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Abstract 
 

Epistemic uncertainty, the lack of knowledge, is often more important than aleatory uncertainty, variability, in estimating reliability of a 
system. While the probability theory is widely used for modeling aleatory uncertainty, there is no dominant approach to model epistemic 
uncertainty. Different approaches have been developed to handle epistemic uncertainties using various theories, such as probability theo-
ry, fuzzy sets, evidence theory and possibility theory. However, since these methods are developed from different statistics theories, it is 
difficult to interpret the result from one method to the other. The goal of this paper is to compare different methods in handling epistemic 
uncertainty in the view point of calculating the probability of failure. In particular, four different methods are compared; the probability 
method, the combined distribution method, interval analysis method, and the evidence theory. Characteristics of individual methods are 
compared in the view point of reliability analysis. 
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1. Introduction 

Epistemic uncertainty, the lack of knowledge, is often more 
important than aleatory uncertainty, variability, in estimating 
reliability of a system. While the probability theory is widely 
used for modeling aleatory uncertainty, there is no dominant 
approach to model epistemic uncertainty. Different approach-
es have been developed to handle epistemic uncertainties us-
ing various theories, such as probability theory [1], fuzzy sets 
or possibility theory [2], and evidence theory [3,4]. However, 
since these methods are developed from different statistics 
theories, it is difficult to interpret the result from one method 
to the other. The goal of this paper is to compare different 
methods in handling epistemic uncertainty in the view point of 
calculating the probability of failure.  

It should be stressed out that we focus on describing charac-
teristics of different approaches instead of suggesting a good 
approach. Here, we examine four approaches in modeling 
epistemic uncertainty: the probability method, the combined 
distribution method, the interval analysis method and the evi-
dence theory. The first two methods, also known as second-
order probability approach, model epistemic uncertainty with 
a distribution. The first method separates epistemic uncertain-
ty from aleatory uncertainty and uses double-loop Monte Car-
lo simulation (MCS) to calculate the distribution of reliability. 
The second method, on the other hand, integrates epistemic 
uncertainty with aleatory uncertainty to predict combined 
distribution, whose results are equivalent to the mean of relia-
bility from the first method. The interval analysis method is 
the simplest way to propagate epistemic uncertainty into in-
terval of reliability. This method is a special case of the prob-
ability based method with separated epistemic uncertainty 
modeling. The epistemic uncertainty is defined with a bound-

ed uniform distribution and the corresponding reliability 
bounds. Evidence theory models epistemic uncertainty with 
sets of intervals. A basic probability is assigned for each inter-
val and intervals may overlap each other or have a gap.  

We demonstrate these four approaches with a simple exam-
ple of failure strength estimation. There is aleatory uncertainty 
in the failure strength due to inherent material variability. The 
source of epistemic uncertainty is from estimating the distribu-
tion of failure strength using a finite number of samples; i.e., 
statistical uncertainty. We will present how to interpret the 
epistemic uncertainty in the probability of failure for different 
approaches. 

 
2. Aleatory and Epistemic Uncertainty  

In the case of time-independent structural systems, it is often 
convenient to use a limit-state function in order to describe a 
reliability of a system. In this paper, the following form of 
limit-state function is used to determine the safety and failure 
of the system: 

 G S R= -
 

 (1) 
where, in the case of strength of material, S is the failure 
strength of a material, and R is the stress applied to the struc-
ture. The system is considered safe when G > 0 and failed 
with G ≤ 0. When the material strength or applied stress are 
uncertain, the safety of the system is evaluated in terms of 
reliability or, equivalently, the probability of failure defined as 

[ 0]
F
P PG= £

 
(2) 

where P[ ] stands for the probability of the event in the brack-
et. 

In order to simplify the discussion, it is assumed that there is 
no uncertainty in the applied stress; that is, the failure strength 
is the only source of uncertainty. Due to inherent variability of 
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the material, it is assume that the failure strength is normally 
distributed; that is,  

true true true
~ N( , )S m s

 
(3) 

where 
true true

andm s  are, respectively, the mean and 
standard deviation of the true strength of the material, which 
are also called the distribution parameters. The uncertainty 

true
S  is inherent variability and called aleatory uncertainty.  

Unfortunately, the true distribution parameters of failure 
strength are unknown, and it can only be estimated through 
tests. When n number of specimens are used to estimate the 
failure strength, the estimated distribution of the failure 
strength becomes 

test test test
~ N( , )S m s

 
(4) 

where 
test test

andm s  are, respectively, the sample mean 
and standard deviation of test. Due to sampling error, the dis-
tribution parameters from test are different from the true ones. 
Of course, when infinite test samples are used, 

test
S  will 

converge to 
true
S . However, since a finite number of samples 

are used, the estimated distribution parameters have epistemic 
uncertainty (i.e., sampling uncertainty or statistical uncertain-
ty). From the classical probability theory, the uncertainty in 
the estimated mean and standard deviation can be expressed 
by  

test
est test

~ ,N
n

s
m
æ ö÷ç ÷çM ÷ç ÷ç ÷è ø  

(5) 

test
est

~ ( 1)
1
n

n

s
S -

-


 
(6) 

where ( 1)n   is the chi-distribution of order 1n  . Figure 
1 illustrates the concept of aleatory and epistemic uncertainty 
of the failure strength distribution. 
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Fig. 1. Illustration of the concept of aleatory and epistemic 
uncertainty of the failure strength distribution. 
 

The source of epistemic uncertainty in Eqs. (5) and (6) 
are from sampling error. In general, however, different 
sources of epistemic uncertainty exist, such as modeling error, 
numerical error, etc. Although the statistical uncertainty in Eqs. 
(5) and (6) is given in the form of a distribution, epistemic 
uncertainty is not random by nature; that is, the true mean and 
standard deviation will be a single value, but their values are 

unknown. In this regard, the PDF of the distributions in Eqs. 
(5) and (6) should be interpreted as the shape of knowledge 
about the parameter. For example, Eq. (5) can be interpreted 
that the likelihood of 

test
m  being 

true
m  is higher than any 

other values. 
When both aleatory and epistemic uncertainties exist, de-

signer must determine a conservative failure strength in order 
to compensate for both uncertainties. For example, when there 
exists aleatory uncertainty only, designer can determine the 90 
percentile of the distribution as a conservative failure strength. 
When epistemic uncertainty also exists, however, the 90 per-
centile cannot be determined as a single value, rather it be-
comes a distribution by itself. A designer must consider the 
effect of epistemic uncertainty when he or she chooses a con-
servative failure strength.  

The conservative estimate of failure strength for both aleato-
ry and epistemic uncertainty has already been implemented 
aircraft design. When coupon tests are used to estimate a con-
servative failure strength of an aluminum material, it is re-
quired to be estimated using A- or B-basis approach [5]. In the 
case of B-basis, for example, the conservative failure strength 
is estimated by 90 percentile with 95% confidence. The 90 
percentile is for aleatory uncertainty, while 95% confidence is 
for epistemic uncertainty. 

In the case when the epistemic uncertainty is represented by 
a probability distribution as in Eqs. (5) and (6), the probabil-
ity theory can be used to calculate the effect of both aleatory 
and epistemic uncertainty, but it may not be straightforward if 
different methods of representing epistemic uncertainty are 
employed. In the following sections, four different methods of 
representing epistemic uncertainty are explained in the view 
point of conservative estimation of the failure strength: (1) the 
probability method, (2) the combined distribution method, (3) 
the interval analysis method and (4) the Dempster-Shafer evi-
dence theory. 

In order to make the discussions in the following section 
simple and consistent, we further simplify the epistemic un-
certainty. It is assumed that epistemic uncertainty only exists 
in the estimated mean, est , not in the estimated standard 
deviation. In addition, it is further assumed that the epistemic 
uncertainty in the mean is uniformly distributed. This simpli-
fication is necessary because some methods do not use proba-
bility distribution to represent epistemic uncertainty. Table 1 
shows the distribution parameters for both aleatory and epis-
temic uncertainty 

 
Table 1. Distribution parameters for aleatory and epistemic uncertainty. 
 

Failure strength 
est est est

( , )S N M S  

Estimated mean 
est

(200,250)UM   

True mean 
true

225m =   

Estimated standard deviation 
est true

20s s= =   

Applied stress 190R =  
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3. Methods of Representing Epistemic Uncertainty  

3.1 Probability method 

The probability method is the most common approach in 
representing both epistemic and aleatory uncertainty. In this 
approach, the epistemic uncertainty is given in the form of a 
probability distribution. In the case of sampling error (i.e., 
statistical uncertainty), the epistemic uncertainties in the mean 
and standard deviation can be represented by normal and chi 
distributions, respectively, as shown in Eqs. (5) and (6). In 
the case of modeling error, since the epistemic uncertainty is 
related to the lack of knowledge, a uniform distribution is 
frequently used. However, it is important to note that even if 
the epistemic uncertainty is represented in the form of proba-
bility distribution, its interpretation should be different from 
that of aleatory uncertainty. That is, there is no randomness in 
epistemic uncertainty, but the probability distribution is used 
to shape the form of knowledge regarding the uncertain varia-
ble. Therefore this method is preferable when the information 
on the epistemic uncertainty is detail enough, such as the case 
of sampling error, so that the probability distribution of the 
epistemic uncertainty can be formed. 

The problem formulation in Section 2 is based on the situa-
tion where the form of probability distribution for an uncertain 
variable is known, but the distribution parameters governing 
the distribution are uncertain. In such a case, the estimated 
failure strength essentially becomes a distribution of distribu-
tions. The estimated distribution of the failure strength can be 
obtained using a double-loop Monte Carlo simulation (MCS), 
as shown in Fig. 2. In the figure, the outer loop generates n 
samples from the estimated mean distribution, 

est
(200,250)M U , from which n sets of normal distribu-

tions, 
est est

( , )iN m s , can be defined. In the inner-loop, m 
samples of failure strengths are generated from each 

est est
( , )iN m s , which represents aleatory uncertainty. Since the 

failure strength is normally distributed, it is also possible that 
the inner-loop can be analytically calculated without generat-
ing samples. 
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Fig. 2. Double-loop Monte Carlo simulation for estimated distribution 
of failure strength. 

 
For each given sample from epistemic uncertainty, the alea-

tory uncertainty is used to build a probability distribution, 

est est
( , )iN m s , from which the probability of failure , i

F
P , can 

be calculated. By collecting all samples, a distribution of 
probability of failure can be obtained, which represents the 
epistemic uncertainty. A conservative estimate of the probabil-
ity of failure, 90

F
P , can be obtained by taking the 90 percen-

tile of the distribution. Therefore, the effect of aleatory uncer-
tainty is considered by calculating i

F
P , while that of epistem-

ic uncertainty is considered by calculating 90

F
P . 

For the given example, the PDF of the probability of failure 
and its 90 percentile conservative estimate is shown in Figure 
3. It is noted that since the PDF of the probability of failure is 
highly skewed, the conservative estimate, 90

F
P , is far from its 

mean value, m

F
P . 
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Fig. 3. PDF of the probability of failure and its 90 percentile conserva-
tive estimate.  

 
In the probability-based method, the epistemic and aleatory 

uncertainties are treated separately, which can have both ad-
vantages and disadvantages. Disadvantages are the computa-
tional cost related to the double-loop MCS and the increase in 
dimensionality. That is, the number of uncertain input varia-
bles increases. Advantages are the separate treatment of epis-
temic and aleatory uncertainty such that it is clear to identify 
the sources of uncertainty.  

 
3.2 Combined distribution method 

In the combined distribution method, the epistemic and 
aleatory uncertainties are combined together and represented 
as a single distribution. Because of that, the advantages and 
disadvantages of the probability method are interchanged in 
this method. That is, the estimated true method is computa-
tionally inexpensive with a less number of uncertain input 
variables, while it cannot separate epistemic uncertainty from 
aleatory uncertainty. 

If MCS-based sampling method is used to calculated the es-
timated true distribution, all n×m samples in Figure 2 are 
used to obtain the estimated distribution of failure strength, 
which includes both aleatory and epistemic uncertainty. How-
ever, the real advantage of the estimated true distribution is 
when an analytical method is used to calculate the combined 
distribution, which eliminates sampling error. In order to 

max
FPmin

FP
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model the above MCS process analytically, the estimated 
failure strength is firstly defined as a conditional distribution 
as 

est est est est est
( , ) N( , )S m s m s  

 
(7) 

where the left-hand side is a conditional random variable giv-
en 

est
m  and 

est
s . The PDF of the conditional distribution 

can be calculated by integrating the distribution parameters. 
Since only the uncertainty in the mean is considered, the PDF 
of the failure strength can be expressed as 

estest est est est est est
( ) ( | ) ( )
S
f s s f df m m m

¥

M-¥
= M =ò  

 
(8) 

where 
est est est

( | )sf mM =  is the normal PDF of failure 
strength with given 

est
m , and 

est est
( )

M
f m  is the PDF of the 

mean parameter, which is uniformly distributed as given in 
Table 1. For mathematical details when both the mean and 
standard deviation have epistemic uncertainty, readers are 
referred to Park et al. [6]. Once the PDF of the estimated fail-
ure strength is obtained, the probability of failure can be calcu-
lated using Eq. (2) as 

est

est est
( ) d

R

F S
P f s s

-¥
= ò  

 
(9) 

As the estimated distribution includes both aleatory and epis-
temic uncertainty, the probability of failure is a single value. 
Park et al. [6] showed that Gauss quadrature with 50 segments 
are accurate enough when the level of probability of failure is 
in the order of 10-7, while MCS has more than 200% COV 
with a million samples. 

 It is interesting to note that the probability of failure in Eq. 
(9) is indeed the mean of the probability of failure distribution, 
m

F
P , from the probability method. It is relatively easy to show 
this fact by using MCS process, as 

( ) ( )
1 1 1

1 1 1
0 0

n m n m

ij i
j i i

I G I G
n m nm

´

= = =

é ù
ê ú< = <ê ú
ë û

å å å
 

(10) 

In the above equation, the term on the left-hand side corre-
sponds to 0.0789m

F
P =  from the probability method, 

while the term on the right-hand side is est 0.0786
F
P =  in 

Eq. (9). 
In terms of computational cost, the estimated distribution 

method is more efficient than the probability method because 
the former can obtain the probability of failure through numer-
ical integration. However, since the former can only estimate 
the expected value of epistemic uncertainty, it is difficult to 
take a conservative estimate. Especially when the distribution 
is severely skewed, such as the distribution of the probability 
of failure in Fig. 3, it can be dangerous to use a mean value. 
Therefore, it is not easy to find the confidence interval due to 
epistemic uncertainty. 

 
3.3 Interval analysis method 

The interval analysis method is considered as the simplest 
way to represent epistemic uncertainty. Compared to the 
probability method, the interval analysis method assumes that 
nothing is known about the input uncertainty except for the 

lower- and upper-bound [7]. Since the least amount of infor-
mation is used in representing the input uncertainty, it is natu-
ral that the output uncertainty will also have the least amount 
of information; that is, the lower- and upper-bound of the lim-
it-state function. 

Although the input uncertainty is represented in the simplest 
method, it is not straightforward to find the minimum and 
maximum values of the limit-state function, unless it is a 
monotonic function of input variables. Optimization algo-
rithms can be employed to find the minimum and maximum 
values of limit-state function. However, many optimization 
algorithms are limited to local optima, and finding global op-
tima is often computationally challenging.  

Although the interval analysis method does not assume any 
particular distribution type between the intervals, it is conven-
ient to consider the input interval is uniformly distributed, and 
uniform samples are generated to find the minimum and max-
imum of limit-state samples. Of course, in this case, the accu-
racy depends on the number of samples. In this regard, the 
interval analysis method becomes similar to the probability 
method when the epistemic uncertainty is uniformly distribut-
ed between intervals. Therefore, the minimum and maximum 
values of the probability of failure from the double-loop MCS 
will be identical to that of the interval analysis method, which 
is in this case min max[ , ] [0.00135, 0.309]F FP P = , as shown 
in Fig. 3. Therefore, this method can be used only when very 
limited information on input epistemic uncertainty is available. 
Even so, it never used information that is generated during 
uniform sampling searching for the minimum and maximum 
values of probability of failure. 

Since the probabilistic concept is not used in the interpreta-
tion of the interval analysis results, it is not possible to find 
confidence intervals. Instead, the maximum and minimum 
values of probability of failure can be used for the purpose of 
conservative design. As shown in Table 2, however, the max-
imum PF from the interval analysis method is too conservative 
compared to 90

F
P  from the probability method. This is partly 

because the tail portion of the distribution is significantly 
skewed.  

 
Table 2. Comparison of uncertainty in the probability of failure be-
tween different methods. 
 

Method Estimated probability of failure 

Probability method 
900.0789, 0.23m

F F
P P= =  

Combined distribution method
est 0.0786
F
P =  

Interval analysis method min max[ , ] [0.00135, 0.309]F FP P =
Evidence theory 90 90[ , ] [0.154,0.309]Bel Pl =  

 
3.4 Evidence theory 

Evidence theory, also called Dempster-Shafer theory, 
measures uncertainty with belief and plausibility, which are 
the lower- and upper-bounds of probability with evidence 
instead of probability distribution. It is close to the interval 
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analysis method in a sense that uncertainty is represented in 
the form of lower- and upper-bounds, while it is close to the 
probability method in a sense that each interval has an as-
signed probability. It is useful for epistemic uncertainty in 
situations where there is little information on which to evalu-
ate a probability or when the information is nonspecific, am-
biguous, or conflicting. 

In Dempster-Shafer evidence theory, the epistemic uncer-
tain input variables are modeled using a belief structure, which 
is a set of intervals with basic probability assignment (BPA) to 
each interval, which indicates the level of likelihood that the 
uncertain input falls within the interval. If the entire range of 
epistemic uncertainty is represented by a single interval with 
BPA = 1, it becomes identical to the interval analysis method. 

In order to show epistemic uncertainty in evidence theory, a 
belief structure on the input failure strength is constructed as 
shown in Fig. 4(a), where each interval has a constant BPA of 
0.2.  
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(b) 

Fig. 4. CBF and CPF of the probability of failure. (a) Basic probability 
assignment for five overlapping intervals, and (b) cumulative plausibil-
ity and belief functions of the probability of failure. 

 

The main process of evidence theory is to find the cumula-
tive belief function (CBF) and the cumulative plausibility 
function (CPF) of the probability of failure. CBF is the cumu-
lative belief that the uncertain probability of failure PF is less 
than a given value y, ( )FBel P y£ . Similarly, CPF is the 
cumulative plausibility that the uncertain probability of failure 
PF is less than a given value y, ( )FPl P y£ .  

CBF and CPF can be found by performing a similar process 
with the interval analysis method: finding minimum and max-
imum values and accumulating BPA of each interval. Since 
the interval analysis method is used for each interval, the evi-

dence theory can be expensive, especially when multiple vari-
ables are involved. 

Figure 4(b) shows the CBF and CPF for the probability of 
failure. Similar to the interval analysis method, it is not easy to 
define a confidence interval for the evidence theory. However, 
different from the interval analysis method, it is possible to 
estimate a narrower interval corresponding to 90 percentile 
from CBF and CPF graphs. For example, 90 percentile of 
CBF is 90 0.15Bel = , while that of CPF is 90 0.309Pl = . 
Therefore, the range of the probability is much narrower than 
that of the interval analysis method. In addition, this range 
also covers the 90 percentile from the probability method, 

90 0.23
F
P = . 

The interpretation of CBF and CPF is a combination of the 
probability method and the interval analysis method. For ex-
ample, the minimum likelihood that the probability of failure 
is less than 0.1 is 0.6, while the maximum likelihood is 0.8. 
Therefore, connecting with the probability method, it is possi-
ble to consider that CBF is the lower-bound of CDF, and CPF 
is the upper-bound. This observation becomes clear if the 
number of intervals increases. Figure 5 compares the CBF and 
CPF for different number of intervals. It is clear that as the 
number of intervals increases, the gap between CBF and CPF 
decreases and both the CBF and CPF converge to the distribu-
tion of probability of failure obtained from the probability 
method (black curve). 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3

number of
intervals : 5

number of
intervals : 10

number of
intervals : 20

 
Fig. 5. Comparison between probability method and evidence theory 
with different numbers of intervals. 

 
4. Conclusions 

In this paper, four different methods of representing epistemic 
uncertainty are presented in estimating the uncertainty in the 
probability of failure. It is found that the probability method rep-
resents the uncertainty most accurately as it uses the full distribu-
tion of input uncertainty. On the other hand, the interval analysis 
method only provides a lower- and upper-bounds of the proba-
bility of distribution because of the lack of information in input 
epistemic uncertainty. Since computational costs of these two 
methods are almost identical, the choice depends on the availa-
bility of information of the input uncertainty.  

The combined distribution method has a computational ad-
vantage but only provides the mean value of the distribution, 
which can be dangerous especially when the distribution is high-
ly skewed. However, this method is the most computationally 
inexpensive. The evidence theory is located between the proba-
bility method and the interval analysis method, but the computa-
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tional cost can be the highest among four methods. As more 
information is available for input uncertainty, this method con-
verges to the probability method. Figure 6 illustrates the distribu-
tions of the probability of failure from the four methods.  

Based on this study, it is concluded that it is important to 
choose a method based on the level of information available in 
input epistemic uncertainty.  
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Fig. 6. CDF of the probability of failure. 
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Nomenclature 

G     : Limit-state function 
S     : Capacity (failure strength) 

R    : Response (applied stress) 

true
m   : Mean of true failure strength 

test
m   : Mean failure strength from test 

est
m   : Estimate of true mean failure strength 

true
s   : Standard deviation of true failure strength 

test
s   : Standard deviation of failure strength from test 

est
s   : Estimated standard deviation of true failure strength 
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