, β=5 

Figure 5. Example of Johnson distribution. 
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(a) measured data at every 100 cycles 
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(b) distribution of measured data 

Figure 6. Distributed synthetic data. 
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(a) damage growth prediction 
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(b) damage distribution at 1600 cycles 
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(c) damage distribution at 2400 cycles 

Figure 7. Damage prediction results. 
 

Table 1 Errors between prediction results and measurement at 1500 cycles. 
Cycles 1600 1800 2000 2200 2400 

measurement 0.0186  0.0210  0.0239  0.0276  0.0327  
prediction 0.0186  0.0210  0.0240  0.0279  0.0332  
error (%) 0.0346  0.0158  0.5782  0.9487  1.8163  

measurement 0.0196  0.0221  0.0253  0.0296  0.0354  
prediction 0.0197  0.0225  0.0261  0.0308  0.0374  
error (%) 0.6279  1.5374  2.8931  4.1835  5.7526  

measurement 0.0207  0.0237  0.0278  0.0333  0.0413  
prediction 0.0207  0.0237  0.0276  0.0329  0.0402  
error (%) 0.1004  0.0141  0.5928  1.3502  2.6584  

measurement 0.0218  0.0251  0.0296  0.0363  0.0463  
prediction 0.0218  0.0253  0.0299  0.0363  0.0453  
error (%) 0.3191  0.8199  0.7796  0.0934  2.1976  
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(a) acceleration: failure not occurred 
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(b) acceleration: failure occurred 
Figure 8. Real damage data. 

 

IV. Conclusions 
The goal of this paper is to address the aspects of statistical aspects in NN that are presumable in practical usages. 

As the first case, RNN and BNN are compared in terms of prediction uncertainty that is general statistical aspect 
related with noise in measurement data and weight parameters in NN model. BNN outperforms RNN under severe 
prediction conditions such as large level of noise in data and complex damage growth. In another case, random input 
variables are handled by employing Johnson distribution to NN. Future damage distribution are well predicted, and 
the results show that the method considering the change of distribution has a possibility to be employed for 
prognosis when there are no clear damage indicators. 
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