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This paper presents an efficient shape optimization technique based on stochastic 
response surfaces (SRS) and adaptive reduction of random variables using global sensitivity 
information. Each SRS is a polynomial chaos expansion that uses Hermite polynomial bases 
and provides a closed form solution of the model output from a significant lower number of 
model simulations than those required by conventional methods such as modified Monte 
Carlo Methods and Latin Hypercube Sampling. Random variables are adaptively fixed 
before constructing the SRS if their corresponding global sensitivity indices calculated using 
low-order SRS are below a certain threshold. Using SRS and adaptive reduction of random 
variables, reliability-based optimization problems can be solved with a reasonable amount of 
computational cost. The efficiency and convergence of the proposed approach are 
demonstrated using a benchmark case and an industrial reliability-based design 
optimization problem (automotive part).  

Nomenclature 
u  = vector of standard random variables 
x  = vector of random variables 
d  = vector of design parameters 

( , , )p i pu uΓ …  = multidimensional Hermite polynomials of degree p 
[K]  = structural stiffness matrix 
{F}  = structural load vector 
{D}  = nodal solution vector (displacement) 
Si  = global sensitivity index of i-th random variable 

total
iS   = total sensitivity index of i-th random variable 

E( · )  = expected value 
V( · )  = variance 
Gp  = approximation of the performance function with p-th order Hermite polynomials 
σmax  = maximum allowable equivalent stress 
c(d)  = cost function 
Pf  = failure probability 
βt  = target reliability 
Φ  = cumulative distribution function of the standard random variable 
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I. Introduction 
NCERTAINTY in the design parameters makes shape optimization of structural systems a computationally 
expensive task due to the significant number of structural analyses required by traditional methods. Critical 

issues for overcoming these difficulties are those related to uncertainty characterization, uncertainty propagation, 
ranking of design variables, and efficient optimization algorithms. Traditional approaches for these tasks often fail to 
meet constraints (computational resources, cost, time, etc.) typically present in industrial environments. 

In particular, reliability-based design optimization (RBDO) involving a computationally demanding model has 
been limited by the relatively high number of required 
analyses for uncertainty propagation during the 
optimization process. While there has been progress 
addressing this issue, such as more efficient moment-
based optimization algorithms (e.g. RIA1, PMA1), and 
the construction of stochastic response surfaces (SRS) 
for uncertainty propagation,2 the possibility of 
reducing the number of analyses by systematically 
fixing unessential design variables throughout the 
optimization process has not been fully explored. 

In this paper, in order to avoid the shortcomings of 
the conventional moment-based methods (FORM or 
SORM) and modified Monte Carlo Methods and Latin 
Hypercube Sampling, and those associated with the 
use of SRS: i) local sensitivity information at sampling 
points is also used, and ii) global sensitivity indices are 
calculated to decide whether to fix random variables 
whose contribution to the output variability is less than 
a certain threshold. 

With reference to Figure 1, the proposed approach 
for RBDO initially constructs a low-order SRS using 
all variables, and adaptively reduces them depending 
on the values of their corresponding Global Sensitivity 
Indices (GSI). GSI are calculated using a variance-
based method3,4,5 – a rigorous and theoretically sound 
approach for global sensitivity. Using the reduced 
number of random variables, a high-order SRS is 
constructed from which the reliability of the 
performance function is evaluated. 

The paper is structured as follows: Section 2 
describes the uncertainty characterization of model 
inputs, and the uncertainty propagation to the output 
using the SRS. Section 3 presents the procedure to 
compute global sensitivity indices in order to fix 
unessential random variables during the construction 
of the SRS. An RBDO problem is formulated and the 
results obtained using the proposed approach are the 
subject of Section 4, followed by numerical examples 
in Section 5 

II. Uncertainty Quantification 
Uncertainty quantification can be decomposed in 

three fundamental steps: i) uncertainty characterization 
of model inputs, ii) propagation of uncertainty, and iii) 
uncertainty management/decision making. To assist 
the latter step, global sensitivity of model input to 
outputs is also incorporated. 
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The uncertainty in model inputs is represented in terms of standardized random variables (SRV) with mean zero 
and variance equal to one. The selection is supported by the fact that they are widely used and well-behaved. For 
other types of random variables, an appropriate transformation must be employed. We will assume that the model 
inputs are independent so each one is expressed directly as a function of SRV through a proper transformation. 
Devroye6 presents the required transformation techniques and approximations for a variety of probability 
distributions. More arbitrary probability distributions can be approximated using algebraic manipulations or by 
series expansions. 

The uncertainty propagation is based on constructing stochastic response surfaces (polynomial chaos expansion). 
Stochastic response surfaces7 can be view as an extension of classical deterministic response surfaces for model 
outputs constructed using uncertain inputs and performance data collected at heuristically selected collocation 
points. The polynomial expansion uses Hermite polynomial bases for the space of square-integrable probability 
density functions (PDF) and provides a closed form solution of model outputs from a significant lower number of 
model simulations than those required by conventional methods such as modified Monte Carlo Methods and Latin 
Hypercube Sampling. 

Let n be the number of random variables and p be the order of polynomial. The model output can then be 
expressed in terms of SRV u = {u1, u2, …, un}T as: 

 
1

0 1 2 3
1 1 1 1 1 1

( ) ( , ) ( , , )
jn n i n i

p p p p p
i i ij i j ijk i j k

i i j i j k
G a a u a u u a u u u

= = = = = =

= + Γ + Γ + Γ +∑ ∑∑ ∑∑∑ "  (1) 

where Gp is the approximated model output, the , ,p p
i ija a …  are deterministic coefficients to be estimated, and the 

( , , )p i pu uΓ …  are multidimensional Hermite polynomials of degree p given by: 

 1/ 2 1/ 2( , , ) ( 1)
T T

p
p

p i p
i p

u u e e
u u

−∂
Γ = −

∂ ∂
u u u u…

…
 (2) 

where u is the vector of p independent and identically distributed normal random variables 1{ }p
k ku =  that represent the 

model input uncertainties. In general, the approximation accuracy increases with the order of the polynomial and 
should be selected reflecting the accuracy needs and computational constraints. In addition, the approximation in Eq. 
(1) includes robust coefficients hence exhibiting relatively small changes from low to high-order approximations. 

The number of model simulations required to construct the SRS could be reduced when local sensitivity 
information is available. The issue is how efficiently the local sensitivity information can be calculated. If the global 
finite difference method is employed, there is no advantage in using sensitivity information because each sensitivity 
information requires additional analyses. Recently, Isukapalli et al.8 used an automatic differentiation program 
(ADIFOR) to calculate the local sensitivity of the model output with respect to random variables and used them to 
construct a stochastic response surface. Their results showed that local sensitivity information can significantly 
reduce the number of sampling points required. However, the computational cost of the automatic differentiation is 
often higher than that of direct analysis9. 

In contrast, when the finite element method is used, as discussed by van Keulen et al.10, design sensitivity 
analysis can provide a very efficient tool for calculating gradient information because the sensitivity equation uses 
the same coefficient matrix that is already factorized from the original analysis. In this paper, the continuum-based 
sensitivity analysis is utilized to calculate the gradient of the model output with respect to random variables. In many 
finite element-based structural analyses, the discrete system is often represented using a matrix equation as 

 [ ]{ } { }=K D F  (3) 

where [K] is the stiffness matrix, {F} is the load vector, and {D} is the nodal solution. The model output in Eq. (1) 
can be expressed as a function of the nodal solution. Thus, the local sensitivity of the model output can be easily 
calculated if the local sensitivity of the nodal solution is available. When design parameters are defined, the matrix 
equation (3) can be differentiated with respect to the design parameter di to obtain the following design sensitivity 
equation: 
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i i id d d
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D F KK D  (4) 

The above equation can be solved inexpensively because the matrix [K] is already factorized when solving Eq. (3). 
The computational cost of sensitivity analysis is less than 20% of the original analysis cost. The efficiency of the 
uncertainty propagation approach is critical to RBDO (uncertainty management) since at each design cycle an 
updated version of the PDF for the constraint function (related to model outputs) is required. 

III. Global Sensitivity Indices and an Adaptive Approach for Fixing Unessential Variables 
To reduce the number of simulations required to construct the SRS even further, unessential random variables 

are fixed during the construction of the SRS. A random variable is considered unessential (and hence it is fixed) if 
its contribution to the variance of the model output is below a given threshold. Global sensitivity indices are 
calculated to quantify the model input contributions to the output variability hence establishing which factors 
influence the model prediction the most so that: i) resources can be focused to reduce or account for uncertainty 
where it is most appropriate, or ii) unessential variables can be fixed without significantly affecting the output 
variability. The latter application is the one of interest in the context of this work. 

Variance-based methods are the most rigorous and theoretically sound approaches for total sensitivity 
calculations.3,4,5 Variance based methods decompose the output variance into partial variances of increasing 
dimensionality as 

 0 12... 1 2( ) ( ) ( , ) ( , , , )i i ij i j n n
i i j

f f f x f x x f x x x
<

= + + + +∑ ∑x … …  (5) 

subject to the restriction that: 

 
1

0
si i kf dx =∫ …  for 1, , sk i i= …  (6) 

Specifically, the global sensitivity index Si (main factor) and total sensitivity index total
iS  associated with xi are 

represented by Eqs. (7) and (8), respectively: 

 
*( ( | ))

( )
i i

i
V E f x x

S
V f

=
=  (7) 

 
*( ( | ))

( )
total i i
i

E V f x x
S

V f
− −=

=  (8) 

where E and V denote expected value and variance, respectively. The symbol –i refers to all input variables except 
xi.  During the design cycles variables will be fixed based on the values of the global sensitivity indices (main 
factors) hence reducing the number of function evaluations required for the construction of the SRS. 

IV. Reliability-Based Optimization 
In order to illustrate and evaluate the proposed approach, a simple formulation of the more general RBDO 

problem11-14 is discussed. The cost function is assumed to be easily evaluated using the design variables and the 
constraints are defined using probabilistic distributions of the performance functions. Specifically, consider the 
following form of the RBDO problem: 

 ,

minimize ( )
subject to ( ( ) 0) , 1,2, ,j f j

L U

c
P G P j np< ≤ =

≤ ≤

d
x

d d d

…  (9) 
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where x = [xi]T (i = 1, 2,…, n) denotes the vector of random parameters, d = [di]T = [µi]T represent the design 
variables chosen as the mean values of x, and c(d) identifies the cost function. The system performance criteria are 
described by the performance functions Gj(x) such that the system fails if Gj(x) < 0. Each Gj(x) is characterized by 
its cumulative distribution function FG(g): 

 1
( )

( ) ( ( ) ) ( )
j

j

G j n
G g

F g P G g f dx dx
<

= < = ∫ ∫ X
x

x x" "  (10) 

where fX(x) is the joint PDF of all random system parameters and g is the probabilistic performance measure. The 
reliability analysis of the performance function requires evaluating the non-decreasing FG(g) ~ g relationship,1 which 
is performed in the probability integration domain bounded by the system parameter tolerance limits. Since the 
probability integration domain is in general complicated, many approximation methods (FORM or SORM) are often 
used. In this paper, the PDF estimated using the proposed uncertainty propagation scheme is used for evaluating 
reliability constraints hence providing better approximations than traditional linearization and thus significantly 
improving the rate of convergence of RBDO. Once the cost and constraint functions are evaluated, the optimization 
problem in Eq. (9) can be solved using conventional mathematical programming techniques. 

V. Numerical Examples 

A. Stochastic Response Surface for the Torque-Arm Model 
Consider the torque arm model depicted in Figure 2.15 

The locations of boundary curves have uncertainties due to 
manufacturing processes. Thus, the relative locations of 
corner points of the boundary curves are defined as random 
variables. 

For simplicity, we assumed that all random variables 
exhibit a normal distribution with mean zero and standard 
deviation equal to 0.1; i.e., x~N(0, 0.1). The mean values 
of these random variables are chosen as design parameters, 
while, without loss of any generality, the standard 
deviation remains constant during the design process. 

As illustrated in Figure 2, the initial model consists of eight design parameters. For example, design parameter d1 
is the mean of the relative location of point A in the x-direction. In order to show how the SRS is constructed and the 
PDF of the model output is calculated, we choose the three design parameters (d2, d6, and d8) that most significantly 
contribute to the stress performance at points A and B. 

A meshfree method15 is employed to solve the structural response. In the initial design, the maximum stress of 
305 MPa occurs at location A. For reliability analysis, the stress limit is established to be 800MPa. In the reliability 
analysis the performance function is defined such that G ≤ 0 is considered failure. Thus, in the case of stress 
constraints, the following performance function is defined: 

 max( ) : ( )AG σ σ= −x x  (11) 

where σmax is the maximum allowed equivalent stress and σA is the stress at location A. 
Before constructing the stochastic response surface, it is important to transform the random variables {xi(di, 0.1)} 

into standard normal distributions {ui}. After transforming to the standard normal distributions, the stochastic 
response surface can be defined using the polynomial chaos expansion. The 2nd- and 3rd-order Hermite polynomial 
chaos expansions can be written as, respectively, 

 
1

2 2 2 2 2 2
0

1 1 1
( 1)

n n n n

i i ii i ij i j
i i i j i
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−
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= + + − +∑ ∑ ∑∑  (12) 
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Figure 2. Shape design parameters for the torque arm model. 
Design parameters are the mean values of corner coordinates 
of boundary curves. Due to manufacturing processes, the 
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 (13) 

Note that the polynomials are constructed in the standard Gaussian space rather than the original design space. 
For 2nd- and 3rd-order expansion, the numbers of unknown coefficients, denoted by N2 and N3, are defined as N2 = 
10 and N3 = 20. 

The coefficients of the polynomial chaos expansion are obtained using the model outputs at selected collocation 
points. The collocation points are selected from the roots of the polynomial that is one order higher than the 
polynomial chaos expansion.16 For example, to solve for a three-dimensional second order polynomial chaos 
expansion, the roots of the third order Hermite polynomial, 3− , 0, and 3 are used, thus the possible collocation 
points are (0, 0, 0), ( 3− , 3− , 3− ), ( 3− , 0, 3 ), etc. There are 27 possible collocation points and 10 
unknown coefficients in the case of second-order expansion. For robust estimation of the regression coefficient, the 
number of collocation points in general should be twice the number of unknown coefficients. 

After choosing collocation points in the standard normal space, a transformation is applied from standard 
Gaussian space to design space according to the PDF associated with the design variables. In the torque arm model, 
the PDF of the performance function is plotted in Figure 3(a) for polynomials of different orders. The accuracy and 
the convergence of the stochastic response surfaces are compared with the PDF obtained using Monte Carlo 
simulation with 100,000 sample points. As expected, the root mean square error is reduced for higher-order 
polynomials. 

In order to reduce the required number of sampling points to construct the SRS, local sensitivity information is 
also used. At each sampling point, n+1 data are available (function value + gradients of n random variables). In 
order to account for the local sensitivity information, the expressions in Eqs. (12) and (13) are differentiated with 
respect to the random variables. However, the stochastic response surfaces are defined in the standard Gaussian 
space. As a result, it is necessary to transform the local sensitivity in the design space into standard Gaussian space 
using the following equation: 

 
1( )( ) ( )G G
−∂

∇ = ∇
∂

T uu x
u

 (14) 

where : →T x u  is the transformation between the design and standard Gaussian spaces. 

                       (a) Only function values are used                      (b) Function values and local sensitivities are used 

 Figure 3. PDF of performance function G(x) – Torque Arm Problem 



 
American Institute of Aeronautics and Astronautics 

 

7

Using local sensitivity information increases by a factor of n the number of data obtained from each sampling 
point (from one to four for the case of three design variables), hence the number of sampling points can be reduced 
n+1 times. In Figure 3(b), the PDFs of the performance function are plotted for alternative polynomials expansions 
and that obtained using Monte Carlo simulation. Note that a stochastic response surface with the same level of 
accuracy to that showed in Figure 3(a) can be obtained with four times less number of sampling points. 

B. Reliability-Based Design Optimization 
The reliability optimization problem under consideration requires to minimize the mass of the torque arm while 

satisfying stress reliability constraints. Let the model output Gi be defined as 

 
max

( ) 1 i
iG

σ
σ

= −x  (15) 

Using Eq. (9), the design optimization problem can be defined as 

 
Minimize Mass( )
subject to ( ( ) 0) ( ), 1, ,i t

L U

P G i NCβ≤ ≤ Φ − =

≤ ≤

d
x

d d d

…  (16) 

where βt is the target reliability indices and Φ is the cumulative distribution function of the standard normal 
distribution. For the reliability analysis, a target reliability index of 3.0 is used, which is equivalent to 99.87% 
reliability. The stress values at four (i.e., NC = 4) different locations are monitored. Table 1 shows the lower and 
upper bounds of the mean values associated with the design variables (modeled as random variables). Note that the 
design parameters are the relative movement of the corner points, the initial values for all design parameters is zero. 
The lower and upper bounds are chosen such that the topology of the boundary is preserved throughout the whole 
design process. 

 
For comparison purposes, this RBDO problem is solved using all random variables without any adaptive 

reduction. At each design point, the eight random variables are used to construct the SRS. In order to generate the 
third-order SRS, a total of 89 sampling points are used; at each sampling point stress and local sensitivity 
information is gathered. The optimization problem converges at the 21-th iteration. The design variables at the 
optimum design are listed in the fourth column of Table 1, and the optimum geometry is plotted in Figure 4(a). 
Figure 4(b) shows the stress distribution of the torque arm model at the optimum design. The maximum stress 
occurs at Point A with a value of 704 MPa. Considering the maximum allowable stress limit is 800 MPa, the mean 
value of the optimum design has about 96 MPa margin. Figure 5 shows the design history of the cost function. The 
initial mass of 0.878 kg is reduced to 0.522 kg (about 59.4%) at the optimum design. Most reduction has been 
achieved in the first five design cycles, and after that the optimization slowly converged by adjusting design 
parameters. 

 

          Table 1. Definition of random design parameters and mean value bounds 
 

Random 
Variables dL d 

(Initial) 
d* 

(Optimum) dU Standard 
Deviation 

Distribution 
type 

d1 –3.0 0.0 –0.7532 1.0 0.1 Normal 
d2 –0.5 0.0 –0.5000 1.0 0.1 Normal 
d3 –1.0 0.0 –0.1346 1.0 0.1 Normal 
d4 –2.7 0.0 –2.5443 1.0 0.1 Normal 
d5 –5.5 0.0 –0.8508 1.0 0.1 Normal 
d6 –0.5 0.0 1.9998 2.0 0.1 Normal 
d7 –1.0 0.0 0.8319 7.0 0.1 Normal 
d8 –0.5 0.0 0.0000 0.0 0.1 Normal 
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C. Adaptive Reduction of Random Variables 
The RBDO problem in the previous section was solved with all random variables. However, some random 

variables did not significantly contribute to the stress function variance. Thus, a significant amount of computational 
cost can be saved if the random variables whose contribution to the variance of the output is small are considered as 
deterministic variables at their mean values. This section describes how the global sensitivity indices (main factors) 
can be used for deciding whether to fix unessential random variables during the construction of stochastic response 
surfaces. 

At the initial design stage, a lower-order stochastic response surface is constructed using all random variables.  
In this particular example the first-order SRS is constructed using 17 sampling points. At the initial design, the first-
order SRS with eight random variables can be expressed as, 

 
1

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 2 3 4 5 6 7 84.95 0.0063 0.117 0.00008 0.0019 +0.0026 0.052 0.0002 0.016
G a a u a u a u a u a u a u a u a u

u u u u u u u u
= + + + + + + + +

= + + + − − − −
 (17) 

One useful aspect of the polynomial chaos expansion 
is that the coefficients in Eq. (17) are a measure of the 
contribution of the corresponding random variable to the 
variation of the output, and these coefficients will not 
change significantly in higher-order SRS. On the other 
hand, typically the main factor associated with a 
particular variable is responsible for most of its 
contribution to the output variance. Thus, evaluating the 
global sensitivity indices (main factors) using the first-
order SRS can be justified. Note that all random 
variables are transformed into SRV, the variance of G1 
can be evaluated analytically. Using Eqs. (7) and (8), the global sensitivity index of each random variable is 
calculated. Using Eq. (17) and assuming the design variables are independent, the global sensitivity index can be 
calculated as: 

 
2

2

1

i
i n

j
j

aS
a

=

=

∑
 (18) 

 

Figure 4. Optimum design and stress distribution of the torque arm 
model with 8 random variables. (a) Blue color = initial design, black 
color = optimum design (b) Max. equivalent stress = 704 MPa at 
Point A. 

 (a) 

 (b) 

 

Figure 5. Optimization history of cost function (mass) for 
the torque arm model with 8 random variables.  

 
Figure 6. Optimum designs for the full SRS (black color) and 
adaptively reduced SRS (blue color). Because some variables 
are fixed, the interior cutout of the design from the adaptively 
reduced SRS is larger than that from the full SRS. 
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If the global sensitivity index of a specific variable is 
less than a threshold value, the variable is considered as 
deterministic and fixed at its mean value.   

 In order to show the advantage of the adaptive 
reduction of random variables, the torque arm problem 
is solved using a threshold value of 1.0%. Table 2 
shows the first-order SRS of the torque arm model at 
the initial design. The total variance of stress function is 
1.670×10−2. Based on the global sensitivity indices, 
there are only three random variables whose GSI is 
greater than 1.0%; i.e., u2, u6, and u8. Thus, in the 
reliability analysis only these three random variables are 
used in constructing the third-order SRS, which now 
requires only 19 sampling points. All other random 
variables are considered as deterministic variables at 
their mean values. If the total number of sampling 
points for both low (17) and higher-order (19) 
polynomial expansions are compared with the higher-order SRS using all random variables (89), a significant 
reduction of the number of sampling points was achieved. 

The RBDO problem, defined in Eq. (16) is now solved using the proposed adaptive reduction of random 
variables. The optimization algorithm converges after the 17-th iteration. As seen in Figure 6, the optimum design 
using the adaptively reduced SRS is slightly different from that obtained in the previous section (without adaptive 
reduction). The former has a longer interior cutout than the latter. This can be explained from the fact that some 
variables were considered deterministic throughout the design process. Furthermore, the optimum value achieved 
using the adaptively reduced SRS converges to a lower value than the one without adaptive reduction). The total 
mass of the torque arm is reduced in 57.6%. The difference between the two approaches is approximately 1.8%.  

 The number of active random variables associated with the modeling of the first constraint during the design 
iterations are listed in Table 3. On average, four random variables were preserved as such, which implies that only 
29 sampling points were required for constructing the 
SRS. This is three times less than the SRS approach 
without adaptive reduction (89 sampling points). 

 

VI. Conclusions 
In this paper, we present an approach for solving 

RBDO problems involving a computationally 
demanding model. Key aspects of the approach are: i) 
the uncertainty propagation of random variables using a 
polynomial chaos expansion and local sensitivity 
information, and ii) the use of global sensitivity 
information to adaptively reduced the number of 
random variables throughout the design process.  The 
convergence and accuracy of the proposed approach 
was demonstrated using a benchmark case and an 
industrial reliability-based design optimization problem 
(automotive part).  
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