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ABSTRACT 

 A design sensitivity formulation for structural–

acoustic problems at high frequencies (1,000–20,000 

Hz) is presented using the energy finite element method. 

The material property, panel thickness, and structural 
damping factor are taken as design variables. The con-

tinuum method is used to derive the design sensitivity 

equation of the energy flow equation, while the discrete 

method is used to calculate the variation of the cou-

pling relation. The design variable’s effect on the 

power transfer coefficient is discussed in detail. Even 

when the system matrix equation is not symmetric, the 

adjoint problem is solved using the same factorized 
matrix from energy finite element analysis. Design sen-

sitivity results calculated from the proposed method are 

compared to finite difference sensitivity results with 

good agreement. 
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1. INTRODUCTION 

 Some research has been performed in structural–
acoustic design using finite element and boundary ele-

ment methods
[1–5]

. The continuum method, discrete 

method, and semi-analytical method are used to calcu-

late design sensitivity. However, the practicality of 

these methods is limited to low frequency (20 – 200 

Hz) design problems since an excessive number of ele-

ments are required in high frequency analysis.
[6]

 The 
element size of the structural and acoustic domain must 

be smaller than the wavelength to ensure an accurate 

prediction. 

 Since the response is very sensitive to small changes 
in the model at high frequencies, statistical energy 

analysis is often used to simulate the structural–acoustic 

behavior of a large system.
[7–9]

 Given its similarities to 

the heat transfer problem, this approach uses the con-
servation of vibration energy within a subsystem of 

similar modes. From a design point of view, however, 

since a single energy value represents the lumped 

subsystem’s status, the energy variation within a 

subsystem cannot be represented. In addition, the 

geometric and material parameters, which often serve 

as design variables, do not appear explicitly in the 

governing equation. 

 In contrast to statistical energy analysis, energy flow 

analysis has been developed using an analytical method 

that can represent the vibration behavior of a structure 

in the averaged sense.
[10–13]

 The near–field response is 
disregarded in high frequency ranges, and the far–field 

response is used to represent the vibration behavior of 

the structure. Since energy conservation is imposed 

locally, it is possible to represent the structural geome-

try in detail, which is critical from a design point of 

view. Even if the response variable (energy density) is 

not continuous across structural junctions, this approach 

has been integrated with the finite element method to 
simulate the vibration behavior of a complicated struc-

ture at high frequencies.
[6, 14–16]

 

 Although energy flow analysis has been applied to 

engineering applications using the finite element 
method, its design sensitivity analysis and optimization 

has not been fully developed. In this paper, a rigorous 

development of design sensitivity analysis for the struc-

tural–acoustic energy flow problem is presented. The 

variational equation is differentiated with respect to 

design variables. Such design variables as the material 

property, panel thickness, and structural damping factor 

are taken into account, which are all parametric design 
variables, since the structural configuration does not 

change during the design process. The continuum 

method is used to derive the design sensitivity equation 

of the energy flow equation, while the discrete method 

is used to calculate the variation of the coupling rela-

tion. The design variable’s effect on the power transfer 

coefficient is discussed in detail. 

 Two methods are proposed to calculate structural–
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acoustic design sensitivity: the direct differentiation and 

the adjoint variable method. The former solves for re-

sponse variable sensitivity and performance sensitivity 

is then obtained using the chain rule of differentiation. 
In contrast, the latter computes performance sensitivity 

by solving the adjoint problem. Even when the adjoint 

problem is not symmetric, the adjoint variable method 

still uses the same factorized coefficient matrix from 

response analysis. It is also shown that the adjoint prob-

lem is identical for different design variables. Design 

sensitivity results calculated from the proposed method 

are compared to finite difference sensitivity results with 
good agreement. 

 In energy flow analysis, the complicated geometry 

(built–up structures) is assembled from such simple 

structural components as rod, beam, membrane, plate, 
etc. by using the power transfer coefficient between 

components. This coefficient is a function of the design 

variables. Thus, in design sensitivity analysis it is nec-

essary to derive the expression of the power transfer 

coefficient in terms of the design variables. Several 

methods are proposed to calculate the power transfer 

coefficient: analytical, artificial damping, and iterative. 

In this paper, an analytical method is chosen to calcu-
late the power transfer coefficient and its sensitivity, 

since the last two methods present difficulties when 

used for design sensitivity calculation purposes. 

2. ENERGY FLOW ANALYSIS 

 In order to develop a design sensitivity formulation in 
the subsequent section, energy flow analysis

[6,12,13]
 and 

energy finite element analysis
[6,14,15]

 are first reviewed, 

including a method to calculate the power transfer coef-

ficient. 

 The energy flow equation for the steady–state struc-
tural–acoustic problem can be obtained through the 

energy conservation relation and the time– and space–

averaging process
[13]

 as  
2

2g
c

e eηω π
ηω

− ∇ + =  (1) 

where e is the time– and space–averaged energy density 

function, η is the hysteresis–damping factor, ω is the 

excitation frequency, π is the input power density, and 

cg is the group speed.
[18]

 Note that the hysteresis–

damping factor η is assumed to be small in the deriva-

tion of (1), i.e., η�1. 

 As discussed by Cho and Bernhard,
[14]

 the energy 

flow equation (1) satisfies within a structural compo-
nent. Unlike displacement in structural problems, en-

ergy density e is not continuous across the junction be-

tween structural components. The connection between 

different components can be achieved through the con-

servation of power flow and the superposition of vibra-

tion energy. Consider a built–up structure made up of a 

collection of structural components. Each component 

occupies a domain Ωi (⊂ R
2
) with boundary Γi (i = 

1,…,r). These domains are interconnected by con-

straints at each boundary; that is, structural components 

are connected to adjacent components by junctions that 

constrain admissible fields.  
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Figure 1 Built–up Structure with Components Ω1 and 
Ω2  

 

 Figure 1 illustrates a simple built–up structure with 

two components Ω1 and Ω2. The boundary of Ωi is 

composed of: 
e

i
Γ  where the energy density e is pre-

scribed, 
q

i
Γ where the power flow q is prescribed, and 

the junction boundary Γij. In each component Ωi, the 

weak formulation of the second–order differential equa-
tion (1) can be obtained by multiplying it with the vir-

tual energy density ēi, and by integrating the equation 

over the component’s domain. After integration by 

parts, the following is obtained: 

2

( )

( ) , 1,2

i

qe
i i iji

gi

i i i i i

i

i i i i i

c
e e e e d

e d e d i

η ω
η ω

π

Ω

Ω Γ ∪Γ ∪Γ

∇ ⋅∇ + Ω

= Ω − ⋅ Γ =

∫∫

∫∫ ∫ n I

 (2) 

where ∇ei = [∂ei/∂x, ∂ei/∂y]
T
 is the gradient vector of 

the energy density; ni is the unit outward normal vector 

to the boundary; and Ii is the time– and space–averaged 
energy intensity. Since the last integral on the right side 

of (2) represents the power flow on the boundary, the 

following relation can be defined:  

i i i
q = ⋅n I  (3) 

 By using the fact that the virtual energy density ēi 

vanishes on the boundary
e

i
Γ , and that the power flow 

on the boundary 
q

i
Γ  is given, the variational equation 

of the built–up structure in Figure 1 can be written as  
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∑∫∫

∑ ∫∫ ∫ ∫

(4) 

with the interface condition q1 + q2 = 0 on Γ12, and for 

all ēi that satisfy the above-mentioned boundary condi-

tions. 

 In a general setting, let e denote a composite vector 
of energy density fields in the components making up 

the built–up structure; that is, e = [e1, e2,…, er]
T
, where 

ei∈[H
0
(Ωi)]

2
 represents the energy density of the com-

ponent Ωi. The space of kinematically admissible fields 

is defined as a set of energy densities that satisfy homo-
geneous boundary and interface conditions between 

components. That is,  

{ : 0 on and 0 on }
e

i i ij
Z W q q= ∈ = Γ + = Γe e  (5) 

where the product space 
0 2

1
[ ( )]

r

i i
W H== Π Ω  is the 

space of energy density fields that satisfy the required 

degree of smoothness, 
1 2

e e e e

r
Γ = Γ ∪ Γ ∪ ∪ Γ� is the 

essential boundary where the energy density function is 

prescribed, and Γij is the common boundary of compo-

nents i and j. By using this definition, (4) satisfies for 

every 
1 2

[ , , , ]
T

r
e e e≡e …  belonging to the space Z of 

kinematically admissible fields. 

 For derivational convenience, variational equation (4) 

can be rewritten using bilinear and linear forms as  

( , ) ( , ) ( ),a b ZΩ Γ Ω+ = ∀ ∈e e e e e e�  (6) 

where bilinear and linear forms are defined as  
2

1

( , ) ( )
i

r
gi

i i i i i

i i

c
a e e e e dη ω

η ωΩ Ω
=

≡ ∇ ⋅∇ + Ω∑∫∫e e  (7) 

1

ˆ( ) [ ]
q

i i

r

i i i i

i

e d e q dπΩ Ω Γ
=

≡ Ω − Γ∑ ∫∫ ∫e�  (8) 

( , ) 1

( , ) ( )
r

ij

N

i i i j

i j

b e q e q dΓ Γ
=

≡ + Γ∑ ∫e e  (9) 

where Nr is the number of interfaces within the built–up 

structure. Note that the bilinear form aΩ(·,·) is symmet-

ric with respect to its arguments, while bΓ(·,·) is not. In 

fact, with its interface condition, bΓ(·,·) represents the 

conservation of power flow across the discontinuity of 

material property or junction geometry. 

 From a design point of view, the parameters that ap-

pear in (6) can serve as design variables. In the case of 

a plate–bending problem, for example, the group speed 

can be written as  

2 2 2

4 4
2

2 2
12 (1 )

g

D Eh
c

h

ω ω
ρ ρ ν

= =
−

 (10) 

where ρ is the density of the plate, E is Young’s 

modulus, ν is the Poisson’s ratio, h is the thickness of 

the plate, and D is the flexural rigidity. As will be 

shown in Section 3, the parameters in (10), as well as 

the hysteresis–damping factor η will serve as design 

variables.   

 The analytical solution to structural–acoustic equa-
tion (6) can only be obtained for a simple geometry. In 

general structures, FEM is often used to approximate 

the solution to (6). The FEM process involves dividing 

the structural component’s domain Ωi into a set of sim-

ple finite elements ( 1, , )
m

i i
m NΩ = … , and then imposing 

equation (6) on each element. The global system of 

matrix equations can be obtained through the assembly 

process. However, the EFA assembly process is differ-

ent from conventional FEM because energy density is 

not continuous across structural junctions.
[14]

 Instead of 

state variable continuity, the power flow conservation is 
used in the assembly process. The structural junction 

appears when either the material property or the geo-

metric configuration changes. If no junction exists, then 

a regular finite element assembly process can be used. 

 In FEM, the energy density in finite element 
m

i
Ω  is 

approximated using an interpolation vector { }
m

i
N  and a 

nodal energy density vector { }
m

i
E  as  

{ } { }
m m T m

i i i
e = N E  (11) 

The dimensions { }
m

i
N  and { }

m

i
E  are the same as the 

number of nodes in element
m

i
Ω . Then, the nodal energy 

density vector of component Ωi is defined by  
1 2

{ } { , , , }i
N T

i i i i
=E E E E…  (12) 

The same interpolation method will be used for the vir-

tual energy density ēi in Galerkin approximation. By 

using the standard Gauss integration method, the bilin-

ear and linear forms in equations (7) – (9) are approxi-
mated by  

2

1

1

( )

{ } [ ]{ }

i

r
gi

i i i i i

i i

r
T

i i i

i

c
e e e e dη ω

η ωΩ
=

=

∇ ⋅∇ + Ω

≈

∑∫∫

∑ E K E

 (13) 

1 1

ˆ[ ] { } { }
q

i i

r r

T

i i i i i i

i i

e d e q dπ
Ω Γ

= =

Ω − Γ ≈∑ ∑∫∫ ∫ E F  (14) 

( , ) 1 ( , ) 1

( ) { , }
r r

ij

N N
i

i i j j i j

ji j i j

e q e q d
Γ

= =

 
+ Γ ≈  

 
∑ ∑∫

Q
E E

Q
 (15) 

 The global system of matrix equations can be ob-
tained through the assembly process. After imposing 

the essential boundary condition, the global system of 

matrix equations is obtained as  

[ ]{ } { } { }= −K E F Q  (16) 

where {E} = {E1, E2,…, Er}
T
, {F} = {F1, F2,…, Fr}

T
, 

{Q} = {Q1, Q2,…, Qr}
T
, and  
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1

[ ] ([ ])

r

i
i=

=K KA  (17) 

where A denotes the assembly operator that maps the 

component’s coefficient matrix into the global coeffi-

cient matrix. 

 When discontinuities exist in the material property 
and junction shape, the power flow vector {Qi} must be 

calculated from the conservation of power flow across 

the junction. This process is equivalent to the construc-

tion of kinematically admissible fields, defined in (5). 

For simplicity, let the components Ωi and Ωj have a 

single element i and j, respectively, and let elements i 

and j share the discontinuous junction. Then, the con-
servation requirement yields the following relation be-

tween the power flow and energy density of two adja-

cent elements:  

[ ]
i i

ij

j j

   
=   

   

Q E
J

Q E
 (18) 

Note that it is necessary to define duplicate nodes along 
the junction. Construction of the junction matrix [Jij] 

involves calculating the power transfer coefficient.
[14]

 

Thus, it is critical to calculate the power transfer coeffi-

cient in the assembly process. In addition, this coeffi-

cient is a function of the material property, panel thick-

ness, and junction geometry, which are design vari-

ables. 

 Given the relation in (18), the power flow vector in 
(16) moves to the left side of the matrix equation. Thus, 

the assembled matrix of elements i and j becomes  

[ ]
i i i

ij

j j j

      
+ =      

       

K 0 E F
J

0 K E F
 (19) 

Due to the asymmetry of the junction matrix [Jij], the 
coefficient matrix in (19) is not symmetric. However, it 

will be shown in the development of the design sensi-

tivity formulation that such asymmetry does not cause 

any further computational cost in solving the adjoint 

problem. 

 Langley and Heron
[17]

 presented an analytical method 
for calculating the power transfer coefficient for arbi-

trary angled plate–to–plate junctions. The same method 

is used in this paper for energy flow and design sensi-

tivity analysis. The analytical method for calculating 

power transfer coefficients uses a junction composed of 

semi-infinite plates. The rationale for applying this 
semi-infinite theory to the finite-dimension has been 

discussed by Cremer et al.
[18]

 through the frequency–

averaging process at high frequencies. 

 From (15), the power flow vector {Qi} is obtained by 
integrating the local power flow qi along the junction 

Γ12 as  

12

12

1 1
1 1

12

2 2
2 2

{ }

[ ]
{ }

q d

q d

Γ

Γ

 Γ
    = ≡     
   Γ 

 

∫

∫

N
Q E

J
Q EN

 (20) 

where {Ei} is the Np×1 nodal energy density vector of 

element i, and [J12] is the 2Np×2Np junction matrix. 

This relation is assembled in the global matrix equation 

using the local–to–global Boolean operation. Since the 

interpolation function of those nodes that do not belong 

to the junction boundary vanishes on Γ12, the size of the 

junction matrix can be further reduced if such a situa-

tion is taken into account. 

 The junction relation in (20) corresponds to the sim-

plest situation in the plate–to–plate connection. If two 

members join with an arbitrary angle, then the bending, 

longitudinal, and shear waves must be considered si-
multaneously. In such a case, the size of the junction 

matrix becomes 6Np×6Np. The junction matrix becomes 

more complicated when multiple components are con-

nected at the junction. However, the same conservation 

of power flow can be used, although with algebraic 

complications. 

3. DESIGN SENSITIVITY ANALYSIS 

 Design sensitivity is the gradient of a performance 
measure with respect to design variables. In the struc-

tural–acoustic problem, vibration energy often serves as 

a performance measure. This study focuses on parame-

ter sensitivity analysis in which the parameter of a 
structural–acoustic problem is a design variable. The 

thickness of the plate, the material property, the power 

transfer coefficient, and the hysteresis–damping factor 

are all examples of parametric design variables. 

 Throughout this paper, u denotes a parametric design 
variable. Let ψ be a function that depends on current 

design u, and assume that ψ(u) is continuous with re-

spect to design u. If the current design is perturbed in 

the direction of δu (arbitrary), and ε is a scalar parame-

ter that controls perturbation size, then the variation of 

ψ(u) in the direction of δu is defined as  

0

( )
u

d
u u u

d u
δ

ε

ψψ ψ εδ δ
ε =

∂′ ≡ + =
∂

 (21) 

Throughout this paper, the prime symbol “ ′ ” is the 
first variation in the calculus of variations.

[19]
 For con-

venience, subscribed δu will often be ignored. The term 
“derivative” or “differentiation” will often be used to 

denote the variation in (21), because the coefficient of 

δu (i.e., ∂ψ/∂u) will be calculated in practice. If the 

variation of a function is continuous and linear with 

respect to δu, then the function is differentiable (more 

precisely, it is Fréchet differentiable). 

 Without mathematical proof, the solution e to the 
energy flow equation in Section 2, given here in the 

rewritten form  
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( , ) ( , ) ( ),
u u u

a b Z+ = ∀ ∈e e e e e e�  (22) 

is differentiable with respect to the design. That is, the 

variation 

0

( ; , ) ( ; )
d

u u u u
d ε

δ εδ
ε =

′ ′= ≡ +e e x e x  (23) 

exists, and is the first variation of the solution to (22) at 

design u and in direction δu of the design change. Note 

that e′ is a function of independent variable x, and de-
pends on design u and direction δu. In (22), the sub-

scribed u is used to emphasize that bilinear and linear 

forms depend on design u. 

 In addition, each of the bilinear and linear forms en-
countered in Section 2 is assumed to be differentiable 

with respect to the design. That is,  

0

( , ) ( , )
u u u

d
a a

d
δ εδ

εε +
=

′ ≡e e e e�  (24) 

0

( ) ( )
u u u

d

d
δ εδ

εε +
=

′ ≡e e� �  (25) 

0

( , ) ( , )
u u u

d
b b

d
δ εδ

εε +
=

′ ≡e e e e�  (26) 

exist, where ẽ denotes the state variable e, with the de-

pendence on ε being suppressed, and ē is independent 

of ε. For example, ( , )
u

aδ′ e e is the first variation of the 

bilinear form a
u
 in the direction of δu. It is assumed that 

this first variation is continuous and linear in δu; hence, 

it is the Fréchet derivative of a
u
 with respect to the de-

sign, and as evaluated in the direction of δu. In fact, 

Equations (24) – (26) are the contributions from the 
bilinear and linear forms that are explicitly dependent 

on the design.  

 

3.1 Direct Differentiation Method 

 A direct differentiation method calculates the varia-

tion of the energy density in (23) by differentiating 

structural–acoustic equation (22) as  

( , ) ( , ) ( ) ( , ) ( , ),
u u u u u

a b a b

Z

δ δ δ′ ′ ′ ′ ′+ = − −
∀ ∈

e e e e e e e e e

e

�
 (27) 

The left side of (27) presents the terms that are implic-

itly dependent on the design. Thus, design sensitivity 
equation (27) solves the implicitly dependent terms by 

using the explicitly dependent ones. The left side of 

(27) is the same as that of (22) if e′ is replaced by e. 
Thus, the design sensitivity equation uses the same co-

efficient matrix from structural–acoustic analysis with a 

different load on the right side. 

 Next, consider a structural–acoustic performance 
measure that can be written in integral form, as  

( , , )g u u dψ εδ
Ω

= ∇ + Ω∫∫ e e  (28) 

where function g is continuously differentiable with 
respect to its arguments. Functionals in the form of (28) 

represent a wide variety of structural–acoustic perform-

ance measures. For example, the volume of a structural 

component can be written with a g that depends explic-

itly on u; energy intensity can be written in terms of u 

and ∇e; and energy density at a point can be formally 

written using the Dirac–δ measure. 

 To develop the design sensitivity formula, take the 

variation of the functional in (28), as  

, , ,

( )
u

g g g u dψ δ∇Ω
′ ′ ′= ⋅ + ⋅∇ + Ω∫∫ e e

e e  (29) 

From the definition of function g, it is assumed that the 

expressions of g
,e
, g

,∇e
, and g

,u
 are available. Thus, from 

the solution e′ of design sensitivity equation (27), the 

variation ψ′ can readily be evaluated in the direct dif-
ferentiation method.  

 

3.2 Adjoint Variable Method 

 Recall that e′ and ∇e′ depend on the design change 

direction δu. The objective of the adjoint variable 

method is to obtain an explicit expression of ψ′ in terms 
of δu, which requires rewriting the first two terms on 

the right of (29) explicitly in terms of δu. An adjoint 

equation is introduced for that purpose by replacing e′ 
in (29) with a virtual energy density

1 2
{ , , , }

T

r
λ λ λ=λ … , 

and by equating the terms involving λ  in (29) to the 

bilinear forms in (22),  yielding the adjoint equation for 

adjoint variable λ: 

, ,

( , ) ( , ) ( ) ,
u u

a b g g d

Z

∇Ω
+ = ⋅ + ⋅∇ Ω

∀ ∈
∫∫ e e

λ λ λ λ λ λ

λ

 (30) 

where the solution 
1 2

{ , , , }
T

r
λ λ λ=λ …  is desired, which 

is the adjoint energy density associated with the per-

formance measure in (28). 

 The intention is to express the first two terms on the 

right of (29) in terms of adjoint variable λ. Since (30) 

satisfies for all Z∈λ , and since e′ belongs to space Z, 

equation (30) may be evaluated at a specific ′=λ e . 

After substitution, the following is obtained:  

, ,

( , ) ( , ) ( )
u u

a b g g d∇Ω
′ ′ ′ ′+ = ⋅ + ⋅∇ Ω∫∫ e e
e λ e λ e e  (31) 

where the right side is the same as the first two terms of 

the right side of (29), which it is now desirable to write 

explicitly in terms of δu. Similarly, design sensitivity 

equation (27) may be evaluated at a specific ē = λ to 

obtain  

( , ) ( , ) ( ) ( , ) ( , )
u u u u u

a b a bδ δ δ′ ′ ′ ′ ′+ = − −e λ e λ λ e λ e λ�  (32) 

The left sides of (31) and (32) are equal, yielding the 

following desired relation:  

, ,

( )

( ) ( , ) ( , )
u u u

g g d

a bδ δ δ

∇Ω
′ ′⋅ + ⋅∇ Ω

′ ′ ′= − −
∫∫ e e

e e

λ e λ e λ�

 (33) 

where the right side is linear in δu and can be evaluated 
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once the state variable e and the adjoint variable λ are 

determined to be the solutions to (22) and (30), respec-

tively. Substituting the result of (33) into (29), the ex-

plicit design sensitivity of ψ is obtained as  

,

( ) ( , ) ( , )
u u u u

a b g u dδ δ δψ δ
Ω

′ ′ ′ ′= − − + Ω∫∫λ e λ e λ�  (34) 

where the first three terms on the right depend on the 

specific problem under investigation. 

 As was shown in (27), the direct differentiation 
method uses the same coefficient matrix as response 

analysis. However, the format of adjoint equation (30) 

is different from response analysis because bu(e,ē) is 

not symmetric with respect to its arguments. In the 

early development of the adjoint variable method,
[20]

 
the symmetric property of the bilinear form plays an 

important role. However, the definition of the adjoint 

problem in (30) does not require the symmetric prop-

erty of the bilinear form.  

 

3.3 Analytical Example 

 In this section, explicit expressions of variations in 

(24)–(26) are developed for the plate component, since 
this component is commonly used in engineering appli-

cations. For notational simplicity, expressions in this 

section correspond to a single component without in-

cluding the component’s index. When a constant input 

power and a constant power flow are supplied to the 

structure (see Figure 2), ˆand qπ are independent of 

the parametric design variable, i.e., ˆ 0qπ ′ ′= = . Thus, 

from its definition in (8), the variation of �u(ē) vanishes, 

i.e., ( ) 0
u
eδ′ =� . Since the bilinear form bu(e,ē) is calcu-

lated from the conservation of power flow across a 

junction, its variation will be calculated in the next sec-

tion, along with finite element discretization.  

 

 

Ω 
Ε,ν,ρ,η 

h 

π 

q̂
 

Figure 2 Design Variables of a Plate Component  

 

 The variation of bilinear form au(e,ē) depends on the 

parametric design variable. For derivational conven-

ience, the hysteresis–damping factor is treated sepa-

rately from other design variables. According to the 
definition of the variation in (24), the bilinear form in 

(7) is differentiated with respect to η to obtain  

2

2
( , ) ( )

g
c

a e e e e e e dδη ω δη
η ωΩ

′ = − ∇ ⋅∇ + Ω∫∫  (35) 

For other types of parametric design variables, the de-

pendence of au(e,ē) on the design is only through the 

group speed cg. Thus, the variation of au(e,ē) is obtained 

by  

2
( , ) ( )

g

u g

c
a e e e e c dδ δ

ηωΩ
′ = ∇ ⋅∇ Ω∫∫  (36) 

where δcg is the variation of the group speed. In the 

case of a bending–to–bending vibration, the expression 
of δcg can be obtained from its definition in (10), which 

is summarized in Table 1. 

 Since results from the structural–acoustic problem 

are already available, the variation ( , )
u

a e eδ′  can be 

readily evaluated for a given δu. In the case of the ad-

joint variable method, ( , )
u

a eδ λ′ is evaluated with the 

adjoint result λ.  

 

Table 1 Variation of the Group Speed 

Design Variable  δcg 

 H (cg/2h)δh 

 E (cg/4E)δE 

 ν [νcg/2(1–ν
2
)]δν 

 ρ –(cg/4ρ)δρ 

 
3.4 Finite Element Approximation 

 In order to be consistent and efficient, discretization 
of the design sensitivity equation must follow the same 

approximation method as the energy flow analysis de-

scribed in Section 2. In this section, finite element ap-

proximation of the design sensitivity equation is pre-

sented using direct differentiation and adjoint variable 

methods. 

 Discretization of the structural fictitious load in (24) 
can be obtained using the energy density e. In a plate 

component, for example, ( , )
u

aδ′ e e in (36) can be ap-

proximated by  
2

1

1

1 2

2

2
( , ) ( )

{ }

i

gi

u i i gi

i i

a

a

c
a e e c d

u

δ δ
η ω

δ

Ω
=

′ = ∇ ⋅∇ Ω

 
≈  

 

∑∫∫e e

F
E E

F

 (37) 

where 
a

i
F  is the nodal fictitious load vector of compo-

nent i, and δu is the variation of design that appears in 

Table 1. 

 Although ( , )
u

aδ′ e e  in (36) is calculated in the con-

tinuum domain followed by finite element approxima-

tion, it is convenient to calculate ( , )
u

bδ′ e e  by differen-

tiating the discrete vector in (15) and (18), which corre-
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sponds to differentiating the junction matrix. Thus, we 

obtain  

1

1 2 12

2

( , ) { }[ ]
u

bδ
 ′ ′≈  
 

E
e e E E J

E
 (38) 

 Since the left side of sensitivity equation (27) is the 

same as the left side of (22), by replacing e′ with e the 
approximated sensitivity equation has the same coeffi-

cient matrix as in (19). The global sensitivity matrix 

equation is obtained from (27), (38), and (37), as  

1 1 11

12 12

2 2 22

[ ] [ ]

a

a

uδ
′        ′+ = − −        ′       

K 0 E EF
J J

0 K E EF
 (39) 

where the nodal energy density variation { }
i
′E  is 

solved. After computing
1 2

{ } { }
T′ ′ ′=E E E , the variation 

of energy density is calculated using the same approxi-
mation method used in (11); that is,  

{ } { }
T

i i i
e′ ′= N E  (40) 

and the sensitivity of the performance measure in (29) 

is calculated using the chain rule of differentiation and 

numerical integration. Since the coefficient matrix of 

(39) is factorized during energy flow analysis, (39) can 

be solved very efficiently. 

 With the adjoint variable method, adjoint variable λ 

is approximated using the same shape function as the 

energy density function; i.e., λi = {Ni}
T
{Λi}. The ad-

joint load, defined in (30), is calculated using the same 
finite element approximation and numerical integration 

method, as  

1

, , 1 2

2

( ) { }

adj

T

adj
g g d∇Ω

 
⋅ + ⋅∇ Ω ≈  

 
∫∫ e e

F
λ λ Λ Λ

F
 (41) 

where 
1 2

{ }
T

Λ Λ  is the virtual nodal adjoint variable. 

In the above equation, the adjoint load is independent of 

design variables; it only depends on the performance 

measure. The left side of adjoint equation (30) is the 

transpose of state equation (22) because the bilinear 

form bu(·,·) is not symmetric. Thus, the adjoint problem 

is defined using the transpose of the coefficient matrix 

in (19), as  

1 1 1

12

2 2 2

[ ]

T
adj

adj

     
+ =     

     

K 0 Λ F
J

0 K Λ F
 (42) 

Even if the coefficient matrix in (42) is the transpose of 

the coefficient matrix in (19), the latter can still be used 

to solve the former. Thus, the computational costs of 

solving adjoint equation (39) and sensitivity equation 

(42) are the same. 

 After solving the adjoint variable {λ}, the perform-
ance sensitivity in (34) is obtained using the numerical 

integration rule, as  

1

, 1 2

2

1

1 2 12

2

{ }

{ }[ ]

a

u a

g u d uψ δ δ
Ω

 
′ = Ω −  

 

 ′−  
 

∫∫
F

Λ Λ
F

E
Λ Λ J

E

 (43) 

 As shown in the above equation, the adjoint variable 
method still requires calculation of the fictitious load 

{F
a
} and

12
[ ]′J , which appear in the direct differentia-

tion method. Thus, both methods have the same compu-
tational costs, except for the number of matrix equa-

tions that need to be solved. The direct differentiation 

method solves the system of matrix equations according 

to the number of design variables, while the adjoint 

variable method solves it according to the number of 

performance measures. 

4. NUMERICAL EXAMPLES 

4.1 Parameter Study 

 In order to control power flow between structural 
members, it is necessary to control the power transfer 

coefficient. Since this coefficient is the ratio between 

incident and transmitted powers, a panel thickness 

change will affect it.  Figure 3 shows two co-planar 

plates with the same material properties (E = 209 GPa, 

ν = 0.3, ρ = 7,800 kg/m
3
). An incident wave with a fre-

quency of ω = 2.0 kHz is considered. The thickness of 
Plate 1 changes from 0.5 mm to 1.5 mm, while the 

thickness of Plate 2 is fixed at 1.0 mm. Only bending–

to–bending power transmission is considered, because 

the plates are co-planar. As the thickness begins to dif-

fer between the two plates, the values of the power 

transfer coefficients change from one. The maximum 

change occurs when the thickness of Plate 1 is 0.5 mm, 

and the value of 
12

BBτ  is reduced to 70%. 

0.0

0.2

0.4

0.6

0.8

1.0

0.0005 0.001 0.0015
Thickness of Plate 1

1.0 Plate 1 Plate 2

11

BBτ
22

BBτ

21

BBτ
12

BBτ

 Figure 3 Variations of the Power Transfer Coefficients 

as a Function of Panel Thickness  
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 To investigate further the effect of structural design 

variables on the power transfer coefficient, variations of 

energy density as a function of panel thickness are stud-

ied for the co-planar plates, as shown in Figure 4. Unit 
power density (J/m

2
·s) is applied at the center of Plate 

1. In Figure 3, Point 1 corresponds to the center of Plate 

1, while Point 2 corresponds to the center of Plate 2. A 

hysteresis–damping factor of η = 0.01 is used for both 

plates. The plates have the same initial thickness of 1.0 

mm. The energy densities at the center point of these 

plates are plotted by changing the thickness of the left 

plate from 0.5 mm to 1.5 mm. By reducing the thick-
ness of the left plate by 0.5 mm, its energy density in-

creases by 30% at the center, while the energy density 

decreases by 64% at the center of the right plate. Con-

sequently, in this simple example the ratio of the energy 

density change appears to be greater than the ratio of 

the design variable change. 

 Although the differentiability of energy density with 
respect to the design is not proved in the theoretical 

sections of this study, the power transfer coefficient in  

Figure 3 and the energy density in Figure 4 show 

smooth variations of the energy density as a function of 

the thickness design variable.  
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E
n
e

rg
y
 D

e
n

s
it
y
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J
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^2
) 
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Point 2

Figure 4 Variations of the Energy Densities as a Func-

tion of a Panel Thickness  

 

4.2 Power Transfer Coefficient Sensitivity 

 The parametric study in Section 4.1 illustrates that 
the power transfer coefficients depend on design vari-

ables. For example, Figure 5 plots the variations of a 

bending–to–bending power transfer coefficient as a 

function of thickness design variables. Two semi-

infinite plates are connected at a right angle. The thick-

ness of Plate 1 (incident plate) is fixed at 1.0 mm, while 
the thickness of Plate 2 varies from 0.5 mm to 1.5 mm. 

The same material properties (E = 209 GPa, ν = 0.3, ρ = 

7,800 kg/m
3
) are used for both plates. An incident wave 

with a frequency of ω = 20 kHz is considered. In con-

trast to the co-planar plates in  Figure 3, the reflection 

power transfer coefficient 
11

BBτ  is greater than the trans-

ferred power transfer coefficient 
12

BBτ . In addition, the 

summation of 
11

BBτ  and 
12

BBτ  does not equal one because 

the bending incident wave is transmitted as bending, in-

plane, and shear wave, although the bending–to–

bending transmission is the dominant mode. The sensi-

tivity of these power transfer coefficients with respect 

to plate thickness is represented by the slope of curves 

in Figure 5. 

 The analytical sensitivity of the power transfer coef-
ficient is found by differentiating the procedure for cal-

culating the power transfer coefficient. In order to ver-

ify the accuracy, Figure 6 compares analytical sensitiv-

ity results of the power transfer coefficients with sensi-
tivity results calculated using the finite difference 

method (FDM). The finite difference sensitivity of
11

BBτ , 

for example, can be calculated from the following for-

mula:  

11 11

11

( ) ( )
( )

BB BB

BB h h h
h

h

τ ττ + ∆ −′ ≈
∆

 (44) 

where ∆h = 0.01 mm is used. In general, sensitivity 

11

BBτ ′  from Eq. (44) is more accurate as perturbation size 

∆h decreases. However, numerical noise becomes 

dominant if ∆h is so small that the change in 
11

BBτ  is 

smaller than the machine’s significant digit. Thus, it is 

always difficult to select the appropriate perturbation 

size in FDM. In Figure 6, “
11

BBτ ′ FDM” represents the 

sensitivity of 
11

BBτ  calculated using the finite difference 

method, while “
11

BBτ ′ Analytical” represents the sensitiv-

ity of 
11

BBτ  calculated from the proposed continuum 

sensitivity formula. As shown in Figure 6, analytical 

sensitivity results agree with finite difference sensitivity 

results. 

0

0.3

0.6

0.9

0.0005 0.001 0.0015

Thickness h2 (m)

11

BBτ

12

BBτ

Figure 5 Variation of the Power Transfer Coefficient as 
a Function of the Plate Thickness Design (ω = 2.0 kHz)  
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Figure 6 Sensitivity Results of Power Transfer Coeffi-

cients Compared with the Finite Difference Results for 

the Plate Thickness Design (ω = 2.0 kHz)  
 

4.3 Energy Density Sensitivity 

 Power transfer coefficient sensitivity results in Sec-
tion 4.2 can be obtained from the analytical expression. 

However, the sensitivity of the energy density can only 

be calculated by solving the sensitivity equation for the 

direct differentiation method, or by solving the adjoint 

equation for the adjoint variable method. In this section, 
the accuracy of energy density sensitivity is compared 

with sensitivity results obtained from FDM. 

 Consider two plates from Section 4.2 that form a 

right angle to each other. In addition to having the same 
thickness and material properties as in Section 4.2, 

these plates also have a hysteresis–damping factor of η 

= 0.01. The dimension of each plate is 1 m × 1 m × 

0.001 m, and 100 finite elements are used to approxi-

mate each plate. Figure 7 shows the plate geometry 

with 200 finite elements. A unit power density with 

frequency 2.0 kHz is applied at node 61, which is the 

center of Plate 1. The objective is to estimate the varia-
tion of energy density as a function of Plate 1’s thick-

ness using the sensitivity calculation method.  

 Figure 8 plots the sensitivity of energy density func-

tions with respect to the thickness design of Plate 1. 

The location of point P1 is at the center of Plate 1, 

while P2 is at the center of Plate 2. “DSA P1” is the 

design sensitivity of energy density at P1 calculated 

using the proposed method, while “FDM P1” is the 
design sensitivity calculated using the finite difference 

method.  A direct differentiation method is used to cal-

culate the sensitivity of energy density functions. As the 

thickness of Plate 1 increases, more power is trans-

ferred to Plate 2. Thus, the energy density sensitivity 

decreases at point P1, while increasing at point P2. 

However, this pattern diminishes as Plate 1’s thickness 

approaches 1.5 mm. It is interesting that the energy 

density of point P2 starts to decrease when the thick-

ness of Plate 1 becomes 1.3 mm. Thus, the maximum 

value of the sensitivity of energy density at point P2 can 
be expected at h1 = 1.3 mm.  

 

 

Incident Power 

56

66 

177

187

61 

 

Figure 7 Energy Density Distribution of Two Plates at a 
Right Angle  
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Figure 8 Design Sensitivity Plot of the Energy Density 
with Respect to the Thickness Design Variable of Plate 

1 (2.0 kHz)  

 

 Table 2 compares the sensitivity results of energy 
densities for those nodes along the centerline of the 

plates (see Figure 7). The same thickness of h1 = h2 = 

1.0 mm is used for both plates. Energy density values 

are calculated from a frequency average that covers a 

one-third octave. The first and second columns denote 
the node number and nodal energy density (perform-

ance measure) in dB units, respectively.  Performance 
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changes are then recorded for the direct differentiation 

method (column 3), the adjoint variable method (col-

umn 4), and FDM (column 5). Column 5 is the ratio 

between columns 3 and 5, and column 6 is the ratio 

between columns 3 and 6. A small design perturbation 

of ∆h = 10
–3

 mm is used. In the ratio column (%), re-
sults from the two proposed methods are compared with 

finite difference results). Excellent agreement is ob-

served between the three methods. In fact, sensitivity 

results from the direct differentiation and adjoint vari-

able methods are the same up to the significant digits 

shown in the table. Note that the energy density values 

of the two junction nodes 66 and 177 are different at 

about 7.2 dB, which confirms the discontinuity of en-
ergy density across the junction.  

 As a final example of parameter design sensitivity 

analysis, a hysteresis–damping factor is considered as a 

design variable. Figure 9 compares the sensitivity of 
energy densities from the proposed method with the 

finite difference method when the damping factor is the 

design variable. The effect of the damping factor on the 

energy density function is always negative for Plate 2. 

However, such an effect gradually decreases, and 

shows saturation as the damping factor approaches 0.1.  

The damping factor’s effect on Plate 1 is quite different 

from its effect on Plate 2. At the very small value of η 
(0.01 – 0.028), an increase in the damping factor re-

duces the energy density at Plate 1. However, at a high 

value the damping factor actually increases the energy 

density on Plate 1, and its effect is gradually reduced as 

the damping factor increases. 

 Energy density’s dependence on the damping factor 

cannot be generalized because observations in this sec-

tion depend on excitation frequency, material property, 

and plate dimensions. However, this example clearly 

shows that adding more damping material does not al-

ways guarantee a reduction in the noise level of struc-

tural components. In order to control noise levels, the 
effects of damping material must be fully understood in 

each component through design sensitivity analysis. 

-300
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50

0.01 0.03 0.05 0.07 0.09 0.11
η

dB

FDM P1

DSA P1

FDM P2

DSA P2

Figure 9 Design Sensitivity Plot of the Energy Density 

with Respect to the Hysteresis–Damping Factor (2.0 

kHz) 

5. CONCLUSION 

 Design sensitivity formulation of the energy finite 
element method is presented using direct differentiation 

and adjoint variable methods.  Material property, panel 

Table 2 Comparison of Sensitivity Results Obtained from the Proposed and Finite Difference Method (θ=90˚, ω=2.0 kHz) 
 

ψ′∆ε ∆ψ/ ψ′∆ε×100% 
Node ψ 

DDM AVM 
∆ψ 

DDM AVM 

56 0.91237945E+2 0.40465093E-2 0.40465093E-2 0.40473102E-2 100.02 100.02 

57 0.91404763E+2 0.24799215E-2 0.24799215E-2 0.24805766E-2 100.03 100.03 

58 0.91908154E+2 -0.19791083E-2 -0.19791083E-2 -0.19788282E-2  99.99  99.99 

59 0.92790054E+2 -0.89176064E-2 -0.89176064E-2 -0.89178111E-2 100.00 100.00 

60 0.94039969E+2 -0.16996344E-1 -0.16996344E-1 -0.16996976E-1 100.00 100.00 

61 0.97291986E+2 -0.30821719E-1 -0.30821719E-1 -0.30822884E-1 100.00 100.00 

62 0.93991173E+2 -0.17396825E-1 -0.17396825E-1 -0.17397454E-1 100.00 100.00 

63 0.92655044E+2 -0.97446228E-2 -0.97446228E-2 -0.97448706E-2 100.00 100.00 

64 0.91644878E+2 -0.30619330E-2 -0.30619330E-2 -0.30618179E-2 100.00 100.00 

65 0.90977247E+2 0.14228950E-2 0.14228950E-2 0.14231904E-2 100.02 100.02 

66 0.90623021E+2 0.32388008E-2 0.32388008E-2 0.32389950E-2 100.01 100.01 

177 0.83403422E+2 0.42493917E-1 0.42493917E-1 0.42499934E-1 100.01 100.01 

178 0.82417283E+2 0.42846442E-1 0.42846442E-1 0.42852465E-1 100.01 100.01 

179 0.81461217E+2 0.43069418E-1 0.43069418E-1 0.43075445E-1 100.01 100.01 

180 0.80537757E+2 0.43210071E-1 0.43210071E-1 0.43216100E-1 100.01 100.01 

181 0.79655424E+2 0.43298517E-1 0.43298517E-1 0.43304548E-1 100.01 100.01 

182 0.78829343E+2 0.43353900E-1 0.43353900E-1 0.43359932E-1 100.01 100.01 

183 0.78082023E+2 0.43388322E-1 0.43388322E-1 0.43394355E-1 100.01 100.01 

184 0.77443423E+2 0.43409373E-1 0.43409373E-1 0.43415406E-1 100.01 100.01 

185 0.76948922E+2 0.43421734E-1 0.43421734E-1 0.43427767E-1 100.01 100.01 

186 0.76633956E+2 0.43428182E-1 0.43428182E-1 0.43434215E-1 100.01 100.01 

187 0.76525562E+2 0.43430179E-1 0.43430179E-1 0.43436213E-1 100.01 100.01 
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thickness, junction angle, and structural shape are taken 

into account as design variables, in addition to the hys-

teresis–damping factor. The continuum approach is 

used to derive the design sensitivity formulation of the 
structural component, while the discrete approach is 

used to obtain the design sensitivity of the junction ma-

trix, required in the coupling of different components. 

The analytical expression of the power transfer coeffi-

cient is differentiated with respect to design variables to 

obtain the power transfer coefficient sensitivity. Design 

sensitivity results calculated from the proposed method 

are compared with finite difference sensitivity results 
with good agreement. The proposed design sensitivity 

calculation method is integrated into the design optimi-

zation process. 
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