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ABSTRACT 

 Conventional shape optimization based on the finite 
element method uses Lagrangian representation in 
which the finite element mesh moves according to the 
shape change, while modern topology optimization uses 
Eulerian representation. A novel approach to shape 
optimization is proposed using Eulerian representation 
such that the mesh distortion problem in the conven-
tional approach can be resolved. A continuum geomet-
ric model is defined on the regular, fixed grid of finite 
elements. An active set of finite elements that defines 
the discrete domain is determined using a similar pro-
cedure as the topology design. The shape design veloc-
ity field is converted into material density perturbation 
to calculate sensitivity information. 
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1. INTRODUCTION 
 For three decades, remarkable progress has been 
achieved in geometry-based shape optimization.[1] 
Shape optimization techniques have been successfully 
integrated with CAD tools so that design variables are 
chosen from CAD parameters, providing consistency 
between the design and CAD models.[2] A major bottle-
neck of geometry-based shape optimization is the mesh 
distortion problem during structural analysis.[3] A regu-
larly distributed mesh at the initial design is often dis-
torted during shape optimization, and as a result, solu-
tion accuracy of finite element analysis deteriorates 
after the initial design. Although adaptive mesh-
regeneration methods have been studied in order to 
maintain a certain level of solution accuracy, work 
needs to be done for these methods to be fully effec-
tive.[3] In this paper, conventional shape optimization is 
referred to as the Lagrangian method since both the 

geometry and finite element mesh move together during 
the shape optimization process. 

 In contrast to the Lagrangian method, a topology 
optimization method has recently been developed in 
order to determine the optimum structural shape with-
out causing any mesh distortion problems.[4,5] Initial 
geometry of the finite element mesh maintains through-
out the design process, and the material property of 
each element changes as a design variable. However, an 
excessive number of design variables make it difficult 
to design optimization algorithms, and results in too 
many local optimum solutions. In addition, the use of 
the optimum design often raises questions as to the fea-
sibility of manufacturing such a design. It is non-trivial 
to determine structural boundary shape from topology 
optimization results. In contrast to the shape design, this 
approach is referred to as an Eulerian method since the 
finite element mesh is fixed during the design process. 

 In this paper, a new shape optimization method is 
proposed that uses the advantageous aspects of both 
conventional shape and topology optimization methods. 
The Lagrangian method has the advantage of accurately 
representing the geometric model, while the Eulerian 
method relieves mesh distortion problems. During 
structural analysis, the geometric model is placed over 
regularly meshed finite elements. The finite elements 
are fixed in the space, while the geometric model 
changes according to the shape design. Finite elements 
that belong inside the geometric model have a full 
magnitude of shape density, while those outside the 
model have a zero magnitude of shape density (a void). 
Finite elements on the geometric edge have a shape 
density that is proportional to the area fraction between 
the material and void. Thus, finite elements on the edge 
have a shape density between full material and a void. 
This method is similar to the homogenization method in 
topology optimization. Thus, in this paper it is referred 
to as boundary homogenization. 

 In shape optimization, a shape change in the geomet-
ric model produces a shape density change in the finite 
elements on the edge. As the structural shape changes, a 
new shape density is calculated for those elements on 
the edge. In addition, some elements leave the structural 
domain, while some enter the structural domain. Thus, 
accurate record keeping of each stage is an important 
part of the proposed approach. First, the finite elements 
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that belong to the boundary curve are identified by in-
crementally searching the boundary curve. After identi-
fying these elements, an area fraction of each boundary 
element is calculated using Green’s theorem. Finite 
elements within the structural domain can easily be 
identified by counting the number of boundary ele-
ments in each row or column of the grid. As opposed to 
Lagrangian shape representation, this approach does not 
require a mesh updating process. In addition, solution 
accuracy can be maintained throughout the design 
process because the same finite element size is consis-
tently used. 

 One mathematical difficulty with the proposed 
method is to find a way to represent shape change effect 
as shape density change. Since shape design variables 
are chosen from geometric parameters, the explicit con-
tribution of the boundary curve shape to the shape den-
sity of the boundary element is calculated based on 
geometric relations. Accordingly, boundary shape de-
sign velocity is related to the shape density of the 
boundary elements, which is used in design sensitivity 
calculation. Thus, the complicated shape design sensi-
tivity formulation can be converted to a simple para-
metric design sensitivity formulation. In addition, nu-
merical integration involved in the sensitivity calcula-
tion is only limited for those elements on the boundary, 
which provides efficiency for the proposed approach. 

2. EULERIAN REPRESENTATION  
OF GEOMETRY 

 Conventional geometric representation and shape 
optimization of a solid structure has been based on the 
Lagrangian approach in which the structural domain 
and boundary changes according to shape design pa-
rameters. Such geometric details as fillet surfaces and 
curvatures can be accurately represented in this ap-
proach. However, when a finite element-based numeri-
cal method is used to solve shape optimization prob-
lems, mesh distortion has been a major stumbling block 
for the Lagrangian approach. It is a difficult task to cre-
ate a good quality mesh from complicated CAD geome-
try [see Figure 1(a)]. Even if a regular mesh is initially 
created, the mesh quality deteriorates as the structural 
shape changes during the design optimization. Al-
though a number of mesh adaptation and automatic re-
meshing techniques have been proposed[6,7], no univer-
sal schemes have yet been developed. 

 Recently, many researchers[4,5] began representing a 
structural domain using the Eulerian approach in which 
the grid is fixed in space. The region occupied by mate-
rial has a full shape density, while the void has zero 
shape density. The shape change can be characterized 
using a fluid flow analogy. The shape density in one 
region moves to neighboring regions as the structural 
shape changes. After being integrated with an optimiza-

tion algorithm, this approach yields the modern form of 
a topology design [see Figure 1(b)]. Although the to-
pology design approach can provide a creative concep-
tual design, it is difficult to extract geometric informa-
tion for complicated three-dimensional structures. In 
addition, it is complicated to physically interpret those 
regions with intermediate densities (a gray area) be-
tween full material and a void. However, the mesh dis-
tortion problem in the Lagrangian shape design prob-
lem can be resolved here, because mesh geometry is 
fixed throughout the design process.  
 

 
(a) Finite Element Mesh  
 

 
(b) Topology Design 

Figure 1. Geometric Representation Methods  
 

 As has been earlier discussed, geometry-based shape 
parameterization has the advantage of accurately repre-
senting the structural domain, while the Eulerian ap-
proach has the advantage of resolving the mesh distor-
tion problem. The proposed method uses geometry-
based shape parameterization on the fixed grid (see 
Figure 2). A solid geometry with domain Ω and bound-
ary Γ is independently defined on a regular, rectangular 
mesh. If an element belongs to the domain Ω, then it 
has full shape density. If an element is outside domain 
Ω, then it has zero shape density.  
 

 
Perturbed Design

Initial Design 

Fixed Grid 

 
Figure 2. Design change in the fixed grid. The per-
turbed design occupies new regions.  
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 Although the approximation in Figure 2 seems 
straightforward, a technical difficulty exists for those 
elements that reside on the structural boundary. Part of 
the element belongs to the structural domain, while the 
other part is in a void. The idea of homogenization is 
used for the elements on the geometric boundary. The 
participation of each element can be determined using 
shape density, which measures the amount of element 
area that belongs to the structural domain Ω. Let the 
area of element m be Am, and let the area that belongs to 
Ω be am. The shape density of element m can be calcu-
lated by  

1,

0,

/ ,

m m

m m

m m m

A A

u A

a A A

∩ Ω =
= ∩ Ω = ∅
 ∈ Γ

 (1) 

where m mA A∩ Ω =  represents the situation when ele-
ment m belongs to the inside domain Ω (elements 2 and 
3 in Figure 3), while mA ∩ Ω = ∅  represents the situa-
tion when no part of element m is located in Ω (ele-
ments 7, 8, and 9). When boundary Γ resides in the 
element (elements 1, 4, 5, and 6), shape density um is 
the fraction of the area am that belongs to Ω.  
 

 

 

1 2 3 

4 5 6 

7 8 9 

u1 = 0.9 
u2 = 1.0 
u3 = 1.0 
u4 = 0.2 
u5 = 0.6 
u6 = 0.7 
u7 = 0.0 
u8 = 0.0 
u9 = 0.0 

Boundary curve 

a5 

 
Figure 3. Shape densities near the geometric boundary  
 

 In order to calculate shape density um, domain inte-
gration is required for those elements on the geometric 
boundary. Since the boundary curve arbitrarily cuts 
through the element, it is difficult to set up a general 
domain integration procedure. Instead of integrating the 
area, Green’s theorem[9] is employed to convert domain 
integration into boundary integration, which produces a 
more convenient expression. For example, for general 
two-dimensional problems area integration can be rep-
resented by  

1 2
m

m A C
a d x dx

∩Ω
= Ω =∫∫ ∫  (2) 

where x1 and x2 are two coordinate directions, C is the 
curve that surrounds the area am, and the integration 
direction is counter-clockwise. Curve C consists of 
straight element boundary lines and a geometric bound-
ary curve. The integral in (2) that runs along the straight 

element boundary line is trivial since either x1 or x2 is 
constant. In the case of a boundary curve, it is assumed 
that parameter ξ is used to represent the curve, such that 
the expressions of x1(ξ) and x2(ξ) are available. Using 
the chain rule of differentiation, the integral in (2) can 
easily be converted to an integral with respect to 
parameter ξ. After calculating am, the shape density can 
be obtained from (1). 

 After determining the shape densities of boundary 
elements, the shape density of the interior or exterior 
can easily be determined using the following method. 
First, it is assumed that the geometric boundary exists 
within the fixed finite element grid. Starting from the 
left-most element in a row, the shape density value 
changes to either zero or one as it meets boundary ele-
ments, as illustrated in Figure 4.  
 

 Boundary elements 

um = 1 um = 0 um = 0 

Boundary curve 

 
Figure 4. Shape densities of elements in a row  
 

 Alternatively, if the surface geometry information is 
available in addition to the curve geometry, than that 
information can be used to identify those elements that 
belong to interior of the geometry. For example, when a 
parametric surface information x(ξ,η) is available, the 
interior elements can be found by incrementally search-
ing parameters ξ and η. 

 During structural analysis, the material property of 
each element is augmented using the shape density, as  

m mE u E=  (3) 
where E is Young’s modulus of the nominal material 
and Em is the augmented modulus. Since Poisson’s ratio 
is related to the lateral contraction during tensile defor-
mation, it is fixed during this augmentation process. In 
practical application, the shape density for the void has 
a small value instead of zero in order to avoid numeri-
cal singularities during the finite element analysis pro-
cedure.[5] 

 The approximation of domain Ω in Figure 3 is differ-
ent from the idea of pixel[8], in which a continuum 
structure is divided by a number of squares. In order to 
approximate the boundary reasonably, a very fine pixel 
mesh is required. However, with the proposed method 
the effect of a continuous boundary is reflected in the 
use of boundary homogenization. As an example, in 
Figure 5 a circle is approximated using pixel approxi-
mation and boundary homogenization. It is clear that 
the boundary homogenization method provides a 
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smooth transition between structural and void parts. 
Indeed, the gray boundary of the topology design result 
in Figure 1(b) should be understood in the same context 
as boundary homogenization. However, in the proposed 
method the structural domain is still represented using 
boundary curves and Figure 5(b) is a mere approxima-
tion of the geometry.  

  
(a) Pixel approximation  (b) Boundary homogenization 

Figure 5. Approximation of a circle using pixel and 
boundary homogenization 

3. FINITE ELEMENT ANALYSIS 

 The proposed Eulerian shape representation method 
has an advantage in the viewpoint of finite element 
analysis. Since all elements have the identical shape, it 
is very efficient to construct one element stiffness ma-
trix and to use it repeatedly.  Especially, when the ele-
ment is square, the element stiffness matrix can be cal-
culated analytically.[10] 

 In the Lagrangian approach, there exists a discrete set 
of nodes along the geometric boundary. Thus, dis-
placement boundary condition can be applied to those 
nodes on the boundary. In the Eulerian approach since 
the geometry moves around within a fixed set of finite 
elements, it is better to apply the displacement bound-
ary condition on the geometric curve or point. However, 
the geometric boundary is often located in the interior 
of the boundary element. Thus, it is not trivial to apply 
the displacement boundary condition along the geomet-
ric curve. In the regime of approximation, all elements 
that intersect with the displacement boundary curve are 
fixed during finite element analysis (see Figure 6). 

 

Boundary curve 

Fixed elements 

 
Figure 6. Displacement boundary conditions on the 
boundary elements 

 Even if the proposed method has many attractive 
features in design and simulation points of view, it re-
quires a numerically intensive procedure due to the 
excessive number of finite elements in high resolution. 
For example, the torque arm structure in Section 6 has 
about 37,000 unknowns even if it is a simple, two-
dimensional example. It would be very expensive to 
store the global stiffness matrix in the computer mem-
ory. In this paper, a sparse matrix solver in the litera-
ture[11] is employed to store only non-zero components 
of the global stiffness matrix and to solve the finite 
element matrix equations.  

4. DESIGN PARAMETERIZATION 

 A major difference between proposed and topology 
design methods exists in the design parameterization 
process. In topology optimization, a design engineer 
does not have any freedom to control the design direc-
tion. The optimum shape (or topology) of the structure 
is determined by finding the shape density of individual 
elements, which does not guarantee any continuity or 
smoothness of the boundary. In the proposed method, 
design parameterization is similar to the conventional 
shape design problem in which the structural boundary 
changes according to the design velocity field. As will 
be shown later, it is unnecessary to define the domain 
design velocity field in the proposed method; the 
boundary design velocity field is enough to calculate 
design sensitivity information. 

 In the shape design problem, the parameters that de-
termine the boundary curve are chosen as design vari-
ables. For example, when spline curves are used to rep-
resent the boundary, the location of control points can 
be chosen as design variables. As a design variable 
changes, the structural boundary and domain change 
continuously. Let the initial boundary Γ and domain Ω 
change to the perturbed boundary Γτ and domain Ωτ, 
respectively. Such a shape perturbation process is 
analogous to the dynamic process, in which τ plays the 
role of time.[13] At the initial time τ = 0, the structural 
domain is Ω and the boundary is Γ. When first-order 
perturbation is used, the material point xτ can be de-
noted by  

( ),τ τ= + ∈Ωx x V x x  (4) 
where V(x) is the design velocity field that designates 
the direction of shape change, and τ is a scalar parame-
ter that controls the amount of shape change. 

 Equation (4) describes the shape perturbation of the 
continuum model. If a discrete model follows the same 
perturbation as (4), then it is referred to in this paper as 
the Lagrangian approach. As with the continuum 
model, the initial shape of each finite element geometry 
changes according to the design velocity field, which 
frequently results in the mesh distortion problem. How-
ever, with the Eulerian approach, the discrete finite 
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element model is fixed in the space (see Figure 7), and 
each element has a shape density value between zero 
and one, based on the location. The effect of shape 
change appears through the shape density change. 
Moreover, this effect only appears for those elements 
on the structural boundary.  
 

 

Initial Boundary

τV(x) 

Perturbed Boundary

 
Figure 7. Shape design perturbation and corresponding 
change of shape density  
 

 An important theoretical issue is how to interpret 
shape perturbation as a shape density change on the 
boundary. Note that shape perturbation is given as a 
vector quantity (design velocity field), but that shape 
density variation is a scalar quantity. As the structural 
shape changes in the direction of the design velocity 
field (Figure 7), um of those elements on the boundary 
curve changes accordingly. By using standard varia-
tional formulas,[13] the change of um can be denoted by  

m m mu u u
τ

τ δ= +  (5) 

where δum is the design variation. For those elements 
that reside within the structural domain, δum is zero. 
Thus, perturbation in (5) is only applied to elements on 
the structural boundary. 

 As is clear from Figure 7, when the boundary curve 
is perturbed in the direction of design velocity V(x), the 
shape density um also changes. Attention is focused on 
element m, which resides on the boundary curve. The 
shape density at the perturbed design can be defined as  

1 1
m m

m A A
m m

u d d
A Aτ

τ
τ∩Ω ∩Ω

= Ω = Ω∫∫ ∫∫ J  (6) 

where J is the Jacobian matrix of shape perturbation in 
(4), defined as  

τ τ∂ ∂= = +
∂ ∂
x V

J I
x x

 (7) 

The material derivative formulas for the Jacobian can 
be found in Choi and Haug.[13] For example, the mate-
rial derivative of the Jacobian becomes  

0

d
div

d ττ =

=J V  (8) 

where divV is the divergence of the design velocity. 

 If the shape density in (6) is differentiated by τ, by 
using the formula in (8), the relation between V(x) and 

δum can be obtained from the following relation:  
1 1

m

T
m A C

m m

u div d d
A A

δ
∩Ω

= Ω = Γ∫∫ ∫V V n  (9) 

where n is the outward unit normal vector to the bound-
ary, and C is the boundary of area am moving in a 
counter-clockwise direction. The second equality in the 
above equation can be obtained from the divergence 
theorem.[9] It is interesting and important to note that 
only the normal component of the boundary velocity 
appears in (9) because the tangential component does 
not contribute to the shape change. 

 After design parameterization is completed, the cor-
responding design velocity V(x) is calculated on the 
boundary curve. For those elements on the boundary, 
the variation of shape density can be calculated by inte-
grating the design velocity along the boundary curve. 

5. DESIGN SENSITIVITY ANALYSIS 

 The purpose of design sensitivity analysis is to de-
velop relationships between a variation in shape and 
resulting variations in functionals that arise in shape 
design problems. For demonstration purposes, a linear 
elastic problem is considered in the following sensitiv-
ity development. However, a general nonlinear problem 
can also be taken into account using a similar approach. 

 In this section, design parameterization from the pre-
vious section is utilized to derive the shape sensitivity 
expression in terms of δum. The weak form[12] of the 
structural problem can be written in the following form: 

( , ) ( ),a = ∀ ∈u uz z z z! "  (10) 
where "  is the space of kinematically admissible dis-
placements, and “ ∀ ∈z " ” means for all virtual dis-
placements z  that belong to " . Equation (10) is a 
variational equation with displacement z as a solution. 
In (10),  

( , ) ( ) ( )Ta d
Ω

= Ω∫∫u z z ε z Cε z  (11) 

and 

( ) T d
Ω

= Ω∫∫u z z f!  (12) 

are the structural bilinear and load linear forms, re-
spectively. In (11), ε(z) is the engineering strain vector, 
and C is the linear elastic constitutive matrix. For deri-
vational simplicity, only body force f(x) is considered 
in (12). The structural problem described in (10), with 
definitions in (11) and (12), is a standard form in the 
Lagrangian approach. In this case, Ω represents the 
structural domain. 

 With the Eulerian approach, Ω is the whole domain, 
including both the structure and void. Let the domain Ω 
be composed of NE sub-domains (finite elements), and 
let each sub-domain Ωm have shape density um. Then, 
the structural bilinear and load linear forms can be writ-
ten in the following forms:  
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1

( , ) ( ) ( )
m

NE
T

m m
m

a u d
Ω

=

= Ω∑∫∫u z z ε z Cε z  (13) 

1

( )
m

NE
T

m
m

u d
Ω

=

= Ω∑∫∫u z z f!  (14) 

where in the definitions of au(•,•) and !u(•) the sub-

scribed u is used to denote these forms’ dependence on 
the design variable vector u = [u1, u2, …, uNE]. Since um 
is constant within the element, it can be taken outside 
the integral in (13) and (14). In addition, displacement z 
in (10) implicitly depends on the design through the 
structural problem in (10), which must be calculated 
from the design sensitivity equation, as explained be-
low. 

 An important component of design sensitivity analy-
sis is calculating the variation of the state variable (in 
this case, displacement z) by differentiating (10) with 
respect to the design, or equivalently, τ. To that end, 
first define the variation of the state variable, as  

0 0

( ; )
d
d τ τ

τδ δ
τ = =

∂′ ≡ + = ⋅
∂

z
z z x u u u

u
 (15) 

Note that z′ depends on the design u, where the varia-
tion is evaluated, and on the direction δu of the design 
variation. 

 Similar to (15), the structural bilinear and load linear 
forms can be differentiated with respect to the design. 
Although the design vector and its variation contain NE 
components, only boundary elements need to be con-
sidered in the calculation of δum because it is zero for 
those elements inside the structural domain. Let M be 
the number of elements that belong to the structural 
boundary. The variation of the structural bilinear form 
can be obtained using the chain rule of differentiation, 
as  

( )
0

( ; ), ( , ) ( , )
d

a a a
d τδ δ

τ

τδ
τ +

=

′ ′+ = +u u u uz x u u z z z z z  (16) 

where  

1

( , ) ( ) ( )
m

M
T

m
m

a d uδ δ
Ω

=

′ = Ω∑∫∫u z z ε z Cε z  (17) 

is the bilinear form’s dependence on the design. If the 
structural problem in (10) is solved for z and the design 
variation δum in (9) is available as a result of design 
parameterization, then ( , )aδ′ u z z can be readily calcu-
lated following the same integration procedure used for 
finite element analysis. The second term on the right 
side of (16) is the same as the bilinear form in (13) if 
displacement z is replaced by z′, which will be solved. 

 The variation of the load linear form can be obtained 
by following a similar procedure, as  

10

( ) ( )
m

M
T

m
m

d
d u

d τδ δ
τ

δ
τ + Ω

==

′= = Ω∑∫∫u u uz z z f! !  (18) 

When a surface traction exists on the boundary, careful 
treatment is required regarding boundary homogeniza-
tion, which is not developed in this paper. When a con-
centrated load is applied to the structure, the variation 
of the load linear form in (18) vanishes because the load 
is independent of the design. 

 After differentiating (10) at the perturbed design and 
using the formulas in (16) and (18), the following de-
sign sensitivity equation can be obtained: 

( , ) ( ) ( , ),a aδ δ′ ′ ′= − ∀ ∈u u uz z z z z z! "  (19) 
where the solution z′ is desired. If the right side is con-
sidered an applied load, equation (19) is similar to the 
structural problem in (10) with a different load, which 
is called the fictitious load. When a design variable is 
defined, the corresponding design velocity V(x) can be 
calculated on the structural boundary. Using this design 
velocity, the design variation δum can be calculated 
from (9). 

 Compared to the shape design sensitivity formulation 
in the Lagrangian approach, the expressions in (17) and 
(18) provide significantly simple computational meth-
ods, since their expressions also appear during regular 
finite element analysis. In geometry-based shape opti-
mization, domain integration is involved in (17) and 
(18). However, only the boundary integral is sufficient 
for the proposed method. 

6. NUMERICAL EXAMPLE 
 In this section, a numerical example is presented in 
order to compare with the shape optimization results in 
the literature.[3,14] 

 A torque arm shown in Figure 8 is composed of 32 
points, 28 boundary curves, and 16 surfaces. A rectan-
gular domain is established with lower-left corner being 
(-7, -8) and upper-right corner being (49, 8), which 
covers the whole structure. A 0.471 cm × 0.471 cm 
square is used to discretize the rectangular domain. 
Figure 8 also shows the structural domain that is identi-
fied using the boundary homogenization method. The 
black interior domain has a full shape density (u = 1), 
while the gray boundary represents intermediate shape 
density (0 < u < 1) calculated using (1). For material 
properties, the following values are use: Young’s 
modulus = 207.4 GPa, Poisson’s ration = 0.3, and 
thickness = 0.3 cm. 

 In finite element analysis, the left circle is fixed and 
horizontal and vertical forces are applied at the center 
of the right circle. In order to apply for the displace-
ment boundary conditions, the boundary curves that 
correspond to the left circle are identified first. It is triv-
ial to retrieve boundary element information corre-
sponding to the displacement boundary curves. Then, 
all nodes that belong to the boundary elements are 
fixed. Thus, in this approach displacement boundary 
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conditions are applied in a layer of elements. The force 
boundary condition can also be applied in the same 
manner.  

 

 
 
 
 
 

 

u1 u2 
u3 

u4 

u5 
u6 

u7 

u8 

5066N 

2789N

u1 u2 

u3 

u4 
u8 

u6 
Fixed 

 
Figure 8. Design parameterization and boundary 
homogenization of a torque arm with pixel size=0.47cm 

 

 Maximum stress of about 361 MPa appears at the top 
and bottom surface of the torque arm (see Figure 9). 
This result is expected because the applied force is su-
perposition of compressive and bending loads. In addi-
tion, relatively high stress concentration is observed at 
the end of interior slot, which is caused by distortion at 
the small radius region.  

 In the mathematical point of view, the pixel-based 
geometric representation may cause singularity at the 
non-smooth boundary, which is inevitable when in-
clined boundary is approximated by x- and y-
directional squares. However, the proposed approach 
reduces such singularity by gradually reducing the 
shape density at the boundary. However, different ma-
terial properties between interior and boundary ele-
ments cause stress discontinuity. Smoothening algo-
rithm in stress may help to reduce discontinuity. 

 

 
Figure 9. Finite element analysis results of the torque 
arm (equivalent stress plot) 

 

 Since design parameters are defined on the geometric 
model, the horizontal and vertical movements of geo-
metric points can be selected as design parameters. 
Eight design parameters are chosen that can change the 
boundary of the torque arm (see Figure 8). In order to 
maintain symmetric geometry, design parameters are 
linked. As design parameters are changed, new shape 
density for each finite element is calculated from which 
the material constants are changed as depicted in (3). 

 A simple design optimization problem is posed to 
minimize the weight of the structure, while satisfying 
the maximum stress constraint. In order to induce large 
shape change, a loose constraint limit is deliberately 
provided. Thus, the design optimization problem can be 
stated that 

max

minimize weight

subject to 800MPaσ

 ≤

 (20) 

The lower and upper bounds of design parameters are 
selected such that the topology of structure maintains. 

 The design optimization problem is solved using the 
sequential quadratic programming method in Design 
Optimization Tool (DOT).[15] A function values and 
sensitivity information is provided to the gradient-based 
optimization algorithm. The design optimization prob-
lem is converged after eleven number of design itera-
tion. Figure 10 shows the scaled history plot of objec-
tive function and constraint. The optimum design re-
duces more than 40% of the structural weight. The 
maximum stress at the optimum design appears to be 
789 MPa. 

 

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 2 4 6 8 10
Iteration

Objective
Stress Constraint

 
Figure 10. Design optimization histories for objective 
function (Weight) and constraint (maximum stress) 

 

 Figure 11 shows the stress contour plot at the opti-
mum design. The optimization algorithm chose the ge-
ometry such that the maximum stress is evenly distrib-
uted along the upper and lower regions of the structure. 
The optimum design conforms to engineering sense 
because such a beam-like structure the moment of iner-
tia needs to be increased as the moment arm increases.  

 
Figure 11. Finite element analysis results at the opti-
mum design 
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7. CONCLUSION 
 A new domain approximation method using an Eule-
rian description is developed for the structural optimi-
zation problem. Boundary homogenization provides a 
unique approximation of the structural domain and 
boundary on the fixed grid of finite elements. Design 
parameterization on the geometric model provides ac-
curate representation of design intent, and the shape 
density concept resolves the mesh distortion problem 
that exists in the Lagrangian approach. The transforma-
tion of the design velocity field into a shape density 
variation plays a key role in making this approach pos-
sible. 

 In order to be a practical engineering tool, the pro-
posed approach needs to be extended to three-
dimensional structures, which involves in boundary 
homogenization of a volume. As system’s degrees-of-
freedom increase significantly, an iterative matrix 
solver may need to be incorporated. 
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