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Substantial sampling uncertainty is introduced due to limited number of fatigue crack 
growth tests to characterize material's fatigue crack growth behavior. We explore the use of 
bootstrap resampling technique to estimate the sampling uncertainty, and construct lower 
confidence bounds on a given percentile of fatigue crack growth life (FCGL) distribution. 
With a small sample size, desired confidence level cannot be achieved without using a 
correction factor to adjust the confidence bounds. We calculate correction factors for number 
of test samples ranging from 8-40 to achieve 95% confidence level for the lower confidence 
bounds on 0.01 percentile of FCGL’s lognormal distribution. Three different bootstrap based 
methods for setting confidence intervals are explored, i.e. basic percentile method, normal 
approximation, and bias corrected accelerated percentile method. Latter two methods were 
found to achieve better confidence levels for a given number of test samples without using 
correction factor. Although, basic percentile method gave least conservative bounds than 
others before and after correction. We use artificially generated fatigue crack growth rate 
data for simulation, and calculate FCGL for the geometry that assumes a single through crack 
at a hole.  

Introduction 

This paper explores the use of bootstrap resampling technique for constructing one-sided confidence interval 
(lower) on a given percentile ‘p’ of fatigue crack growth life (FCGL) distribution. A confidence interval for a point 
estimate of certain percentile of distribution (e.g. p = 0.01 percentile) from limited data is supposed to contain the 
true/population (unknown) percentile value. The one-sided confidence interval on an estimated percentile value is 
analogous to a statistical tolerance interval that contains certain proportion of a population. For example, one-sided 
lower confidence bound that contains 5 percentile population value is the same lower tolerance bound that contains 
95% of a population. So, this paper does not make distinction between confidence and tolerance intervals. A 
probability statement is also attached with a confidence interval to express the confidence level or assurance that 
confidence interval would contain the true percentile value. A confidence level of 95% means that 95% of the 
confidence intervals constructed from different set of random samples would contain the true percentile value.  

A usual approach to construct confidence bounds (or tolerance bounds) on a point estimate from small sample (ns 

≤ 40) is to assume a normal distribution for a random variable, and also for the sampling distribution of a given 
percentile. However, if distribution of a random variable is non-normal (e.g. lognormal for FCGL) and sample size is 
small (ns ≤ 40), then normal approximation for sampling distribution of a given percentile may give confidence bounds 
that does not achieve a target confidence level (e.g. 88% confidence level instead of targeted 95%). In such cases, 
bootstrap (a resampling technique) may provide a reasonable approximation to the shape of a sampling distribution 
without making normal distribution assumption for the random variable. If bootstrap indicates that sampling 
distribution could be reasonably approximated by the normal distribution then one can resort to the usual method of 
setting confidence bounds (for a given percentile) based on normal distribution assumption. On the other hand, if 
bootstrap indicates that sampling distribution is severely non-normal then confidence bounds should be set using one 
of the many bootstrap confidence interval methods, e.g. percentile method, and bias corrected accelerated method. 
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 However, bootstrap may also underestimate a confidence level (e.g. 85% instead of 95%) when small sample size 
is used for building a sampling distribution of ‘p’ percentile FCGL. The underestimation happens partly due to small 
sample sizes, and partly due to the fact that resampling techniques have trouble with extreme values i.e. sampling 
distribution may take significantly different shapes when estimated from one set of random sample to another. Also, 
bootstrap would not be any good if very small data is available (e.g. ns < 8). We only apply bootstrap to an example 
problem that can afford minimum of 8 samples (i.e. 8 fatigue crack growth tests). The underestimation of a confidence 
level can be corrected by using a correction factor that adjusts (lengthen) the lower confidence intervals for a given 
percentile of FCGL to achieve the target confidence level. It would be appropriate to derive correction factors for very 
small percentile values (e.g. 0.01 percentile) if underlying probability model for a random variable is known or if 
reasonable choice could be made by fitting probability models to a small random sample. That is, a suitable probability 
model would allow to extrapolate into the tails and find very low percentile values (perhaps more accurately) instead 
of estimating it directly from the empirical cumulative distribution function (CDF) of a small sample. In case of fatigue 
crack growth life (FCGL), experimental tests indicated that [1-2] lognormal distribution may be a reasonable choice. 
Therefore, we will calculate correction factors for different sample sizes ranging from 8 – 40 by assuming a lognormal 
distribution for FCGL.  

Probabilistic Fatigue Crack Growth Life Prediction with Limited Test Data 

We consider the problem of characterization of material’s fatigue crack growth (FCG) behavior from limited test 
data. Material’s FCG behavior is captured by estimating constants (coefficients) of a FCG model, which is done by 
fitting FCG model to a FCG data obtained via laboratory testing. The most common FCG model used is the Paris law, 

   nda
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Where, da/dN is the crack growth rate (in/cycle); ΔK is the crack tip stress intensity; C is Paris constant, and n is Paris 
exponent. The material constants (e.g. C and n) of a FCG model are random variables that capture randomness due to 
material variability from one test specimen to another. The variability in material constants further leads to variability 
in the predicted fatigue crack growth life (FCGL). The predicted FCGL can be found by integrating Eq.(1), 
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Where, N is the crack growth life; aini is initial crack length, and acri is the critical crack length. Therefore, predicted 
FCGL is also becomes a random variable, and analyst is interested in designing a structure that meets some probability 
of failure constraint. That is, structure is sized such that ‘p’ percentile of predicted FCGL distribution (i.e. Np%) is 
equal to the desired structural life (N*) as shown in Fig. 1.  

 

Fig. 1 Propagation of uncertainty in material constants to uncertainty in FCGL 
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However, substantial sampling uncertainty in introduced in the Np% estimated from the limited test data available 
for estimating the probability distribution function PDFs of the material constants. That is, PDFs of material constants 
are generally obtained from a few laboratory tests (8 – 40) that are conducted under specific load conditions. These 
tests are time consuming and each costs about $ 1,000 - $ 2,000, which often proves prohibitive in conducting large 
number of tests. So, first objective for an analyst is to construct a lower (one-sided) confidence interval that is reliable 
(e.g. 95% confidence level) enough to contain the ‘p’ percentile of the true PDF (unknown to analyst) as shown in 
Fig.  2. The second objective is to have a lower confidence bound that is not overly conservative and still achieves the 
desired confidence level.  

 

Fig.  2 Sampling distribution and lower confidence bound on estimated Np% 

This paper explores the use of bootstrap resampling technique to construct one-sided lower confidence bound on 
the 0.01 percentile FCGL with 95% confidence level. Three methods of deriving confidence intervals based on 
bootstrap are explored, i.e. basic percentile method (BPM), normal approximation (NA), and bias corrected 
accelerated percentile method (BCAP). The confidence bounds from these three methods will be first checked to 
determine the confidence level achieved (αachieved) against the target confidence level of αtarget = 95% for the number 
of FCG tests samples ranging from ns= 8 – 40. Then correction factors Fcorr will be estimated that when multiplied 
with the lower confidence bounds will achieve the αtarget of 95%. Finally, the confidence bounds (after correction) 
derived from the three methods will be compared to find the one that gives least conservative bounds (i.e. higher crack 
growth life) for a given sample size of FCG tests. An artificially generated FCGL data is discussed next that is used 
for the simulation.  

Synthetic Crack Growth Life Data and Simulation 

The synthetic FCGL data needed for simulation is generated by using parameters of the material constant 
distributions given by [1], and are assumed here to define the true (population) PDFs of the material constants. The 
distributions of material constants were estimated by fitting Paris law to the data obtained from 68 fatigue crack growth 
(FCG) tests performed by Virkler et al. [2] on the test specimens made from 2024-T3 aluminum alloy. The tests were 
performed for the stress ratio of R = 0. The parameters of the marginal PDFs of the material constants are given in 
Table 1. Further, these material constants have strong negative correction with correction coefficient of r = -0.982. 
For the purpose of random sample generation, ‘log(C)’ and ‘n’ are modeled jointly as multivariate normal distribution.  

Table 1 Parameters of distributions of material constants for R = 0 

Material constant Distribution Location Scale 
C lognormal -14.972 0.328 
n normal 2.872 0.165 

 

Note that, the fatigue crack growth rate (da/dN vs. K) curves generated using the random samples from multivariate 
normal distribution seemed little off from that shown in [2]. It could be due to unit conversion, i.e. when random 
samples of ‘C’ are multiplied by 3.937×10-2 (mm/cycle to in/cycle conversion) it approximately gives similar FCGR 
graph given in [2]. 

The schematic shown in Fig. 3 draws similarity between real physical FCG testing and simulation. In reality, FCG 
testing is done for different test conditions (e.g. for stress ratios, R = 0.05, 0.30, 0.50, and 0.70) using the test specimens 
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similar to the one shown in Fig. 4 (a). The real testing is repeated nrep times for a particular test condition, and Walker 
equation, 
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, can be used to fit and collapse all the FCG data to single test condition of R = 0. Then, total samples of C and n from 
ns = 4nrep tests can be used to approximate their marginal PDFs. The marginal PDFs from limited testing can be used 
to estimate the distribution of FCGL by using simulation geometry shown in Fig. 4 (b), and load conditions listed in 
Table 2. The estimated lognormal PDF of FCGL is further used to approximate Np% FCGL that is followed by 
constructing α% one-sided lower confidence bound BL-Np% that should bound the true Np%.  

Similarly in simulation environment, the physical testing is replaced with FCG data generation from the known 
true distributions of C and n. Here we assume the parameters given in Table 1 as true parameters and use those samples 
to generate FCG data and follow the same procedure of building confidence bounds as done for real physical testing. 
However, in our case an efficient way is to bypass the walker equation fitting by directly sampling ns samples from 
the true PDF of FCGL and proceed from there. The simulation shown in red dotted box in Fig. 3 is repeated 10,000 
times to estimate the proportion of confidence bounds that contain the true value of Np%. The lower confidence bounds 
are multiplied with a correction factor to achieve the targeted α% confidence level. 

 

Fig. 3 Schematic representation of FCGL data generation and simulation 
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Fig. 4 (a) Double through crack (test geometry), (b) Single through crack (simulation geometry) 

Table 2 Dimensions and load conditions for the simulation geometry 

Dimension Unit Value 
w inch 4 

aini inch 0.05 
acri inch 2 
d inch 0.2 
t inch 0.16 

Pmax kips 5 
R - 0.05 

 

True PDF of FCGL 

The true PDF of FCGL is estimated by generating 5×107 samples from the multivariate normal distribution of log(C) 
and n. The distribution is then used to approximate the true N0.01% (i.e. true 0.01 percentile FCGL). The histogram of 

5×107 samples of FCGL are shown in  
Fig. 5. The true N0.01% estimated from the samples is 200,192 cycles, and uncertainty in the calculation of 

probability of failure of 10-4 from sample of 5×107 is about 1.4%. The lognormal distribution was fitted to the 
histogram and had following parameters (µ = 12.4418, σ= 0.0633). The N0.01% found from lognormal distribution was 
200,063 cycles (error of only 129 cycles, which is very small). So lognormal distribution can be used to generate 
samples for simulation, and is a reasonable probability model to estimate the N0.01% from the small sample set.   

 
Fig. 5 True (approx.) PDF of FCGL 
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True Sampling Distribution of N0.01% due to Limited Data 

The true sampling distribution of N0.01% can be estimated by generating ns samples repeatedly from the FCGL’s 
lognormal distribution shown above in  

Fig. 5. Each set of ns samples can be fitted with lognormal distribution and N0.01% can be estimated from the fit. 
That is, the Monte Carlo simulation with ns samples drawn 100,000 times will give the true sampling distribution of 
N0.01%. Mean of the sampling distribution is 202,128 cycles and standard deviation of 13,230 cycles, i.e. mean has 
slight positive bias of 202,128 - 200,192 = 1,936 cycles (1%). The true sampling distribution of N0.01% is approximated 
well by a normal distribution as indicated in the probability plots shown in Fig. 6.  

 

Fig. 6 True sampling distribution approximated well by normal distribution 

Bootstrap Confidence Bounds From Limited Data  

In reality, the nature of the sampling distribution has to be estimated from the limited test sample ns available. 
Bootstrap is a resampling technique that can provide an approximation to the shape or nature of the sampling 
distribution. From the discussion above, we have all the reason to assume that sampling distribution is normal and set 
one-sided lower 95% confidence bound based on normal assumption. First, bootstrap based small sample estimate of 
the bias in N0.01% and standard error can be used to construct the lower 95% confidence bounds (BL-N0.01%). Second, 
bootstrap based basic percentile method (BPM) that does not require assumption of normality can be used to set BL-

N0.01%. BPM directly calculates the 5 percentile value from the sampling distribution of N0.01% and uses that as a lower 
bound. Third, a very popular bootstrap based bias corrected accelerated percentile (BCAP) method is used to set the 
lower confidence bounds.  

As discussed earlier that all the three bootstrap based methods are likely to underestimate the confidence level 
achieved e.g. only 88% (instead of 95%) of the confidence bounds contain that true value of N0.01%. Notice from Table 
3 that none of the three methods achieved the target confidence level of 95%, i.e. less than 95% of the lower confidence 
bounds contained the true 0.01 percentile of FCGL. Normal approximation for sampling distribution of 0.01 percentile 
FCGL gave most accurate confidence levels (closer to the target of 95%) for sample sizes ranging from 8-16 as 
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compared to the BCAP (bias corrected accelerated percentile) method. For sample size ranging from 20-40, confidence 
levels given by BCAP method were marginally more accurate than the normal approximation. Also, both NA and 
BCAP methods always gave more accurate confidence levels than BP (basic percentile) method. 

Table 3 Confidence level achieved by the three bootstrap based methods  

ns 
αachieved % (αtarget = 95%),  

 
BPA* NA* BCAP* 

8 71.8 87.1 81.6 
12 78.3 88.8 87.0 
16 81.3 89.9 89.2 
20 82.8 90.8 90.9 
24 85.1 91.4 91.7 
28 85.1 91.3 91.6 
32 86.3 91.9 92.5 
36 87.9 92.5 93.2 
40 87.8 92.5 93.3 

*Based on 10,000 bootstraps for each of the 10,000 simulations 

Next, we estimate the correction factors (Fcorr), which when multiplied with uncorrected lower confidence bounds 
gives corrected confidence bounds that helps in achieving the desired confidence level of 95%.  

 0.01% 0.01%
corr uncorr
L N corr L NB F B    (4) 

The correction factors are listed in Table 4 and are only valid for the setting 95% confidence bound on N0.01% assuming 
that FCGL has a lognormal distribution.  

Table 4 Correction factors for achieving 95% confidence bounds on N0.01% 

ns 
Correction factors, Fcorr 

BPA NA BCAP 
8 0.9280 0.9597 0.9441 

12 0.9478 0.9704 0.9643 
16 0.9594 0.9780 0.9761 
20 0.9693 0.9845 0.9840 
24 0.9745 0.9870 0.9882 
28 0.9774 0.9886 0.9897 
32 0.9805 0.9905 0.9928 
36 0.9838 0.9928 0.9943 
40 0.9851 0.9936 0.9954 

 

Another, important requirement from the confidence bounds is that bounds should not be overly conservative. That 
is, lower bound should be tight enough to give the desired confidence level without giving too small design life. Now, 
even though BPM gave least accurate confidence bounds of the three methods but it gave tightest bounds both before 
and after correction, i.e. highest design life that would lead to weight savings. For example, notice from Fig. 7 that 
BPM gives highest design life (tightest lower bounds) by comparing the cumulative distribution functions (CDFs) of 
the lower bounds from the three methods. These empirical CDFs were constructed from 10,000 simulations. The 
statistics of empirical CDFs before and after correction are shown in Appendix for different sample sizes.  



 

Fig. 7 CDFs of lower bounds for ns = 8 

Similarly, BPM was found to give tightest bounds (or higher FCGL) for ns ranging from 8-40 as shown in Fig. 8. 
Note that, the difference between bounds given by the three methods tend to reduce with increase in number of samples 
or tests. So, perhaps it is fine to use bounds given by normal approximation if ns ≥ 24 as design life achieved by all 
the methods is pretty much same. For ns < 24, it may be worthwhile to use BPM to set confidence bounds as weight 
savings might be substantial.   

 

Fig. 8 25th, 50th, and 75th percentile points of the CDFs of lower bounds from different methods as a function 
of number of test samples 

Conclusions 

Key findings,  

1. Normal approximation for sampling distribution of 0.01 percentile FCGL gave most accurate confidence 
levels (closer to the target of 95%) for sample sizes ranging from 8-16 as compared to the BCAP (bias 
corrected accelerated percentile) method. It always gave more accurate confidence levels than BP (basic 
percentile) method. 
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2. For sample size ranging from 20-40, confidence levels gives by BCAP method were marginally more 
accurate than the normal approximation.  

3. Percentile method gave shortest lower bounds both before and after correction for any number of test samples 
ranging from 8-40. Shortest lower bound translates into higher design life, which would further lead to weight 
savings. Therefore, it may be beneficial to use percentile method (with correction) for setting lower 
confidence bounds when sample size is less than 24.    

4. All three methods tend to give comparable bounds as sample size increases. So, one could use any of the 
three methods if the sample size is greater than 24.   

5. As expected, sampling uncertainty reduces with the increase in sample size irrespective of the method used 
for setting lower confidence bounds. So, by performing more tests one can increase the chances of saving 
weight as lower confidence bound based on limited test data may give higher design life. Note that weight 
saving is not guaranteed as lower confidence bound would depend on the random sample one gets from 
testing. 

Appendix 

Table 5 Statistics of uncorrected CDFs of lower bounds using BPM 

ns µ, mean 
(cycles) 

σ, stand. dev. 
(cycles) 

25th prctl. 
(cycles) 

50th prctl. 
(cycles) 

75th prctl. 
(cycles) 

8 190,786 15,617 180,201 190,872 201,753 
12 190,441 12,530 181,997 190,417 198,955 
16 190,759 10,736 183,668 190,813 197,859 
20 191,135 9,518 184,797 191,319 197,777 
24 191,321 8,521 185,605 191,364 197,021 
28 191,998 7,861 186,763 192,118 197,330 
32 192,173 7,262 187,289 192,135 197,058 
36 192,358 6,729 187,871 192,306 196,823 
40 192,725 6,460 188,330 192,779 197,057 

 

Table 6 Statistics of corrected CDFs of lower bounds using BPM 

ns µ, mean 
(cycles) 

σ, stand. dev. 
(cycles) 

25th prctl. 
(cycles) 

50th prctl. 
(cycles) 

75th prctl. 
(cycles) 

8 177,050 14,492 167,226 177,130 187,227 
12 180,500 11,876 172,497 180,477 188,569 
16 183,014 10,300 176,211 183,066 189,826 
20 185,267 9,226 179,124 185,446 191,705 
24 186,442 8,304 180,872 186,485 191,997 
28 187,659 7,684 182,542 187,776 192,871 
32 188,426 7,121 183,637 188,388 193,216 
36 189,242 6,620 184,828 189,190 193,635 
40 189,853 6,364 185,524 189,906 194,121 

 

 

 

 



Table 7 Statistics of uncorrected CDFs of lower bounds using NA 

ns µ, mean 
(cycles) 

σ, stand. dev. 
(cycles) 

25th prctl. 
(cycles) 

50th prctl. 
(cycles) 

75th prctl. 
(cycles) 

8 178,935 18,818 166,556 179,450 192,009 
12 183,202 14,095 173,843 183,306 192,711 
16 185,408 11,742 177,597 185,508 193,291 
20 186,849 10,228 180,057 187,118 193,964 
24 187,807 9,040 181,751 187,870 193,876 
28 189,029 8,268 183,474 189,137 194,634 
32 189,596 7,585 184,473 189,547 194,754 
36 190,067 6,995 185,409 189,994 194,721 
40 190,682 6,689 186,159 190,753 195,168 

 

Table 8 Statistics of corrected CDFs of lower bounds using NA 

ns µ, mean 
(cycles) 

σ, stand. dev. 
(cycles) 

25th prctl. 
(cycles) 

50th prctl. 
(cycles) 

75th prctl. 
(cycles) 

8 171,724 18,059 159,844 172,218 184,271 
12 177,779 13,678 168,697 177,880 187,006 
16 181,329 11,484 173,690 181,427 189,038 
20 183,953 10,070 177,266 184,218 190,957 
24 185,366 8,922 179,388 185,428 191,356 
28 186,874 8,174 181,382 186,981 192,415 
32 187,795 7,513 182,720 187,747 192,904 
36 188,698 6,945 184,074 188,626 193,319 
40 189,462 6,646 184,968 189,532 193,919 

 

Table 9 Statistics of uncorrected CDFs of lower bounds using BCAP 

ns µ, mean 
(cycles) 

σ, stand. dev. 
(cycles) 

25th prctl. 
(cycles) 

50th prctl. 
(cycles) 

75th prctl. 
(cycles) 

8 184,668 17,035 173,098 184,846 196,599 
12 184,922 13,727 175,673 185,115 194,154 
16 185,846 11,760 178,112 186,117 193,683 
20 186,750 10,386 179,951 186,965 194,096 
24 187,443 9,247 181,302 187,560 193,749 
28 188,536 8,516 182,879 188,769 194,333 
32 189,031 7,804 183,809 189,061 194,336 
36 189,437 7,210 184,689 189,442 194,304 
40 190,065 6,913 185,460 190,197 194,742 

 

 

 

 

 

 



Table 10 Statistics of corrected CDFs of lower bounds using BCAP 

ns µ, mean 
(cycles) 

σ, stand. dev. 
(cycles) 

25th prctl. 
(cycles) 

50th prctl. 
(cycles) 

75th prctl. 
(cycles) 

8 174,345 16,083 163,422 174,513 185,609 
12 178,320 13,237 169,401 178,507 187,223 
16 181,404 11,479 173,855 181,669 189,054 
20 183,762 10,220 177,072 183,974 190,990 
24 185,231 9,138 179,163 185,347 191,463 
28 186,595 8,429 180,996 186,825 192,331 
32 187,670 7,748 182,485 187,700 192,937 
36 188,357 7,169 183,636 188,362 193,197 
40 189,191 6,881 184,607 189,322 193,846 
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