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ABSTRACT 
 

This paper presents multiscale modeling of composites under high strain rate 
impact using surrogate models. The material response under high strain rate impact 
has relatively been well studied for metallic materials. However, when it comes to 
composites, the mathematical model for failure becomes very complicated due to 
various failure modes. Under high strain rate impact, the major failure mechanisms 
are fiber breakage, fiber debonding and pullout and delamination between adjacent 
plies. The first two mechanisms initiate at the fiber-matrix level and should be 
modeled in micro-scale, while delamination should be modeled in meso-scale and 
macro-scale. In micro-scale, fiber-matrix structure is modeled to simulate fiber 
fracture and debonding, which contribute to the degradation of material properties 
in macro-scale. In macro-scale, high strain rate impact is simulated using nonlinear 
explicit finite element analysis with the degraded material properties from micro-
scale simulation. Delamination is also included in macro-scale. 

This paper develops a multiscale modeling technique of fracture failure 
behavior of composites under high strain rate. Multiscale modeling of fracture 
phenomena of composites will consist of (1) micro-scale modeling of fiber-matrix 
structure using the unit-volume-element technique, which can incorporate with the 
boundary effect, and the level set method for crack modeling, which can model the 
crack propagation independent of finite element mesh; (2) macro-scale simulation 
of composite panels under high strain-rate impact using material response 
calculated from micro-scale modeling; and (3) surrogate modeling to integrate the 
two scales. The degradation of material strength due to fiber cleavage will be 
calculated from micro-scale modeling and will be used in macro-scale simulation. 
The surrogate model includes both micro-scale parameters, such as volume fraction, 
and macro-scale parameters, such as strain rate. The proposed multiscale modeling 
technique can provide a practical alternative to massive parallel processing. 
Keywords: multi-scale modeling, high strain rate, surrogate 
 
________________ 

Nam H. Kim, Associate Professor, Dept. of Mechanical & Aerospace Engineering, College 
of Engineering, University of Florida, USA 
Minhyung Lee, Professor, School of Mechanical & Aerospace Engineering, Sejong 
University, South Korea 
Shu Shang, Graduate Research Assistant, Dept. of Mechanical & Aerospace Engineering, 
College of Engineering, University of Florida, USA 



INTRODUCTION 
 

Composite materials are gaining increasing prominence in engineering 
applications. They allow to take advantage of different properties of component 
materials, of the layup configuration and of the interaction between the constituents 
to obtain a tailored behavior. Composite materials may present high stiffness and 
damping, improved strength and toughness, improved thermal conductivity and 
electrical permittivity, improved permeability, and unusual physical properties such 
as negative Poisson’s ratio and negative stiffness inclusions [1]. 

For most of linear analyses of composite structures, instead of taking the 
individual constituent property and geometrical distribution into consideration, 
homogenized material properties are used. However, when higher accuracy is 
required, we need to refer directly to the microscopic scale. Then multi-scale 
modeling is needed to couple macroscopic and microscopic models to take 
advantage of the efficiency of macroscopic models and the accuracy of the 
microscopic models [2]. 

Most composite materials are multi-scale in nature, i.e. the scale of the 
constituents is of lower order than the scale of the structure. The length scales range 
from the fiber size whose dimension is measured in microns, to the individual plies 
in laminates whose thicknesses are measured in fractions of millimeters, to the 
laminates themselves whose sizes are measured in millimeters. The laminates then 
form parts of composite structures whose sizes are measured in meters. The 
physical phenomena observed at any of these length scales are linked to those on 
the neighboring length scales. 

For fiber-reinforced composites, the overall hierarchy of multi-scale analysis is 
composed of micro-level (fibers and matrix), meso-level (plies) and macro-level 
(laminated composite). One of the major challenges is how to bridge the scales. 
Currently, typical multi-scale modeling techniques use parallel processing to couple 
the scales. However, this requires huge computational resources. Bridging three or 
more scales often necessitates unrealistic computing power even with the most 
versatile facilities available. Another situation is uncertainty quantification often 
requires numerous repetitions of response analyses, and it is easy to lose the 
feasibility of such huge computational resources. 

A new bridging methodology is proposed to overcome the computational 
burden in typical multi-scale modeling techniques, which often require massive 
parallel processing. The constitutive relations at a macroscopic point are estimated 
by performing micro-scale finite element analysis on a unit volume element. Two 
major failure modes, fiber breakage and fiber debonding, both initiate at the fiber-
matrix level and contribute to material property degradation, are modeled in the 
micro-scale. And delamination between plies should be modeled in meso-scale and 
macro-scale. Then the two hierarchy of multi-scale analysis are integrated using 
surrogate modeling. This procedure can be regarded as sequential multi-scale 
modeling, in which the micro-to-macro homogenization process is made separately 
from the structural analysis. However, in typical sequential multi-scale procedure, 
micro-scale modeling is used to estimate the parameters of a certain material model. 
Only limited information can be transferred from micro-scale to macro-scale 
because of the limitation of material models. Compared with homogenization 
technique used in typical sequential multi-scale procedures, we expect the proposed 



bridging methodology based on surrogate modeling to be able to transfer more 
information from the micro-scale to the macro-scale. 
 
 
UVE APPROACH FOR MODELING FIBER FRACTURE AND PULLOUT 
 
Unit Volume Element 
 

A variety of theories have been developed for micro-scale modeling of 
composite materials analytically, such as effective medium models of Eshelby [3], 
Hashin [4] and Mori and Tanaka [5]. And the traditional numerical method is 
representative volume element (RVE). A typical RVE of unidirectional fiber-
reinforced composites is shown in figure 1. The analytical methods ignore the 
interaction among fibers by assuming that fiber is relatively small. This is not 
accurate since the nominal volume fraction of fiber is between 0.5 and 0.7, there 
exists a strong interaction between fibers. RVE assumes the periodic characteristics 
of fiber composites and applies the periodic boundary condition. However, when it 
comes to uncertainty quantification, RVE becomes inappropriate since periodicity 
in RVE works against fiber fracture and uncertainty in the layout of fibers. 
Uncertainty is caused by randomly distributed  distance between fiber, but the 
periodicity enforces the distance in a certain pattern. In addition, the periodic 
boundary condition can often be inappropriate for composite plates. The 
dimensions in the membrane plane are large enough to be considered periodic, but 
the thickness direction of composite plates is relatively small, and the boundary 
effect becomes important in the response. In this research, instead of RVE, the unit 
volume element (UVE) is used. The major different between RVE and UVE is the 
boundary condition. UVE does not have periodic boundary condition in the 
thickness direction. 

 
Figure 1.  Structure of RVE of unidirectional fiber-reinforced composites. 

 
SIZE OF HETEROGENEOUS STRUCTURE 
 

The appropriate size of the heterogeneous structure should be decided first 
because the material behavior of the element placed at the most outer area would be 
different from the behavior of the one placed in the middle of the structure.  



 
A B 

Figure 2.  Heterogeneous structure composed of UVE piled up. A) Y direction. B) Z direction. 
 

 Figure 2 shows the deformed shape of the structures composed of several fibers 
in y direction and z direction under x direction displacement loading respectively 
[6]. Jinuk Kim [6] found out that three UVEs in y direction and z direction should 
be enough for the size of the heterogeneous structure by comparing the effective 
stress in UVEs at different position. The heterogeneous structure model in this 
research is shown in figure 3.  

 
Figure 3.  Heterogeneous structure model. 

 
BOUNDARY CONDITIONS 
 

The dimensions in x and z directions, that are transverse direction and 
longitudinal direction, are large enough to be considered periodic. And periodic 
boundary conditions will be imposed on the surfaces perpendicular to x axis and y 
axis. The periodic boundary condition constrains the boundary to keep the relative 
displacement constant according to the strain on that boundary. It can be expressed 
as follows: 

                                           0 0( ) ( ) iji i ju x d u x d                                           (1) 

where ij  is the average strain component and d is the characteristic distance. 



Besides the periodic boundary condition, other boundary conditions are needed 
to remove rigid body motion of the structure. And symmetric boundary condition is 
applied to the bottom surface. 

 
AVERAGE STRESS VALUES 
 

The average scheme is used to calculate representative stress values of the 
UVE,  
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where σ  is the local stresses in the UVE or micro stresses. 
As UVE itself is composed of small elements, the average can be achieved by 

integrating individual elements. In order to perform volume integral of each 
element, the Gaussian integration method is applied 
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where NE is the number of element, Vik is the volume of an integration point of an 
element. 

Since the material behavior of UVE placed at the most outer area would be 
different from the behavior of the one placed in the middle of the structure, average 
stress of inner part of the structure will be calculated, as shown in figure 4. 

 
Figure 4.  Inner part of heterogeneous structure. 

 
Modeling of major damage modes 
 

Under high strain rate loading, the major failure mechanisms are fiber breakage, 
fiber debonding and pullout and delamination. Figure 5 shows the major failure 
modes observed in actual experiments. From this figure, we can see that fiber 
breakage and debonding both initiate and can be observed in the micro scale and 
will be modeled in the UVE. However, delamination between plies, though 
associated with matrix cracking initiated from the micro scale, is observed in the 



meso scale and thus will not be modeled in the unit cell. And the modeling of 
debonding will be considered in further study. 

 

 
(a)                                             (b) 

 
             (c) 

Figure 5. Major failure modes under high strain rate impact: (a) fiber breakage; (b) fiber 
debonding and pullout; (c) delamination. 

 
MODELING OF FIBER FRACTURE 
 

Fiber carries most of the load and thus fiber fracture contributes most to the 
degradation of material properties. In this research, the crack in the fiber is modeled 
as enriched feature of finite elements. The extended finite element method (XFEM) 
uses the enriched feature and is an extension of general FEM allowing the 
discontinuities to exist in an element by enriching degrees of freedom with special 
displacement functions. This method is efficient especially when crack propagation 
is to be investigated since it does not require remeshing as fracture of fiber 
progresses. 

Under high strain rate impact, fiber behaves as brittle material and fiber fracture 
occurs completely in an extremely short time period. Figure 6 shows the stress-
strain curve of a common carbon fiber T300 under different strain rates [7]. We can 
see that the curve is composed of elastic region and sudden fracture. And since the 
degradation due to fiber fracture is the focus, the propagation of the crack is not 
considered. Stationary crack can be defined using an enrichment command and 
assigning crack domain in Abaqus. When the elements are intersected by the 
defined stationary crack domain, the elastic strength of that element is regarded as 
zero, which can be regarded as discontinuous. Figure 7 shows the assignment of a 
stationary crack and the stress field near the crack front [6]. 



 
Figure 6.  Stress-strain curve of T300 under different strain rates. 

 
 

 
Figure 7.  Transverse direction crack in fiber. 

 
 
Strain Rate Effect on Material Property 
 

As mentioned earlier, this research focuses on a high strain rate impact 
phenomenon. Strain rate might have a big effect on the material response. High 
strain rates tend to favor the elastic properties of materials. Elasticity is associated 
with load-bearing performance as embodied in properties such as strength and 
stiffness. However, low strain rates favor the viscous or energy-damping aspects of 
material behavior. Viscous flow is associated with energy management, often 
referred to as impact resistance or toughness. 

For composite materials, fibers are the main load-bearing elements and reliable 
information of the properties of fibers under high strain rate loading is important. 
Because of technical difficulties in tests, currently, it is difficult to obtain the 
dynamic properties of a single fiber directly. Chi et al. [8] proposed an approach for 
determining the static properties of single fiber by measuring those of fiber bundles. 
Xia et al. [9] extended the method to dynamic state and first successfully performed 
tensile impact tests on fiber bundles. Their testing strain rate was up to 1100/s. One 
of the most popular types is carbon fiber. Table 1 shows mechanical properties of 
two common carbon fibers, T300 and M40J, at different strain rates [10]. It can be 
observed that for these two kinds of carbon fibers the effect of strain rate on 



material property can be ignorable. However, for other kinds of fibers, the effect of 
strain rate might be very prominent. Figure 8 shows the relationship between strain 
rate and the ultimate strength of M40J, T300, E-glass and Kevlar49 fiber bundles 
[10]. It can be concluded that M40J and T300 are strain rate insensitive materials 
while E-glass and Kevlar49 are sensitive to strain rate. 
 

TABLE I.  Mechanical properties of T300 and M40J at different strain rates. 

  (s-1) E (GPa) | / |  (100%) |Δ / |  (GPa) |Δ / | 

0.001 357.9 2.3% 1.26 4.1% 3.339 3.2% 

100 359.6 2.5% 1.28 2.2% 3.336 2.6% 
500 360.1 2.0% 1.29 2.3% 3.354 1.2% 

1300 359.1 2.1% 1.29 3.4% 3.347 2.6% 
Average 

value 
359.2 --- 1.28 --- 3.344 --- 

0.001 223.2 4.5% 1.35 4.1% 2.387 3.6% 
100 227.4 3.7% 1.32 4.0% 2.415 3.2% 
500 223.5 3.4% 1.34 3.6% 2.404 2.8% 

1300 225.6 4.1% 1.34 3.7% 2.418 3.4% 
Average 

value 
224.9 --- 1.34 --- 2.406 --- 

 

 
Figure 8.  Effect of strain rate on ultimate strength of fiber bundles. 

 
The matrix phase for fiber reinforced composites can be a metal, polymer or 

ceramic. Generally, the matrix works as binding materials that supports and protects 
fibers. And metals and polymers are usually used as a matrix because of ductility. 
However, under high strain rate impact, ductile materials tend to behave as a brittle 
material. Figure 9 shows experimental tensile stress-strain curves for PR520 resin, 
which is commonly used as a matrix, at different strain rates [11]. This figure 
indicates that as strain rate increases, ductility tends to vanish. 



 
Figure 9.  Experimental tensile stress-strain curves for PR520 resin at strain rates of 5x10-5/s 

(low rate), 1.4/s (medium rate) and 510/s (high rate). 
 

For both fiber and matrix, linear elastic model will be used for simplicity. As 
mentioned in previous section, fracture of fiber will be modeled using extended 
finite element method. Damage and fracture of matrix is not the focus here since 
fiber is the main load-bearing element. 
 
 
SURROGATE MODELING OF COMPOSITES CONSTITUTIVE 
RESPONSE 
 
Kriging Surrogate 
 

In this research, we propose to integrate micro-scale simulation with macro-
scale phenomena with a surrogate modeling technique. As one of the most popular 
surrogates, kriging is used to estimate the behavior of the micro-structure. In 
addition, the surrogate can also be used to estimate uncertainty in micro-structure. 

 
MODELING AND PREDICTION 
 

Following [12], we adopt a model that treats the deterministic response y(x) as a 
realization of a random function (stochastic process) and a regression model, 
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The random process Z(x) is assumed to have mean zero and covariance 

                                           2(w,x) ( ,w,x)V R                                         (5) 

between Z(w) and Z(x), where σ  is the process variance and R θ,w, x  is the 
correlation model with parameter θ. 

The common functions f x  used in regression model are polynomial with 
orders 0, 1 and 2. And the most popular correlation function is Gaussian correlation 
function which takes the form 



                             2

1

( ,w,x) exp[ (w x ) ]
n

j j j
j

R  


                                  (6) 

The optimal coefficients θ of the correlation function can be found by solving 

                                                1/ 2min(detR) n                                                (7) 

 
DESIGN OF EXPERIMENTS 

 
Experimental design is important since it decides how to select the inputs at 

which to run the analysis in order to most efficiently reduce the statistical 
uncertainty of the prediction. Latin hypercube sampling (LHS) will be used here.  

Latin hypercube sampling, due to McKay et al. [13], is a statistical method for 
generating random samples from a multidimensional distribution ensuring that all 
portion of the design space is represented. Consider the case where we wish to 
sample m points in the n dimensional space. The Latin hypercube sampling strategy 
can be explained as follows: 

Divide the interval of each dimension into m non-overlapping intervals having 
equal probability (e.g. for uniform distribution, the intervals should have equal 
size). 

Sample randomly from the distribution a point in each interval in each 
dimension. 

Pair randomly (equal likely combinations) the point from each dimension. 
 

ACCURACY OF SURROGATE MODELING 
 

Accuracy of surrogate is crucial here since it determines how accurate the 
information from micro-scale is transferred to macro-scale. One common measure 
of accuracy of surrogate is the predicted residual sum of squares (PRESS) statistic. 
A fitted model having been produced, each observation in turn is removed and the 
model is refitted using the remaining observations. The out-of-sample predicted 
value is calculated for the omitted observation in each case, and the PRESS statistic 
is calculated as the sum of the squares of all the resulting prediction errors:  

 2
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                                          (8) 

With 280 data points, a kriging surrogate was fitted for each stress component. 
In this case, only elastic property is considered. And table II shows the PRESS error 
of each surrogate. The low value of PRESS errors indicates the high accuracy of the 
surrogates. 

TABLE II. PRESS error of surrogate 
Surrogates σ11 σ22 σ33 σ12 σ13 σ23 

Mean value/MPa 443.4256 443.3342 917.9036 215.8546 199.835 56.1257 

PRESS error 0.0089 0.0055 0.0158 0.0022 0.0029 0.0006 

 
Surrogate Modeling 
 

As mentioned earlier, we use Latin hypercube sampling strategy to generate 
different combinations of strain components at which to run the simulation in 
Abaqus and calculate the average stresses. In Abaqus, in order to apply random 



strain values, equation constraint is used in python script to control translational 
degrees of freedom of all the nodes on the boundary. 

With strain values as input and stress values as output, we can construct a 
kriging surrogate for each stress component. This can be done using a Matlab 
kriging toolbox DACE [14]. Previously we have already mentioned that crack 
propagation in the fiber is not going to be investigated, only the degradation due to 
fiber fracture is the focus. We will have two UVE models with intact fiber and 
totally fractured fiber respectively, thus for each stress component two kriging 
surrogate will be constructed. Now, we need a criterion to determine when given 
certain strain values as input which UVE model should be called, i.e. we need a 
criterion to determine when fiber fracture happens. First we assume that axial stress, 
which leads to fiber fracture, is determined by axial strain only. To verify the 
accuracy of this assumption, we use LHS to generate samples of input, run the 
analysis, calculate the average stress and project all points on ε /σ  plane. Here, 
3 stands for the axial direction. Figure 10 shows the data points and linear 
regression. However, it is clear that the error is not ignorable. The RMS error is 
100.3, 10.93% of the average value of σ . Notice that when ε  is zero, the value 
of the fitted linear function is about 250, which means that we cannot ignore the 
contribution of other strain components to axial stress. 

 
Figure 10.  ε /σ  data points and linear regression. 

 
Taking Poisson’s effect into consideration, instead of using ε  directly, we 

should use an equivalent ε , 
                                          33 13 11 23 22 33ε ν ε ν ε ε                                          (9) 

where 13ν  and 23ν  are effective Poisson’s ratios obtained from homogenization of 

elastic behaviors. Now project all points on 33 33ε / σ  plane. Figure 11 shows the 

modified data points and linear regression. 



 
Figure 11.  

33 33
ε / σ  data points and linear regression. 

 

With 33ε , the RMS error reduces to 40.857, 4.45% of the average value of 33 .  

And when 33ε 0 , the value of the linear function is about 91MPa. It is accurate 

enough to use the equivalent axial strain as the fiber fracture criterion. By 
comparing 33ε  with a certain critical value, we can decide which UVE model 

should be called so that all the inputs can be divided into two groups and two 
kriging surrogates can be constructed for each stress component. 
 
 
MULTI-SCALE MODELING OF HIGH STRAIN RATE COMPOSITES 
RESPONSE 
 

A composite panel is composed of many laminates with different fiber 
orientations. And a laminate is composed of many fibers through the thickness. A 
significant gap exists between the size of initiating fracture and the size of design 
interest, thus how to propagate information in micro scale to macro scale is a 
critical issue. As mentioned earlier, in this research, instead of massive parallel 
processing, we propose to use surrogate modeling to bridge micro-scale simulation 
and structural scale simulation to overcome the computational burden. 



 
Figure 12.  Illustration of multi-scale modeling. 

 
The basic idea of multi-scale modeling is illustrated in figure 12, in which a 

composite panel is decomposed into three levels: composite panel, ply, and fiber-
matrix cell. In the composite panel level, the material behaves similar to anisotropic 
material. In this scale, finite element analysis is often used to simulate the global 
response of composite panel, which requires calculating stresses at integration 
points of each element. It is possible that some fibers are broken and debonding 
may occur between a fiber and matrix. The macro-scale stress calculation should 
include all these effects. Therefore, the multi-scale modeling is performed at each 
Gauss point of the FE mesh of the overall structure. 

In the ply level, different directions of ply stacking sequence are considered in 
calculating the distribution of stress along the thickness direction. In this paper, 10 
plies with lay-up configuration [0/-45/90/45/0]s are used. Strain calculated in the 
panel level is converted to strain at each ply. The strain at different locations of a 
ply is then sent to fiber-matrix cell level to calculate stress at that location. Since the 
fiber direction changes at different plies, coordinate transformation must be 
performed to convert strains and resulting stresses between the local and global 
coordinate system. Also notice that delamination between plies initiates in this 
scale. However, this failure mode is not covered since the focus of current work is 
micro-scale modeling and propagating information in the micro-scale to macro-
scale using surrogate modeling technique. 

In the fiber-matrix level, fiber and matrix phases are modeled separately. Two 
major failure modes, fiber fracture and fiber debonding, are considered. Fiber 
fracture is modeled using extended finite element method. The interfacial property 
between fiber and matrix is crucial here. However, it is difficult to obtain this 
property through experiments. In this scale, with strain values sent from higher 
level, UVE approach is used to calculate effective stresses. Instead of massive 
parallel processing, kriging surrogate is constructed with strain inputs generated 
from LHS sampling and stress outputs calculated from UVE model analyzed in 



Abaqus. The multi-scale surrogate modeling technique proposed here can overcome 
the computational burden in typical multi-scale modeling technique and provide 
feasibility to uncertainty analysis based on large amount of repetition of response 
analysis in future research. 
 
 
NUMERICAL STUDY AND VERIFICATION 
 

Verification of this framework is done by conducting single element tensile test 
in a commercial explicit finite element program ls-dyna. The verification is 
achieved by comparing the behavior of the user-defined material developed from 
surrogate modeling with the behavior of a composite material model MAT22 in ls-
dyna with parameters calculated from homogenization technique. 

In this study, the constituents of the composite material are e-glass fiber and 
epoxy resin. Their elastic properties are listed in table II. 

 
TABLE III. Elastic properties of  fiber and matrix 

Elastic properties Stiffness/MPa Poisson’s ratio 
E-glass 81,000 0.22 
Epoxy 3,000 0.398 

 
First, let’s consider linear elastic case, that is to treat both fiber and matrix as 

linear elastic material. Homogenized properties are obtained for RVE and UVE, 
respectively. Figure 13 shows the comparison of material behavior in both 
longitudinal and transverse directions for elastic case. Here, the UMAT45 refers to 
the user-defined material model. As we can observe from the comparison of 
stress/strain curves, the surrogate based material model UMAT45 shows good 
accuracy and agrees well with the composite material model MAT22. 

Now let’s move to elastoplastic case. E-glass fiber is still treated as linear elastic 
material. Plasticity of epoxy is considered. Figure 14 shows the stress/strain curve 
of epoxy from tensile test and the approximate behavior to be implemented in 
Abaqus. Figure 15 shows the comparison of material behavior in both longitudinal 
and transverse directions for elastoplastic case. In longitudinal direction, most of 
the load is carried by the fiber, so the introduction of matrix plasticity has almost no 
influence on the material behavior. In transverse direction, discrepancy between the 
curves shows up around 0.17%. 

 



 
(a) 

 
(b) 

Figure 13. Comparison of material behavior in elastic case from single element tensile test in (a) 
longitudinal direction and (b) transverse direction 

 



 
(a) 

 
(10) 

Figure 14. Stress/strain curve of epoxy from (a) tensile test and (b) approximate behavior to be 
implemented in Abaqus 

 



 
(a) 

 
(b) 

Figure 15. Comparison of material behavior in elastoplatic case from single element tensile test in (a) 
longitudinal direction and (b) transverse direction 

 
 
SUMMARY AND DISCUSSION 
 

In this paper, a framework of multi-scale modeling of composites under high 
strain rate impact is proposed to overcome the huge computational burden coming 
with typical multi-scale modeling technique and make the uncertainty analysis 
through numerous repetition a practical option. Single element tensile tests, both 
elastic and elastoplastic, are done to verify the surrogate based material model. 



More numerical examples, which consider interfacial debonding and fiber 
fracture, will be studied to provide further verification. And experiments will be 
conducted in the future to validate the proposed integration scheme for multi-scale 
modeling.  
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