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Abstract. The success of an engineering project typically involves multiple stakeholders beyond 
the designer alone, such as customers, regulators, or design competitors. Each of these 
stakeholders is a dynamic decision maker, optimizing their decisions in order to maximize their 
own profits. However, traditional design optimization often does not account for these 
interactions, or relies on approximations of stakeholder preferences. Utilizing game theory, we 
propose a framework for understanding the types of interactions that may take place and their 
effect on the design optimization formulation. These effects can be considered as an economic 
uncertainty that arises due to limited information about interactions between stakeholders. This 
framework is demonstrated for a simple example of interactions between an aircraft designer and 
an airline. It is found that even in the case of very simple interactions, changes in market conditions 
can have a significant impact on stakeholder behaviors and therefore on the optimal design. This 
suggests that these interactions should be given consideration during design optimization.
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1    INTRODUCTION 
 

Many modern engineered systems involve multiple stakeholders, each providing some inputs 
and receiving some outputs with respect to the system. In the simplest case, this might be a designer 
who determines system characteristics and a customer who determines how to utilize the system. 
In more complex systems, we might also have system operators, regulators, or suppliers. We may 
additionally have multiple stakeholders within each of these groups competing with one another, 
for example multiple designers each providing similar products to their customers. Each of these 
stakeholders acts as a dynamic decision maker, acting and reacting based on the decisions made 
by other stakeholders. These types of interactions can have a dramatic effect on the success or 
failure of a design. 

There are several methods designers currently use to attempt to understand these interactions, 
mostly by attempting to uncover the preferences of other stakeholders. Most frequently, designers 
use legacy information based on the types of designs they and their competitors have produced 
before and the success of those designs. A designer may also use direct communication with other 
stakeholders, such as via a market study, to attempt to determine the relative importance of 
different performance metrics. However, these methods are not exact, and the resulting 
understanding of stakeholder preferences will have some error. This may be due to sampling bias 
of legacy designs, extrapolation into a new design space, or in cases of direct communication, 
miscommunication of preferences, either through a stakeholder’s ignorance of their own 
preferences or a deliberate attempt to sway the designers’ decisions. We can consider these errors 
in understanding stakeholder preferences as an economic uncertainty, directly changing a 
designer’s true objective function and therefore affecting the design optimization process. 

In order to understand the effects of these stakeholder interactions, we can utilize game theory 
[Error! Reference source not found.]. Game theory has been developed in economics as a way 
to model strategic decision making between rational stakeholders, or players. Depending on the 
way players interact and the information shared between them, we can arrive at different outcomes 
for the same basic design problem. From the perspective of our optimization problem, game theory 
allows us to adaptively update our objective function, relating the performance characteristics of 
our design to designer profits, based on our location in the design space, changes in the market, 
and actions of other stakeholders. We will introduce this idea in more detail with some simple 
examples in the next section. 

Previous works such as Vincent [[1]], Rao [[3]], Badhrinath and Rao [[4]], and Lewis and 
Mistree [[5]] have demonstrated the use of game theory for solving multidisciplinary design 
problems, but have not addressed the application of game theory to economic uncertainty and 
interactions. Li and Azarm study the design of a product [[6]] or product family [[7]] in the 
presence of competitive products in the market and uncertain customer preferences, but do not 
model customers or competitors as dynamic decision makers. Subrahmanyam [[8]] also considers 
the idea of market uncertainties as affecting design optimality, but these uncertainties are taken as 
given values and are not affected by design decisions. Morrison [[9]] applies game theory to a case 
study of fuel efficiency innovation among competing airlines, but does not consider additional 
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stakeholders or applications to design optimization. The present paper also draws from the ideas 
of decision based design [[10]] and value driven design [[11]] as tools for explaining design value 
as a function of performance attributes.  The objective of this paper is to reformulate a 
multidisciplinary design optimization problem to account for dynamic interactions between 
multiple stakeholders and market changes using a game theory model with both simultaneous and 
sequential interactions considered.  We will additionally demonstrate, using an example from the 
aerospace industry, why considering these interactions during design optimization is important, 
and how it provides a designer with more information about design trade-offs. 

The remaining part of the paper is organized as follows. In section II, we provide our method 
of reformulating an optimization problem to account for different types of stakeholder interactions. 
In section III, we apply this method to a simple example problem of interactions between aircraft 
designers and regulators. Section IV summarizes our conclusions, some limitations of the proposed 
framework, and plans for future work. 

 
2    PROBLEM FORMULATION 
 

 For the purpose of this paper, we will focus on how we can reformulate an optimization 
problem when considering the effects of the interactions between l stakeholders. Readers interested 
in the principles of game theory can find more information from introductory game theory text 
books such as Fudenberg and Tirole [Error! Reference source not found.]. First, let us consider 
a basic multidisciplinary design optimization problem formulation: 

 

 
ࢋࢠ࢏࢓࢏࢞ࢇ࢓ ෍࢝࢏ࢌ࢏ሺ܆ሻ

࢔

ୀ૚࢏

 
( 1 )

.ݏ .ݐ ݃௝ሺ܆ሻ ൒ ݆	ݎ݋݂	0 ൌ 1,… ,݉ 
 

where X is our vector of design variables, ௜݂ describes the ith performance metric of the design, 
 ௜ is the weight of the ith performance metric in the optimization, and ݃௝ describes the jth of mݓ

many design constraints 
By varying the vector ݓ in this optimization, we can calculate a set of Pareto optimal designs 

for different performance values. Now consider that for each design and set of performance values 
(that is, each weight vector w) we can define some profit function for our designer,  

 

 મ૚ሺܟ, ,܇ ۳ሻ ( 2 )

 

where ܇ describes the decision vector of the other stakeholders in the design and ܧ describes a set 
of exogenous variables not directly controlled by any stakeholders. This function is used to 
transform our design performance and other stakeholder decisions directly into the profit for the 
designer.  Note that our designer is labeled as the first stakeholder (Y1=w) and there are l-1 other 
stakeholders. 
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The decision vector ܇ will be determined by the other stakeholders attempting to maximize 
their own expected profits, such that 

 

ܓ܇  ൌ ,ܟ,ܓ܇ሺમ࢑ሺ࢞ࢇ࢓ࢍ࢘ࢇ ,ܓ~܇ ۳ሻሻ ࢘࢕ࢌ ࢑ ൌ ૛,… , ( 3 ) ࢒

 

where Π௞ describes the profit of the kth stakeholder, ܓ܇ is the decision vector of the kth out of l 
many stakeholders, and ܓ~܇ is the decision vector of the other ݈ െ 2 stakeholders 

We now have ݈ profit functions and ݈ decision sets. This can be thought of as l different 
optimization problems, each dependent on the same decision vector for all players, forming an 
overdetermined set of equations. In order to determine a solution, we must apply a set of rules; in 
our case this is based on a certain game structure that describes the amount of information shared 
between stakeholders and the order in which decisions are made. Information shared between 
stakeholders refers to how well each stakeholder is able to approximate the profit functions of the 
others. For example, a designer may not explicitly know the profit function of their customer, but 
may make an approximation based on prior designs. We will also show that there may arise 
situations where one stakeholder may have an incentive to deliberately mislead another 
stakeholder in order to create a more favorable situation for themselves. This type of behavior need 
not be detrimental for the stakeholder being misled, and can in some cases be advantageous for 
both parties. 

The order of decisions may be either simultaneous, sequential, or partially both. Sequential 
decision making means one stakeholder chooses their decision vector first and passes that decision 
on to the next stakeholder in the sequence. Stakeholders moving first will approximate the reaction 
of each subsequent stakeholder based on their available information about those stakeholders’ 
profit functions. These approximated reactions are known as a best reply function [Error! 
Reference source not found.]; that is, given that stakeholder one chooses ଵܻ, stakeholder 2 will 
maximize their expected profit by playing ଶܻ, or simply 

 

࢏܇  ൌ ,࢐܇࢐ሺ࢏࣐ ෡ሻ ( 4 )ࢅ

 

where ߮௜௝ is the best reply function that relates the given ௝ܻ to the best reply ௜ܻ and ෠ܻ is the vector 

of decisions of all the other stakeholders, some of which may be known based on the sequence of 
the game, and others which require their own best reply function to determine. Each of these can 
be solved recursively to determine a best reply function for each subsequent decision maker. 

We can therefore formulate our profit maximization problem for the designer by combining 
equations ( 1 ), ( 2 ), and ( 4 ), where the decisions of stakeholder acting in sequence before the 
designer are given as inputs, and the best reply function for stakeholders acting after the designer 
act as constraints. This problem will be subject to uncertainty in the exogenous inputs, ۳, as well 
as uncertainty due to approximations made in determining the best reply function, ߮. 
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( 5 )

 ࢙. ࢚. ሻ܆࢐ሺࢍ ൒ ૙ ࢘࢕ࢌ ࢐ ൌ ૚,… ࢓,  

ܓ܇	 ൌ ߮௞ଵሺܟ, ݇	ݎ݋݂	࢑ሻ~ࢅ ൌ 2,… , ݈ 
 

In the case of simultaneous decisions, we must use the concept of a Nash equilibrium [Error! 
Reference source not found.] to determine a solution. A Nash equilibrium is a point in the 
decision space where no stakeholder can improve their own profit function by changing their 
decision vector. This means that a Nash equilibrium acts as a self-enforcing agreement between 
the players. That is to say, ሺܺ, ܻሻ is a Nash equilibrium if and only if 

 

 મ૚ሺܟ, ,܇ ۳ሻ ൐ મ૚ሺܟ∗, ,܇ ۳ሻ ࢘࢕ࢌ ࢒࢒ࢇ ࢝∗ ് ,ܟ ( 6 ) ࢊ࢔ࢇ

Π௞ሺܟ,ܓ܇, ,ܓ~܇ ۳ሻ ൐ Π௞ሺܓ܇
∗, ,ܟ ,ܓ~܇ ۳ሻ	݂ݎ݋	݈݈ܽ	ܓ܇

∗ ് ,	ܓ܇ ݇ ൌ 2,… , ݈ 
 

We can find any pure strategy Nash equilibria by formulating a best reply function for each 
stakeholder and solving that system of equations to determine where all the best replies intersect. 
A pure strategy Nash equilibrium means a stakeholder plays a single deterministic decision vector, 
while a mixed strategy means a stakeholder randomly selects from multiple pure strategies with 
some predetermined probability of each. It should be noted that there is no guarantee of a single 
unique Nash equilibrium, and equilibria can exist in both pure and mixed strategies. To solve our 
problem using simultaneous decision making, we are no longer performing an optimization. 
Instead, we are looking for the intersection of the surfaces defined by the best reply functions for 
each of our stakeholders. These intersections represent pure strategy equilibria, of which there may 
be multiple or none. In cases of multiple Nash equilibria, we can sometimes eliminate some 
equilibria through so called refinements. For the purposes of this paper, we will present all Nash 
equilibria as possible outcomes, and we will only deal with simultaneous decision making in the 
discrete decision context for simplicity. 

 
3    EXAMPLE PROBLEM 
 

Having defined how we may formulate an optimization problem considering interactions with 
other stakeholders, let us consider a simple example. We have two stakeholders, an aircraft 
designer and builder and their customer the airline. Both are monopolists, meaning they face no 
competition. We assume that the designer leases aircraft to the airline at a per flight cost that is 
fixed, regardless of the aircraft design or the number of flights. 

The designer’s only decision variable is the level of technology to invest in the aircraft, ܶ . This 
can be thought of as the design effort and material and labor cost associated with producing the 
aircraft. For our problem, we will consider ܶ  to be bounded between 0 and 1. T acts as the only 
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weighting variable w as described in equation ( 1 ), where a value of 0 is the optimal manufacturing 
cost, and a value of 1 is the optimal customer value.  

The airline’s decision variable is the number of flights that they will offer, ܳ, which will 
determine the price they charge per ticket based on a fixed linear demand for air travel. The airline 
has some fixed cost of operation per flight, some cost that is proportional to the price of jet fuel, 
ܿி, and some benefit based on the level of technology invested in the aircraft. We can then 
formulate the profit functions for both stakeholders as follows 

 

 મࢊሺࡽ,ࢀሻ ൌ ࡸሺࡽ െ  ሻࢀࢀࢉ

 

( 7 )

 મࢇሺࡽ,ࢀ, ሻࡲࢉ ൌ ࢖ࡺሻࡽሺࡼሺࡽ െ ࡲࡲࢉ െ ࡸࡸࢉ ൅ ሻ ( 8 )ࢀࢀ࢜

 

where ்ܿ is the cost to implement new technology for the designer, ܨ is the fuel consumption per 
flight, ܮ is the lease cost per flight, ܿ௅ is some factor greater than 1 describing the total fixed costs 
for the airline including lease cost, ்ݒ is the value of technology to the airline, ௣ܰ is the number 

of passengers per flight, and ܲሺܳሻ is the price per ticket based on the linear demand function, 
given by 

 

ሻࡽሺࡼ  ൌ ࢇ െ ( 9 ) ࢖ࡺࡽ࢈

 

To create a meaningful example, we first find some reasonable estimates for some of the 
unknown coefficients in our problem. We select a Boeing 737-700 as the baseline aircraft for our 
analysis. Considering the standard configuration capacity of 128 passengers [12] and an average 
load factor of roughly 0.8 [13], we take the number of passengers per flight, ௣ܰ, as 100. Given an 

average flight length of 1000 miles [13], we calculate the fuel consumption per flight, 	ܨ , as 
roughly 1500 gallons [14]. Average recent jet fuel prices are around $3.00 per gallon [15], and we 
consider a range up to $5.00 to account for possible future changes. Based on the 737-700 list price 
of $76M [16] and a useful life of 60,000 flights [17] we find a per flight cost of $1,300. Considering 
additional storage and maintenance costs as roughly doubling this expense, we select the per flight 
lease cost of the aircraft, ܮ, as $3000. Based on available airfare cost breakdown data [18], we 
consider that ܿ௅ ranges from 10 to 12, meaning that the capital cost of the aircraft ranges from 8% 
to 10% of the total cost per flight, depending on the airline. In order to determine characteristic 
numbers for the cost and value of new technology, we consider a new aircraft design project. We 
consider that this new design will cost an additional $850 per flight, roughly a 25% increase from 
the initial design, and provides a benefit of $4200 per flight through increased capacity, efficiency, 
and passenger comfort. Finally, by collecting data on tickets sold and average ticket price over the 
past 20 years, we fit the linear relationship between quantity and price as shown in figure 1. This 
approximation assumes that the airline uses this single aircraft design to service all of their routes. 
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Figure 1. Historical ticket price vs quantity sold [13], [19] 

 
Now let us consider the simplest case of interaction, where the designer first decides on the 

level of technology investment with full information about the airline profit function, and the 
airline then determines the quantity of flights in a sequential game. Note that both profit functions, 
equations ( 7 ) and ( 8 ), are concave functions. We can therefore calculate a best reply function 
for the airline by setting to zero the first derivative of the airline profit function with respect to Q 
and solving for Q, such that 

 

ࢇમࢊ 

ࡽࢊ
ൌ ࢀࢀ࢜ െ ࡸࡸࢉ െ ࡲࡲࢉ ൅ ࢇ൫࢖ࡺ െ ൯ࡽ࢖ࡺ࢈ െ ࢖ࡺ

૛࢈ࡽ 

 

( 10 )

 
∗ࡽ ൌ ሻࢀሺࢇࢊ࣐ ൌ

࢖ࡺࢇ ൅ ࢀࢀ࢜ െ ࡲࡲࢉ െ ࡸࡸࢉ

૛࢖ࡺ࢈
૛  ( 11 )

 

We can substitute this best reply function into the designer’s profit function to replace	ܳ and 
solve for the designer’s optimal value of T by setting to zero the derivative of the designer’s profit 
function with respect to ܶ and solving for T, 

 

ࢊમࢊ 

ࢀࢊ
ൌ
ࡸሺࢀ࢜ െ ሻࢀࢀࢉ ൅ ࡲࡲࢉሺࢀࢉ ൅ ࡸࡸࢉ െ ࢖ࡺࢇ െ ሻࢀࢀ࢜

૛࢖ࡺ
૛࢈

 

 

( 12 )
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Using our values for our various coefficients, we can calculate the decision of the designer and 
airline and the profit for each. Since we have ranges of values for fuel price and the airline cost 
factor, we perform this analysis at the 4 extreme cases of these coefficients as shown in table 1. 
Because our problem is linear in these values, we can interpolate between these 4 points to find 
the decisions and profits at any combination.  Note that in the first case, the designer would choose 
an optimal value of slightly negative technology investment, however we restrict this value to be 
between 0 and 1. It can be seen that the optimal decisions and resulting profits for both the designer 
and airline vary greatly with these possible changes in parameters ܿி and ܿ௅. 

 

 ࢇમ ࢊમ ∗ࢀ ∗ࡽ ࡸࢉ ࡲࢉ

$3.00 10 2.58M 0 (-0.08) $7.75B $20.0B 

$3.00 12 2.02M 0.63 $4.99B $12.32B 

$5.00 10 2.28M 0.27 $6.30B $15.55B 

$5.00 12 1.78M 0.99 $3.83B $9.57B 

Table 1. Solution values for sequential game with no uncertainty 

 
In a realistic design problem, we will likely consider that a designer must make design 

decisions without knowledge of future fuel prices. These prices will be unknown to the airline as 
well. A designer will then maximize expected profits based on the possible distribution of future 
fuel prices. Due to the simple linear nature of our example problem, this will be the same as 
designing based on the mean value of future fuel prices. 

A designer may face additional uncertainty in their understanding of the airlines’ profit 
function, for example in the value of ܿ௅. However, the airline will be able to know this value 
exactly. This is known in game theory as a game of “incomplete information” [1]. This means the 
designer will face some error in their prediction of the best reply function of the designer, 
specifically 

 

 
∗ࡽ ൌ ࢇࢊ࣐

~ ሺࢀሻ ൌ
࢖ࡺࢇ ൅ ࢀࢀ࢜ െ ࡲࡲࢉ െ ሺࡸࢉ ൅ ࡸሻࢿ

૛࢖ࡺ࢈
૛  ( 14 )

 

where ߝ describes the error in the designers understanding of airline costs. 
We can see from our previous example that the designer will invest more in technology if they 

believe the airlines fixed cost, ܿ௅, is higher. This is because higher fixed costs mean the effect of 
technology on airline marginal profits is more significant, and therefore more technology 
investment will have a greater effect on the quantity of flights. This relationship implies that 
airlines will have an incentive to mislead designers into believing that their costs are higher than 
in reality, shifting profits away from designers and toward airlines. Without considering the effects 
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of these interactions, designers will be unable to understand the effects of these potential 
uncertainties. 

To explore these interactions in more detail, let us switch from a continuous game to a discrete 
one. In this case, the designer must either decide to invest in new technology (ܶ ൌ 1) or not (ܶ ൌ
0). The airline will decide whether to expand their market by offering a higher number of flights 
(ܳ ൌ ܳ) or to maintain their current levels ,(ܯ2.5 ൌ  We consider that fuel prices will .(ܯ1.5
either be $3 per gallon with probability ݌ி or $5 per gallon with probability 1 െ  ி. Finally, the݌
designer assumes the airline is a low cost carrier (ܿ௅ ൌ 10) with probability ݌஼ or a high cost 
carrier (ܿ௅ ൌ 12) with probability 1 െ  ,஼. We can express this problem using a decision tree݌
known in game theory as an extensive form game [Error! Reference source not found.]. 

 

 
 

Figure 2. Extensive form game with uncertainty in fuel prices ݌ி and in fixed cost ݌஼, where designers choose 
technology ܶ and airlines choose quantity of flights ܳ with payoffs for the designer and the airline, respectively 

 
In the figure, each node represents a decision, and dashed lines between nodes indicate an 

information set, where the decision maker must act without knowing for certain which node in the 
information set they are currently in. The solution will therefore depend on the decision maker’s 
beliefs about the values of ݌ி and ݌஼. The payoffs for each resulting set of decisions are given at 
the end of each path, where the top number is the designer’s profit, and the bottom number is the 
airline’s profit, both in billions of dollars. We can simplify this game by eliminating dominated 
strategies for the airline, since we know at the last branch of the decision tree the airline will choose 
the value that maximizes their own profits; this is known as backwards induction. Figure 3 shows 
these dominated strategies in gray. 
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Figure 3. Backwards induction indicating strictly dominated choices (gray) for the airline when choosing quantity ܳ 

 
We see that, based on this discrete example, the designer can only influence the airline to utilize 

more flights by increasing technology investment if fuel prices are low and airline costs are high, 
or fuel prices are high and costs are low. In the remaining two cases, the designer will strictly 
prefer not to invest in new technology, since they will lease the same number of flights regardless 
and will have a higher profit margin for each. Airlines will always prefer the case where designers 
invest in technology, as they always gain higher profits. 

From this simple example, we would conclude that if fuel prices are high, airlines will attempt 
to convince designers that they have low costs, as designers will believe they can then influence 
flight quantity by investing in technology. If fuel prices are low, airlines will attempt to convince 
designers that their costs are high, again in an effort to encourage designers to invest in technology. 

We may also be interested to know if the possible solutions of this game change if we consider 
that designers and airline make decision simultaneously. For example, airlines submit orders for 
new aircraft without knowing future fuel prices or precise aircraft specifications. We can represent 
this sort of game using strategic form, with 4 payoff matrices representing the 4 possible 
combinations of fuel price and airline costs as shown in figure 4. 

 



Garrett Waycaster, Christian Bes, Volodymyr Bilotkach, Christian Gogu, Raphael Haftka, and Nam-Ho Kim 

 
 

Figure 4. Simultaneous game solution 

 
The numbers in each box represent the payoffs for the airline and the designer, respectively. 

Numbers that are underlined indicate a best reply for that stakeholder. When both numbers are 
underlined in the same box, meaning the best replies intersect, we have a Nash equilibrium for that 
individual game, represented by circling that square. We can see that for the simple game we have 
constructed, it is never advantageous for the designer to invest in technology. This happens 
because since decisions are made at the same time, the designer’s choice cannot influence the 
quantity selected by the airline. We can also see that when airline costs are high (ܿ௅ ൌ 12), 
meaning we are on the two matrices on the right side, the equilibrium solution for this game will 
be (ܶ ൌ 0), (ܳ ൌ  When airline costs are low, the equilibrium will depend on the probability .(ܯ1.5
of low fuel prices, ݌ி, as the airline will attempt to maximize their expected profits. If the airline 
believes ݌ி is less than 0.11, they will always choose the low quantity (ܳ ൌ  and if they ,(ܯ1.5
believe ݌ி is greater than 0.11 the airline will choose the high quantity, (ܳ ൌ  ி is݌ When .(ܯ2.5
equal to 0.11, the airline is indifferent between these two strategies and may play either one, or 
play a mixed strategy where they randomly select between both options. It should be noted that 
the designer would strictly prefer the airline select the higher quantity, but based on this game 
structure, they have no way to influence that decision. 
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It should be noted that the solutions we have found for each of these different types of games 
need not be Pareto optimal in terms of profits for both stakeholders. For example, in figure 4, we 
can see that both the designer and a high cost airline (ܿ௅ ൌ 12) would be strictly better off playing 
the strategy (ܶ ൌ 1), (ܳ ൌ ܶ) as compared to the equilibrium strategy (ܯ2.5 ൌ 0), (ܳ ൌ  ,(ܯ1.5
regardless of the values of fuel price and airline costs. However, that strategy is not an equilibrium 
because one or both of the stakeholders can improve their profits by modifying their decision.  For 
example, in the case of [ܿி ൌ 5, ܿ௅ ൌ 12] starting at (ܶ ൌ 1), (ܳ ൌ  we see that the designer ,(ܯ2.5
would strictly prefer to select (ܶ ൌ 0) when the airline plays (ܳ ൌ  and similarly the airline ,(ܯ2.5
prefers (ܳ ൌ ܶ) against (ܯ1.5 ൌ 1).  Because the strategies and payoffs are known, each player 
will realize the other will try to change their own strategy, and will respond accordingly, resulting 
in selecting (ܶ ൌ 0), (ܳ ൌ  This is a variation on the classical game theory example known  .(ܯ1.5
as the prisoner’s dilemma [1]. 
 
4    CONCLUSIONS 
 

We have presented a framework for how game theory can be utilized in design optimization to 
better model and understand interactions between multiple stakeholders. We demonstrated how, 
based on the order in which interactions take place and the information shared between 
stakeholders, the optimal decision for the designer can change significantly. By incorporating these 
interactions into the design problem, we can directly anticipate these changes and can quantify the 
uncertainty in the profit expected for our final design based on approximations of other 
stakeholders. Additionally, this framework is able to directly provide information for the designer 
regarding trade-offs between multiple disciples during design, since we are able to adaptively 
update the designer’s objective function based on changes in stakeholder preferences due to 
changes in performance. 

Using our simple example problem, we demonstrate that for the sequential game between the 
designer and airline, small changes in the value of certain profit function coefficients can have a 
large effect on optimal design choices and profits for both stakeholders. We observe that for the 
values we have selected in our sequential game, the airline may have an incentive to obscure their 
true costs from designers in order to encourage investment in new technology. Looking at the same 
problem but using a simultaneous structure, the designer will never elect to invest in technology, 
based on the cases considered. From these two examples we have shown that understanding the 
structure of the game can greatly change the outcome, and that, within that structure, 
approximations by one stakeholder in the preferences of another can have a large impact on design 
decisions and profits. 

We do note that, depending on the game structure utilized, a stakeholder may need to 
approximate the decisions of the designer in their profit maximization, requiring them to solve the 
design optimization problem within their own profit optimization. For expensive design problems, 
this creates computational limitations, and future work is needed to address this issue. It can also 
be difficult in a practical problem to quantify the type of interactions between multiple 
stakeholders. The authors have previously proposed a method to understand these interactions by 
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using causal models [20]. Future work in this area will focus on applying the methods described 
to a realistic design problem and understanding the relative importance of uncertainty in 
stakeholder preferences as compared to traditional design uncertainties like variations in material 
properties and operating conditions. 
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