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ABSTRACT

The Reproducing Kernel Particle Method (RKPM) is
one of several so-called meshfree methods of structural
analysis and has been applied in this paper to the
gradient-based shape optimization of two-dimensional
automotive components. As indicated by the term
meshfree, no mesh is required, but rather a field of
points, or particles, are distributed within the domain of
the problem. Three standard linear examples are chosen
to allow a comprehensive comparison between the
optimization with the RKPM and the state-of-art
optimization tool in Unigraphics Version 18 (UG V18).
The results show that the optimization analysis with the
RKPM is able to accommodate very large shape
changes required in the optimization process without
doing particle re-adaptation, and provides accurate
solutions of the objective and constraint functions and
their gradients, therefore facilitates a fast convergence
of the gradient-based optimization algorithm.

INTRODUCTION

Loss of solution accuracy due to the excessive mesh
distortion that occurs during large shape changes
constitutes one of the major computational challenges
in structural shape optimization with the finite element
method (FEM). A common and direct approach to
avoid the mesh distortion is to perform mesh
adaptations or re-meshing during the optimization
process (see Bennett and Botkin1, and Yao and Choi2).
However, this approach is so expensive that it becomes

unaffordable for large automotive models.

In recent years, meshfree methods have been proposed
for structural analyses to overcome the aforementioned
mesh-related difficulties. Typical meshfree methods are
moving least squares method in Lancaster and
Slakauskas3, smooth particle hydrodynamics method in
Randles and Libersky4, diffuse element method in
Nayroles et al.5, element free Galerkin method in
Belytschko et al.6, reproducing kernel particle method
(RKPM) in Liu et al.7 and Chen et al.8, partition of
unity method in Melenk and Babuska9, and hp–cloud
method in Duarte and Oden10. The common
characteristic of the meshfree methods is that their
shape/approximation functions are constructed entirely
based on a set of discrete points/particles with no
requirement of particular topological connection among
the points. Mesh distortion difficulties are naturally
resolved in the meshfree methods, since the
connectivity among the points is only used for the
purpose of the domain integration in the solutions of
partial differential equations (PDEs) in a galerkin
scheme, and is independent of the meshfree
approximation. Substantial evidence shows that the
meshfree methods have strong tolerance of irregular
nodal discretization without loss of solution accuracy,
not to mention their convenience in achieving h & p-
adaptivity.

Meshfree-based design sensitivity analysis (DSA)
research was started in 1998 by Grindeanu et al.11 for
hyper-elastic problems and later on continued by Kim
et al.12-14 for the elastic-plastic and contact problems
using the RKPM. The advantages of the RKPM in the
DSA research have been shown in their papers in terms
of accurate sensitivity computation and strong
capabilities in handling large shape changes.

The purpose of this paper is to employ the RKPM-

* Principal Research Engineer, Member AIAA
† Senior Research Engineer
Copyright © 2002 by General Motors Corp.
Published by the American Institute of Aeronautics and
Astronautics, Inc. with permission.

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
4-6 September 2002, Atlanta, Georgia

AIAA 2002-5541

Copyright © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



2
American Institute of Aeronautics and Astronautics

based DSA for the gradient-based shape optimization
analysis of automotive components, and to allow the
benchmark of the meshfree-based optimization process
with the state-of-art shape optimization in UG V18. In
the following sections, the reproducing kernel particle
method for structural analysis is reviewed first. Then
the meshfree design sensitivity formulation is
introduced. Numerical examples are presented next.
Conclusions and summaries are given at the end.

REPRODUCING KERNEL PARTICLE METHOD

The reproducing kernel particle approximation was
proposed by Liu et al.7 and developed for the solutions
of structural problems by Liu et al.7 and Chen et al.8.

Reproducing Kernel Particle Approximation
Assume that the given domain WŒR2 is discretized by a
set of particles [x1,º, xI,º, xNP], where xI=[xI,
yI]T=[x1

I, x2
I]T is the location of particle I, and NP is the

total number of particles, the discrete reproducing
kernel particle approximation of the function f(x) is
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where fR(x) is the reproduced (approximated) function
of f(x), fa is the kernel function which defines the
smoothness of the approximation with a compact
support measured by “a”. A common form of the one-
dimensional kernel functions utilizes a cubic spline
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For particle xI with a support size a=[a1, a2], its kernel
function is defined as

1 21 1 1 2 2 2( ) (( ) ) (( ) )I I I
a ax x a x x aφ φ φ− = − −a x x .

C(x; xI–x) in Equation (1) is a correction function that
is a linear combination of monomial basis functions:
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where ( )I −H x x is the vector of monomial basis

functions. The coefficient vector ( )q x facilitates the

discrete reproducing conditions, which are,
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Equation (5) is equivalent to
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By solving ( )q x from the reproducing equation (6), the

correction function can be determined as

1( ; ) ( ) ( ) ( )I T IC −− = −x x x H 0 M x H x x (7)

where M(x) is the moment matrix, defined as
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Substituting the correction function in Equation (7) into
Equation (1) leads to the reproducing approximation
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where FI(x) is called the meshfree shape function of
particle I:

1( ) ( ) ( ) ( ) ( )I T I Iφ−Φ = − −ax H 0 M x H x x x x , (10)

and its partial derivatives are calculated as
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where ,k( )⋅ denotes the spatial derivative k( ) / x∂ ⋅ ∂ ,

k=1,2.

Differing from the finite element shape functions, the
meshfree shape functions do not have Kronecker delta
properties, i.e., FI(xJ) π dIJ. The coefficient If is the

nodal value of the function f(x) at particle I in the case
that f(x) is a monomial function. When the
approximated functions are non-monomial functions,
the coefficients are in general not the nodal values.
Therefore, when the reproducing kernel particle
approximation is applied to a displacement function
z(x), it is rewritten as
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where the coefficient dI is called the generalized
displacement of particle I, which is not the nodal value
of z(xI). Because of this absence of Kronecker Delta
properties, special techniques are required to impose the
essential boundary conditions in the solutions of
boundary value problems. In this paper, the mixed
transformation method presented in Chen and Wang15

is employed for this purpose.

Meshfree Small Strain Elastic Formulation
The variational form of the continuum equilibrium
equation of small strain elastic structural problems is
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where sij and eij are the stress and strain tensors,
respectively; z, z and b are the displacement vector,
the displacement variation and the body force vector,
respectively; Z is the space of kinematically admissible
displacements that satisfy homogeneous essential
boundary conditions; W is the domain of interest;

( , )aΩ z z , ( )Ω zl and “–” denote the structural energy,

the external load and the variation of a quantity,
respectively. For the sake of simplicity, traction
boundary conditions are not considered here. The
constitutive relation of linear elastic materials is given
as

( ) ( )ij ijkl klcσ ε=z z (14)

where cijkl is the 4th–order stiffness tensor.

Applying the meshfree approximation in Equation (12)
to the displacement and its variation in Equation (13),
and employing the mixed transformation method for the
imposition of essential boundary conditions, one can
obtain a discrete system of equations as

* *=K d f (15)

where
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where C is the material matrix corresponding to cijkl,

d=[d1, d2,º,dNP]T the generalized displacement vector,

K the generalized stiffness matrix, and f the external
force vector. The definition of the mixed transformation
matrix *Λ can be found in Chen and Wang15. For two-
dimensional problems, B matrix is defined by
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The integration over the domain W is achieved by
partitioning the structural domain into non-overlapping
integration zones 1 NΩ = Ω ∪ ∪ ΩL and employing the
standard Gauss integration as shown in Figure 1. The
solution of Equation (15) leads to the determination of

the displacements z by
1
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Figure 1. Domain Discretization and Meshfree Shape
Function

SHAPE DESIGN SENSITIVITY FORMULATION

Assume that the initial structural domain W with
boundary G is changed into a new domain Wt with
boundary Gt. The material point at the new design is
related to the initial design by ( )τ τ= +x x V x , where

V(x) defines the design changing direction and the

Meshfree Shape Function
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parameter τ controls the amount of shape change. The
solution zt(xt) of structural problems is assumed a
differentiable function with respect to shape design.
The material derivative of zt(xt) at τ τ∈ Ωx is defined

as

( )
0

( ) ( )
lim τ

τ

τ
τ→

+ −
=

z x V x z x
z& (21)

In this paper, it is assumed that the space Z of
kinematically admissible displacements is independent
of shape design, i.e., z& =0. The design sensitivity
equation is obtained by taking the material derivative of
the continuum equilibrium equation in Equation (13) as
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The term on the left side of Equation (22) represents an
implicit dependence of the structural energy on the
design through the state variable, the first term on the
right side is the external fictitious load form, and the
second term is the structural fictitious load which
denotes an explicit dependence of the structural energy
on the design velocity V(x).

Note that by substituting z& into z, the left of the design
sensitivity equation (22) takes the same form as that of
the response analysis in Equation (13). Thus, the same
stiffness matrix can be used for DSA as the one for
response analysis, but with a different right side for the
fictitious load.

The meshfree approximation of z& can be obtained by
the direct differentiation of the approximation of z in
Equation (12) as

1
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The first term of Equation (26) constitutes the main

unknown d& of the design sensitivity equation in
meshfree approximation, while the second term
represents the dependence of the shape function on
design, which is explicit in V(x). Note that this
dependence is different from the FEM in which the
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and VI is the design velocity at xI. For given design
velocity V(x), ( )IΦ x& can be explicitly calculated even

before any sensitivity analysis.

Substituting Equation (26) into the design sensitivity
equation (22) and enforcing the essential boundary
conditions using the mixed transformation method leads
to the discrete system of equations:

* ** a= −K d f fl& (31)

where
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The solution of Equation (31) leads to the determination

of the variations z& by
1
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= Φ + Φ∑z d d& && . The

sensitivity of the general performance measure (a cost
or constraint function), that is,
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can be obtained using the direct differentiation method,
as

,
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With the performance measures (cost and constraint
functions) and their sensitivity information calculated
by the meshfree DSA as described above, the meshfree-
based shape optimization can be achieved by
connecting the meshfree DSA calculation to a gradient-
based optimization algorithm. In this study, the method
of feasible directions (see Fox, R. L.16) is employed in
the optimization procedure.

NUMERICAL EXAMPLES

Three automotive examples are demonstrated in the
following. Design velocity vectors that represent the
movement of particles in the direction of a given design
parameter are computed by perturbing the design
parameter. No particle re-adaptation is performed
during the meshfree design optimization procedure. For
comparisons, the corresponding optimization analyses
in Unigraphics are also performed, where Nastran is
employed for the structural analysis, HyperOpt is used
as the optimization tool, and the remeshing is
performed at every iteration during the shape
optimization process to avoid the mesh distortion.
HyperOpt utilizes the response surface optimization
approach rather than a gradient-based method. To
verify the reliability of the final designs, the optimum
shapes resulted from the meshfree-based optimization
analysis are re-meshed, and analyzed using Nastran to
ensure that the stress results meet the corresponding
design constraints.

Shape Design Optimization Of A Transmission
Shift-Linkage Pivot Bracket

A transmission shift-linkage pivot bracket is used to
change the direction of a cable running from the
transmission shift linkage to the transmission in a
mechanical system. In this testing, the geometry of the
bracket is modeled using UG V18, and is represented
by parametric coordinates as shown in Figure 2. Seven
design parameters, p0, p1, p2, p15, p26, p25 and p42,
are chosen to control the shape of the bracket. A
vertical load, –750N, and a horizontal load, 1500N, are
applied around the upper hole. Another vertical load,
50N, is applied around the lower hole. Single-point
constraints are imposed around the other two circular
holes. The bracket is made of steel with E=207.4 GPa,
n=0.3, and density = 7.84E-3 kg/cm3. The domain of
the bracket is discretized by 547 RKPM particles, as

shown in Figure 3. The plane stress formulation is used
with a thickness of 0.3 cm.

Figure 2. Design Parameterization of a Transmission
Bracket

Figure 3. The Meshfree Model of The Transmission
Bracket

The design optimization problem is formulated in such
a way that the total mass of the structure is minimized
with respect to its shape design parameters, with design
constraints defined as the Von Mises stress, that is

minimize

subject to 200

Design Parameters 55

12

mass

Von Mises Stress MPa

45mm p42, p15 mm

8mm p25, p26 mm

σ ≤
≤ ≤

≤ ≤
208mm p0, p1, p2 mm≤ ≤

(39)

Figure 4 shows the optimum shape resulting from the
optimization analysis with RKPM and the
corresponding Von Mises stress distribution.
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Figure 4. The Optimum Design And Its Stress Fringe of
The Transmission Bracket

Figure 5 provides the optimization histories of the mass
and the maximum Von Mises stress constraint from
both the RKPM and UG V18 analyses. Through
optimization, the structural mass in both analyses is
reduced from 0.49 kg to about 0.38 kg. High
oscillations in mass and stress are observed in the
optimization process in UG V18, and 15 design steps
are consumed to achieve the optimized design. On the
other hand, 11 design steps are used in the optimization
with RKPM, and a smooth convergence is
demonstrated. The structural mass in RKPM steadily
approaches to the minimum point without severe
variations in stresses. This can be explained by the
accurate computation of stress field in the analysis with
RKPM, which leads to more accurate computation in
the gradients of constraint/cost functions using the
continuum method of shape design sensitivity analysis,
and therefore results in a fast convergence of the
gradient-based optimization algorithm.
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Figure 5. Histories of Design Optimization of The
Transmission Bracket

Shape Design Optimization of a Torque Arm

This second example was originally presented by
Bennett and Botkin1. The geometry of the torque arm is
shown in Figure 6 and the parametric sketch of the
model is in Figure 7. Four design parameters, p6, p20,
p21 and p22, are chosen to control the shape of the
torque arm. A vertical load, 5066N, and a horizontal
load, -2789N, are applied around the right-end hole.
Single-point constraints are imposed around the left-end
hole. The torque arm is made of steel with E=207.4
GPa, n=0.3, and density = 7.81E-3 kg/cm3. The domain
of the torque arm is discretized by 525 RKPM particles,
as shown in Figure 8. The model thickness is 0.3cm.
The design optimization problem is formulated in
Equation (40).

Figure 6. The Geometry of The Torque Arm

Figure 7. Design Parameterization of The Torque Arm

Figure 8. The Meshfree Model of The Torque Arm

P6 P20

P22 P21



7
American Institute of Aeronautics and Astronautics

minimize

subject to 800

Design Parameters 50

40

280

mass

Von Mises Stress MPa

10mm p6 mm

10mm p20 mm

170mm p21 mm

σ ≤
≤ ≤
≤ ≤
≤ ≤

11050mm p22 mm≤ ≤

(40)

Figure 9 shows the optimum shape resulting from the
optimization analysis with RKPM and the
corresponding Von Mises stress distribution. Figure 10
provides the optimization histories of the mass and the
maximum Von Mises stress constraint resulting from
both the RKPM-based design optimization procedure
and the UG V18 optimization analysis. Through
optimization, the structural mass is reduced from 0.91
kg to about 0.76 kg in the meshfree analysis and 0.80kg
in the UG analysis. Same as the previous example, high
oscillations in mass and stress are observed in UG V18
optimization process. A total of 11 design steps are
consumed to achieve the optimized design in the UG
V18, where only 4 design steps are used in the RKPM-
based optimization. Very smooth convergences of the
objective function and constraint function are observed
in the RKPM-based optimization.

Figure 9. The Optimum Design And Its Stress Fringe of
The Torque Arm
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Figure 10. Histories of Design Optimization of The
Torque Arm

Shape Design Optimization Of a Triangular Bracket

This example is also taken from Bennett and Botkin1.
The geometry of the triangular bracket is shown in
Figure 11. A horizontal load, 15000N, is applied around
the upper hole. Single-point constraints are imposed
around the lower two circular holes. The bracket is
made of steel with E=207.4 GPa, n=0.3, and density =
7.81E-10 kg/m3. The thickness of the bracket is 0.3cm.
Three design parameters, p14, p34 and p35, as shown in
Figure 12 within the circles, are chosen to control the
shape of the bracket, where p34 is equal to p35 in the
design process. The design optimization problem is
formulated in Equation (41) as

minimize

subject to 800

Design Parameters 14 125

20

mass

VonMises stress MPa

55mm p mm

5mm p34, p35 mm

σ ≤
≤ ≤

≤ ≤
(41)

The domain of the bracket is discretized by 504 RKPM
particles, as shown in Figure 13.
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Figure 11. The Problem Description of The Triangualr
Bracket

Figure 12. Design Parameterization of The Triangular
Bracket

Figure 13. The Meshfree Model of The Triangular
Bracket

Figure 14 shows the optimum shape resulting from the
optimization analysis with RKPM and the
corresponding Von Mises stress distribution. Figure 15
gives the optimization histories of the mass and the
maximum Von Mises stress constraint from both
RKPM and UG V18. Through optimization, the
structural mass is reduced from 0.33 kg to about 0.26
kg in both the meshfree analysis and the UG analysis.
Again, high oscillations in mass and stress are observed
in the optimization process in UG V18, and 9 design
steps are consumed to achieve the optimized design. In
the optimization with RKPM, only 5 design steps are
used. The structural mass in RKPM steadily approaches
to the minimum point without severe variations in
stresses.

Figure 14. The Optimum Design And Its Stress Fringe
of The Triangular Bracket
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Triangular Bracket
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CONCLUSIONS

Shape design optimization of three automotive parts,
the transmission shift-linkage pivot bracket, the torque
arm, and the triangular bracket, was carried out in this
research using a numerical method of meshfree design
sensitivity analysis and optimization. One unique
feature of this method is that the approximation of
unknown variables is constructed based on a set of
particles scattered in the domain of interest with no
requirement on the connectivity among particles. This
relaxation in mesh requirements is advantageous to the
analysis of problems involving large shape changes,
where the mesh distortion has been problematic in the
finite element solutions. The three example problems
have shown that the meshfree optimization analyses
could tolerate large shape changes required in the
optimization process. With no need of particle re-
adaptation, the meshfree-based optimization analysis
still gave accurate computation of stress field and led to
more accurate computation in the gradients of
constraint/cost functions using the continuum method
of shape design sensitivity analysis. This eventually
facilitated a smooth convergence of the gradient-based
design optimization algorithm, and provided optimum
designs that meet the design constraints in less design
iterations compared to the optimization analysis in UG
V18.
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