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Abstract 

This paper presents an efficient shape optimization technique based on stochastic response surfaces (poly-
nomial chaos expansion) constructed using performance and local sensitivity data at heuristically selected 
collocation points. The cited expansion uses Hermite polynomial bases for the space of square-integrable 
probability density functions and provides a closed form solution of the performance. The focus is on cal-
culating the uncertainty propagation using less number of function evaluations since the response surface 
needs to be reconstructed at each design cycle. Due to the continuum-based sensitivity analysis, the gradi-
ent information of performance is efficiently calculated and used in constructing the stochastic response 
surface. The efficiency and convergence of the proposed approach are demonstrated using a reliability-
based shape optimization of a well-known structural problem. 

1. Introduction 

Uncertainty in the design parameters makes shape optimization of structural systems a 
computationally expensive task due to the significant number of structural analyses re-
quired by traditional methods. Critical issues for overcoming these difficulties are those 
related to uncertainty characterization, uncertainty propagation, and efficient optimization 
algorithms. Traditional approaches for these tasks often fail to meet constraints (computa-
tional resources, cost, time, etc.) typically present in industrial environments. 

Reliability-based design optimization (RBDO) involving a computationally demanding 
model has been limited by the relatively high number of required analyses for uncertainty 
propagation during the design process. This paper presents an efficient shape optimiza-
tion technique based on stochastic response surfaces (SRS) constructed using model out-
puts at heuristically selected collocation points. The efficiency of the uncertainty propa-
gation approach is critical since the response surface needs to be reconstructed at each 
design cycle. In order to improve the efficiency, the performance gradient, calculated 
from sensitivity analysis, is used.  

2. Uncertainty Quantification and SRS 

Uncertainty quantification can be decomposed in three fundamental steps: i) uncertainty 
characterization of model inputs, ii) propagation of uncertainty, and iii) uncertainty man-
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agement/decision making. The uncertainty in model inputs are represented in terms of 
standardized normal random variables (srv). We will assume that the model inputs are 
independent so each one is expressed directly as a function of a srv through a proper 
transformation. More arbitrary probability distributions can be approximated using alge-
braic manipulations or by series expansions (Devroye, 1986). 

The uncertainty propagation is based on constructing a particular family of stochastic re-
sponse surfaces known as polynomial chaos expansion. This kind of SRS (Tatang et al., 
1997; Isukapalli et al., 2000) can be view as an extension of classical deterministic re-
sponse surfaces for model outputs constructed using uncertain inputs and performance 
data collected at heuristically selected collocation points. Let n be the number of random 
variables and p the order of polynomial. The model output can then be expressed in terms 
of the srv {ui} as: 
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where Gp is the model output, the , ,p p
i ija a …  are deterministic coefficients to be esti-

mated, and the Γp(u1,…,up) are multidimensional Hermite polynomials of degree p. In 
general, the approximation accuracy increases with the order of the polynomial, which 
should be selected reflecting accuracy needs and computational constraints.  

The Hermite polynomials (orthogonal with respect to the Gaussian measure) provide this 
type of SRS with some attractive features, namely: more robust estimates of the coeffi-
cients with respect to those obtained using non-orthogonal polynomials (Gauthshi, 1996), 
it converges to any process with finite second order moments (Cameron and Martin, 
1947), and the convergence is optimal (exponential) for Gaussian processes (Xiu and 
Karniadakis, 2002). In addition, the selected SRS approach includes a sampling scheme 
(collocation method) designed to provide a good approximation of the model output (in-
spired in the Gaussian quadrature approach) in the higher probability region with limited 
observations, and once the coefficients are calculated, statistical properties of the predic-
tion, such as mean and variance can be analytically obtained, and sensitivity analyses can 
be readily conducted. 

The number of simulations could be reduced even further when local sensitivity is avail-
able. Recently, Isukapalli et al. (2000) used an automatic differentiation program to cal-
culate the local sensitivity of the model output with respect to random variables and used 
them to construct an SRS. Their results showed that local sensitivity can significantly re-
duce the number of sampling points as more information is available. The computational 
cost of the automatic differentiation, though, is often higher than that of direct analysis 
(Carle et al., 1998). However, local sensitivity can be obtained at a reasonable computa-
tional cost when using finite element analysis. 

As discussed by van Keulen et al. (2004), finite element-based sensitivity analysis pro-
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vides an efficient tool for calculating gradient information. In the context of structural 
analysis, for example, the discrete system is often represented using a matrix equation of 
the form [ ]{ } { }=K D F . The model output in Eq. (1) can be expressed as a function of the 
nodal solution. Thus, the local sensitivity of the model output can be easily calculated if 
that of the nodal solution is available. When design parameters are defined, the matrix 
equation can be differentiated with respect to them to obtain 

 { } { }[ ] / / / { }
p p pi i iu u u⎡ ⎤∂ ∂ = ∂ ∂ − ∂ ∂⎣ ⎦K D F K D . (2) 

Equation (2) can be solved inexpensively because the matrix [K] is already factorized. 
The computational cost of sensitivity analysis is usually less than 20% of the original 
analysis cost so local sensitivity can in fact be obtained efficiently and the number of 
simulations for constructing the SRS at each design cycle can be consequently reduced.  

As an illustration of the effectiveness, efficiency and convergence properties of the SRS 
approach, consider the construction of the probability density function (pdf) associated 
with a simple analytical function represented by G(x) = ex, with x being a random vari-
able normally distributed as N(0,0.42); note that in this case the exact pdf is known. The 
SRS for second and third order polynomials constructed using three and five collocation 
points are shown in Eq. (3). Figure 1 shows the pdf obtained through Monte Carlo simu-
lation on the SRS and the exact solution. Observe the good agreement in the pdf ap-
proximation and how the L2-norm (0.03835 for p=2; 0.00969 for p=3) of the errors de-
creases with higher order polynomials. 

 

 
Figure 1. Probability density function obtained using SRSs and exact 
solution for the performance function G(x) = ex(Illustrative example) 
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3. Reliability-Based Design Optimization – Problem Formulation 

In general, the RBDO problem (Enevoldsen and Sorensen, 1994) can be defined as, 

 ,

minimize
subject to ( ( ) 0) , 1,2, ,j f j

L U
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P G P j np< ≤ =

≤ ≤

d
x

d d d

… . (4) 

where x = [xi]T (i = 1, 2,…, n) denotes the vector of random parameters, d = [di]T = [µi]T 
represent the design variables chosen as the mean values of x, and c(d) identifies a cost 
function. The system performance criteria are described by the performance functions 
Gj(x) such that the system fails if Gj(x) < 0. Each Gj(x) is characterized by its cumulative 
distribution function FG(g): 
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where fX(x) is the joint pdf of all random system parameters and g is named the probabil-
istic performance measure. The reliability analysis of the performance function requires 
evaluating the non-decreasing FG(g) ~ g relationship (Tu et al., 1999), which is per-
formed in the probability integration domain bounded by the system parameter tolerance 
limits. Each prescribed failure probability limit fP  is often represented by the reliability 
target index as 1( )t fPβ −= −Φ . The pdf estimated using the proposed uncertainty propa-
gation scheme is used for evaluating reliability constraints hence providing better ap-
proximations than traditional linearization and thus significantly improving the rate of 
convergence of RBDO. 

4. Numerical Example – Torque Arm RBDO Problem 

Consider a torque arm model in Fig. 2 that is often used in shape optimization (Kim et 
al., 2003). The locations of boundary curves have associated uncertainties modeled as 
probabilistic distributions due to manufacturing tolerances. Thus, the relative locations of 
corner points of the boundary curves are defined as random variables with x~N(0, 0.12). 
The mean values of these random variables are chosen as design parameters, while the 
standard deviation remains constant during the design process. 

The initial model consists of eight design 
parameters. In order to show how the 
SRS is constructed and the pdf of the 
model output is calculated, we choose the 
five design parameters (d1, d2, d3, d6, and 
d8) that are known to most significantly 
contribute to the stress performance at points A and B in the figure. In the initial design, 
the maximum stress of σA = 319MPa occurs at location A. The stress limit is established 

 
Figure 2. Shape design parameters for the torque arm 
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to be σmax = 800MPa. In the reliability analysis the performance function is defined such 
that G ≤ 0 is considered failure. Thus, the performance function can be defined as G(x) = 
σmax−σA(x). 

The number of unknown coefficients is a function of the dimension of the design space n. 
For 2nd- and 3rd-order expansion, the numbers of coefficients, denoted by N2 and N3, are 
10 and 20, respectively. There are 27 possible collocation points and 10 unknown coeffi-
cients in the case of 2nd-order expansion. For robust estimation, the number of colloca-
tion points in general should be at least twice the number of coefficients. Fig. 3(a) shows 
the pdf associated with G(x) when different polynomial approximations are used. The 
accuracy and the convergence of the stochastic response surfaces are compared with the 
pdf obtained using Monte Carlo simulation with 100,000 sample points. As expected, the 
square-root error is smaller for the higher-order polynomial. 

                       (a) Only function values are used          (b) Function values and local sensitivities are used 

 Figure 3. PDF of performance function G(x) – Torque Arm Problem 
 

In order to reduce the required number of sampling points, local sensitivities can be used 
for constructing the SRS. Then, in addition to the function value, the gradients of the per-
formance function with respect to the random variables at each sampling point are also 
available. Hence, in the case of the torque arm problem, the data which can be obtained 
from each sampling point is increased from one to six. Fig. 3(b) shows the pdf of the per-
formance function for different polynomial approximations and that obtained from direct 
Monte Carlo simulation. When local sensitivities are used, the polynomial approxima-
tions can be obtained with four times lower number of sampling points. In general, theo-
retically, the number of sampling points can be reduced n+1 times with n being the num-
ber of random variables.  
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The RBDO problem requires minimizing the mass of the torque arm while the reliability 
constraints on stress are satisfied. Formally, it can then be defined as, 

 
Minimize ( )
subject to ( ( ) 0) ( ), 1, ,

ii t

L U

Mass
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≤ ≤

d
x
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where βt is the target reliability indices and Φ denotes the cumulative density function of 
srv. Table 2 shows the properties of the random variables and the lower and upper bounds 
of the design parameters. Figure 4 shows the optimal result when βt is set equal to 3 
(0.13% chances of failure). Figure 5 provides the cost function optimization history. The 
solution of the RBDO problem using the proposed approach resulted in a reduction of the 
mass of the torque arm from 0.878kg to 0.509kg (about 42.01%) after about twelve (12) 
design cycles. 

 

  

 

Conclusions 

 Table 2. Definition of random design variables and their bounds – Torque arm model 
Random 
Variables dL d 

(Initial) dU dopt 

(optimum) 
Standard 
Deviation 

Distribution 
type 

d1 –3.0 0.0 1.0 -3.8202E-01 0.1 Normal 
d2 –0.5 0.0 1.0 -5.0000E-01 0.1 Normal 
d3 –1.0 0.0 1.0 8.1976E-01 0.1 Normal 
d4 –2.7 0.0 1.0 -2.7000E+00 - Deterministic 
d5 –5.5 0.0 1.0 -5.1980E-01 - Deterministic 
d6 –0.5 0.0 2.0 2.0000E+00 0.1 Normal 
d7 –1.0 0.0 7.0 -4.1962E-02 - Deterministic 
d8 –0.5 0.0 1.0 3.7534E-01 0.1 Normal 

Figure 4. Stress contour plot at optimum design of 
torque arm RBDO model 

Figure 5. Design optimization history for the mass of 
torque arm RBDO model 
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In this paper, we presented a more effective and efficient approach for RBDO through the 
use of polynomial chaos expansions (modeling reliability restrictions) and local sensitiv-
ity information. It has been shown that in the context of a shape optimization problem 
with five uncertain inputs (torque arm RBDO), twenty seven (27) – hundred and twenty 
five (125) sampling points were necessary for 2nd- and 3rd-order polynomial approxima-
tions (without using local sensitivities) to accurately represent the probability distribution 
of the model output, while when gradient information is available the corresponding 
sampling points are reduced to seven (7) and thirty one (31), respectively, which repre-
sents a reduction of about 75%  in the computational effort. 
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