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ABSTRACT 
The springback is a significant manufacturing defect in 

the stamping process.  A serious impediment to the use of 
lighter-weight, higher-strength materials in manufacturing is 
the relative lack of understanding about how these materials 
respond to the complex forming process. The springback 
problem can be reduced by using appropriate designs of die, 
punch, and blank holder shape together with friction and 
blank holding force.  That is, an optimum stamping process 
can be determined using a gradient-based optimization to 
minimize the springback.  However, for an effective 
optimization of the stamping process, development of an 
efficient analytical design sensitivity analysis method is 
crucial.  In this paper, a continuum-based shape and 
configuration design sensitivity analysis (DSA) method for 
the stamping process has been developed.  The material 
derivative concept is used to develop the continuum-based 
design sensitivity.  The design sensitivity equation is solved 
without iteration at each converged load step in the finite 
deformation elastoplastic nonlinear analysis with frictional 
contact, which makes the design sensitivity calculation very 
efficient.  The accuracy and efficiency of the proposed method 
is illustrated by minimizing springback in an S-rail part, which 
is often used as an industrial benchmark to verify the 
numerical procedures employed for stamping processes. 
 
KEYWORDS 
Stamping Process, Springback, Finite Deformation 
Elastoplasticity, Frictional Contact, Design Sensitivity 
Analysis, Design Optimization 

 
1. INTRODUCTION 

The stamping process was a major industrial 
breakthrough that made mass production of various products, 
which range from automobiles to home appliances, possible.  
However, springback in metal stamping is still very much 
problematic such that it requires a trial-and-error process to 
remove it, which is very expensive.  For example, a large size 
die for a passenger vehicle side door could cost up to one 
million dollars.  These days, carmakers face ever more 
frequently the phenomenon of springback, especially with 
new high strength steels.  As a result, industries need a better 
understanding of how to compensate for springback in the 
stamping process especially for lightweight materials like 
aluminum and high strength steel. 

The stamping process involves a combination of 
elastoplastic bending and stretching deformation of the blank 
sheet through frictional contact.  These deformations can lead 
to large amounts of springback after the punch, die, blank 
holder are removed.  The springback behavior is very complex 
and is affected by many factors including material properties, 
clearance between punch and die, thickness of the blank sheet, 
the tool (die, punch, and blank holder) shape, and blank 
holding force.  Simulation of such behaviors using numerical 
methods such as FEA is still very much challenging problem, 
let alone design sensitivity analysis (DSA).  Thus, extensive 
research efforts on the simulation of stamping process have 
been reported in several journals and conferences such as 
NUMISHEET [1-6]. 
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There have been several attempts to reduce the 
springback problem.  For example, Wenner [7] showed that 
tensile stretching stresses superimposed on the bending 
stresses of an elastoplastic material could reduce the 
springback in two-dimensional formed parts.  Liu [8] has 
proposed variations of the blank holding force during the 
forming process to provide tensile pre-loading or post-loading 
on the formed part for springback reduction.  However, it is 
not always possible to transmit high tensile forces to all parts 
of a blank sheet with complicated geometry without causing 
failure by tearing of the formed part.  Karafillis and Boyce [9] 
proposed a methodology for tool shape design based on the 
inverse springback calculation.  In their method, the traction 
distribution on the formed part is calculated at the fully loaded 
stage and this traction distribution was used to elastically load 
a part to give the desired die shape.  However, these methods 
cannot be easily applied to the stamping process of complex 
formed part shape.  

In recent years, DSA has been used for the stamping 
process design [10-12].  As it is pointed out by Choi et al. 
[13], there are three approaches for DSA: the finite difference 
method (FDM), discrete method, and continuum-based 
method.  Among them, the continuum-based method 
differentiates the variational equation before discretization and 
thus is more efficient and accurate than the two other methods, 
although it requires lengthy and sophisticated mathematical 
derivations.  In this paper, a continuum-based DSA method 
for a stamping process has been developed.  The DSA for the 
stamping process is quite challenging because it requires 
sensitivity analysis of a shell structure with three 
nonlinearities: elastoplasticity, finite deformation, and 
frictional contact.  Detailed discussion of DSA for a finite 
deformation elastoplastic shell structure is developed by Choi 
et al. [13], where the continuum-based DSA method is 
developed using the elastoplastic return-mapping algorithm 
[14] along with the Hughes-Winget’s incrementally objective 
integration algorithm [15-17]. 

By integrating the DSA results of Ref. 7 and the newly 
developed DSA method for the frictional contact problem in 
this paper, a continuum-based DSA method for a finite 
deformation elastoplastic nonlinear shell structure with 
frictional contact is developed.  For the frictional contact 
problem, instead of the contact variational inequality, a 
penalty-regularized variational equation is differentiated with 
respect to the stamping process parameters.  The material 
derivative that is consistent with the frictional return-mapping 
scheme is derived.  A piecewise-linear contact surface causes 
a significant amount of difficulty in the Newton-type iterative 
method because it lacks continuity across the surface 
boundary.  CAD geometric representations of die and punch 
surfaces alleviates that difficulty significantly by providing 
smooth contact surface.  

For DSA of the stamping process, the sensitivity equation 
uses the same tangent stiffness matrix as the response 
analysis, which is already decomposed during nonlinear 

analysis, and only a substitution process using different right-
hand side vectors is required.  Therefore, the computational 
cost of DSA is less than 10% that of the response analysis, 
which makes the design optimization process very efficient.  
Accuracy and efficiency of the proposed method is 
demonstrated by minimizing springback of the benchmark S-
rail forming problem. 
 
2. CAD-BASED GEOMETRIC MAPPING 

In the stamping process, deformations of the tools (rigid 
punch, die, and blank holder) are generally ignorable.  
Therefore, in numerical analysis, these tools can be modeled 
as rigid bodies and their discretization is not needed.  Only the 
blank sheet is modeled as the shell structure and discretized.  
A CAD geometric representation is utilized for both the tool 
surface and the shear deformable shell structure.  Since the 
CAD surface representation used in this paper has C1-
continuity, its use for the tool surface provides a continuous 
contact force and surface normal vector, as well as a valid 
contact tangent stiffness matrix.  The CAD representation of 
the tool surface alleviates significant amount of difficulty 
from a piecewise-linear contact surface in FEA.  In addition, 
since no element information is generated in the meshfree 
method (which is used in this paper for numerical analysis), 
the surface information from the CAD model is necessary for 
constructing the surface normal vector and the mapping from 
the global to local coordinate. 
 
2.1 Tool Surface Representation 

In the CAD model, a surface geometry in a general three-
dimensional space can be represented by using two parameters 
as [18] 
 ( ) ( ) (, Tn )Tξ η ξ=x U MGM W η  (1) 
 

 
Figure 1. Parametric Representation of a Surface Geometry 

 
where U(ξ)=[ξ3,ξ2,ξ,1]T and W(η)=[η3,η2,η, 1]T are vectors 
in the parametric coordinates.  In equation (1), M is a matrix 
defined as 

 

2 2 1 1
3 3 2 1

0 0 1 0
1 0 0 0

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M  (2) 

and G is the surface geometric matrix defined as 
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  (3) 

00 01 00 01

10 11 10 11

00 01 00 01

10 11 10 11 4 4 3× ×

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

η η

η η

ξ ξ ξη ξη

ξ ξ ξη ξη

p p p p
p p p p

G
p p p p
p p p p

⎥
⎥

where are coordinate of the corner points on the surface; 
ij

ijp
ξp  and ij

ηp  are tangent vectors in ξ and η directions; and ij
ξηp  

are twist vectors.  Figure 1 shows the surface geometry and its 
transformation into the parametric coordinate. 
 
2.2 Shell Structure 

A general shell structure is represented by the neutral 
surface geometry and thickness data at each point.  The 
neutral surface geometry can be represented using equation 
(1) and the thickness data is constructed using the information 
from the CAD surface representation.  The surface 
representation method in equation (1) provides good 
flexibility from a computational viewpoint.  For example, the 
normal vector on the surface at (ξ,η) can be obtained as 

 ( ) , ,

, ,

,
n n

n n
ξ η

ξ η

ξ η
×

=
×

x x
n

x x
 (4) 

where, from equation (1), 
 ( ) ( ), ,

Tn
ξ ξ

Tξ η=x U MGM W  (5) 

 ( ) ( ), ,

Tn T
η ηξ η=x U MGM W  (6) 

The surface normal vector in equation (4) reduces a 
significant amount of discretization error that often occurs in 
the traditional FEA for frictional contact analysis. 

For a shell structure with thickness t(ξ,η), any points 
within the structure can be represented by 

 ( ) ( ) ( ) (, , ,
2

T T t )ξ η ζ ξ η ζ ξ η= +x U MGM W n  (7) 

where ζ=[−1,1] is the third parametric coordinate in the 
thickness direction.  The Jacobian of the mapping can be 
obtained, from the relation in equation (7) as 

 

, , ,

, ,

,

2

2

2

T T

T T

t

t

t
,

ξ ξ ξ

η η

ζ

ζ

ζ

= +

= +

=

x U MGM W n

x U MGM W n

x n

η  (8) 

By defining x=[x1, x2, x3] and ξ=[ξ1, ξ2, ξ3]=[ξ, η, ζ] for 
notational convenience, the Jacobian of the mapping between 
the physical and the parametric coordinate can be represented 
by 

 0
i

j

x
ξ
∂

=
∂

J  (9) 

For the shell structure, the constitutive relation is given in 
the body-fixed, local coordinate system, whereas a 
displacement-strain relation is provided in the global 
coordinate system.  The unit vectors in the local coordinate is 
calculated as 

 , , ,

, , ,

, ,
n n n

n n n
ξ ξ η

ξ ξ η

×
= = =

×

x x x
l n m

x x x
×n l  (10) 

Using the relations in equation (10), the coordinate 
transformation can be obtained as 

 
1 1 1

2 2 2

3 3 3

l m n
l m n
l m n

⎡ ⎤
⎢ ⎥ ′= ⎢ ⎥
⎢ ⎥⎣ ⎦

x x  (11) 

where  is the coordinate of the corresponding point x  in 
the local coordinate system. 

′x

 
3. CONTACT ANALYSIS 

 
Figure 2. Contact Kinematics 

 
In this section, contact analysis between a shell structure 

(a blank sheet) and tools (rigid punch, die, and blank holder) 
is described in continuum formulation.  Figure 2 illustrates the 
contact kinematics between two surfaces, represented by  
and .   is designated as a slave surface, while  is 
designated as a master surface.  In the stamping problem, the 
blank sheet is referred to as the slave body and the punch, die, 
and blank holder is referred to as the master body.  Contact 
constraints are imposed such that the points on  cannot 
penetrate into .  The master surface is represented by the 
two parameters of the CAD geometric surface as xc(ξ1,ξ2).  
Therefore, two tangential vectors and a normal vector on the 
master surface are defined as 

1
xΓ

2
x

2
xΓ 1

xΓ Γ

1
xΓ

2
xΓ

 1 ,1 2 ,2 1 2 1 2, ,c c= = = × ×e x e x n e e e e  (12) 
where x,α=∂x/∂ξα, α=1,2.  Note that 1e  and 2  are not 
necessarily orthogonal to each other, but are tangent to the 
contact surface. 

e

One of the most important steps in the contact analysis is 
to locate the contact point in accurate and efficient way.  The 
contact point 2c

x∈Γx  corresponding to the slave point 1
x∈Γx  

is determined from the consistency condition, 
  (13) ( ) 0, 1,2c

α α⋅ − = =e x x
Note that xc is the closest projection point corresponding to x. 
Using the normal gap function, which is the normal distance 
between two bodies, the impenetrability condition can be 
imposed as 
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  (14) ( ) 0cg = ⋅ − ≥n x x
It is known that the contact variational inequality is 

equivalent to the constrained minimization problem, which 
can be approximated using the Lagrange multiplier or penalty 
method.  In this paper, the penalty method is used without 
introducing additional unknowns in the variational governing 
equation. 

If a region denoted  exists that violates the 
impenetrability condition of equation 

c 1
x(Γ Γ⊂ )

(14), then this region is 
penalized using a penalty function, which is defined as 

 21
2 cnP gω

Γ
= ∫ dΓ  (15) 

where ωn is the penalty parameter.  Let the symbol “over-bar” 
denote a variation of the quantity such that z  represents the 
displacement variation.  The variation of the penalty function 
in equation (15) contains the variation of the gap function, 
which can be obtained from its definition as 
 ( ) ˆcg = ⋅ − ≡ ⋅n z z n z  (16) 

where the notations ˆ c= −z z z  and ˆ c= −z z z  are used for the 
relative displacement and its variation between two contact 
points.  Note that the variation of the normal vector n vanishes 
because it is orthogonal to the vector ( )c−z z . 

The variation of the penalty function becomes the contact 
variational form, which is defined as 
 ( )1 ,

c

n
N nb P gω+

Γ
≡ = Γ∫z z gd  (17) 

where ωn g corresponds to the compressive normal force.  The 
left superscript “n+1” denotes the configuration at time tn+1. 

By combining equation (17) with the structural energy 
form ( 1 ,na +

Ω )z z  and load linear form ( )Ω z  presented by 
Choi et al. (equations (32) and (33), respectively, in [13]), the 
finite deformation elastoplastic nonlinear variational 
governing equation for the penalized contact condition 
becomes 
 ( ) ( ) ( )1 1, , ,n n

Na b+ +
Ω Ω+ = ∀z z z z z z Z∈  (18) 

Note that even if the structure encounters only elastic 
deformation, equation (18) is nonlinear since the inequality 
constraint is imposed throughout the penalty method.  In 
equation (18), 

 ( ) ( ){ }31 0, gZ H Ω⎡ ⎤= ∈ = ∈⎣ ⎦z z x x Γ  (19) 

is the space of kinematically admissible displacement, where 
 is first-order Sobolev space and ( )1H Ω gΓ  is the essential 

boundary where the displacement is prescribed. 
In this paper, the return-mapping algorithm on the 

subspace defined by the zero-normal stress condition is used 
for elastoplastic integration.  In order to handle the finite 
deformation, the Hughes-Winget’s incrementally objective 
integration schemes is used. 

The nonlinear equation (18) can be solved using a 
Newton iterative method through linearization.  The 

linearization of the structural energy form, ( )* 1 ; ,naΩ
+ Δz z z , is 

given in Figure 3.  The linearization of contact variational 
form, (* 1 ; ,n )b + ΔN z z z , will be derived in next section for 
DSA.  By combining the linearization of the contact 
variational form with that of the structural energy form, the 
incremental equation becomes  

 
( ) ( )

( ) ( ) ( )
* 1 1 * 1 1

1 1

; , ; ,

, , ,

n k k n k k
N

n k n k
N

a b

a b

+ + + +
Ω

+ +
Ω Ω

Δ + Δ

= − − ∀ ∈

z z z z z z

z z z z z z Z
 (20) 

where the right superscript k denotes the current iteration 
counter.  For a given load step, equation (20) is solved 
iteratively until the residual force vanishes.  After 
convergence, the decomposed tangent stiffness matrix is 
stored to be used in DSA.  The continuum-based DSA method 
for a finite deformation elastoplastic shell structure is 
developed by Choi et al. [13] and the result will be used here 
to combine with DSA for the frictional contact problem.  
Interested reader is referred to [13]. 
 

 

( )

( )

( )

1 1
1

* 1 alg
1 1

Structural Energy Form : ,

Load Linear Form :
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j
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j l

z
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x
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z z
a C d

x x

σ

δ σ δ σ

+ +
Ω +Ω
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+
Ω + +Ω

∂
= Ω

∂

= Ω+ Γ

∂ ∂Δ
⎡ ⎤Δ = + − Ω⎣ ⎦∂ ∂

∫

∫ ∫

∫

z z

z

z z z

)
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Figure 3. Structural Energy and Load Linear Forms 
 

4. DESIGN SENSITIVITY ANALYSIS OF CONTACT 
PROBLEM 

For design of the stamping process, the design variables 
are the shape of the stamped workpiece (for multistage 
stamping process) and tool surfaces (punch, die, and blank 
holder).  Even when the shape of the workpiece is initially flat 
and thus not design variable, the DSA formulation must 
include the design velocity field of the workpiece because the 
updated Lagrangian formulation is used for the nonlinear 
analysis.  For DSA of the contact problem, instead of 
differentiating the contact variational inequality, the penalty-
approximated variational equation is differentiated with 
respect to the design variable. 

 
4.1 Material Derivative Formulas 

In shape and configuration DSA, a material point 0  is 
moved to a new point τ  due to design 
perturbation.  A design velocity field 0  represents the 
direction of the design perturbation, and  is a scalar 
parameter to control the perturbation size.  In the updated 
Lagrangian formulation, the reference frame is updated after 
each incremental analysis using the following relation 

x
(0 0 0= +τx x V

V
τ

  (21) 0n = +x x z
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where n  is spatial coordinate at time nt  and nx z  is the sum of 
the incremental displacement up to time n .  By differentiating 
the above relation, the following design velocity update 
formula is obtained 

t

 ( ) ( )0 0

0 0

n nd d
d dτ τ τ

τ ττ τ= =

= + = + =x x z V zn nV  (22) 

The superposed dot will be used to denote the material 
derivative of a function throughout this paper.  Note that even 
when the shape of the slave surface (workpiece) is not a 
design variable, and thus initial design velocity field, 0 , is 
zero, the design velocity field at time  is nonzero due to 

V
n

nt z .  
Using the relation in equation (22), the material derivative of 
the structural point on the slave surface at the current 
configuration becomes 

 ( ) ( )1

0 0

n n nd d
d dτ τ τ

τ ττ τ
+

= =

= + Δ = +x x z V Δz  (23) 

On the other hand, the perturbation of the contact point on the 
master surface (tool surface) can be obtained by using the 
chain rule and by perturbing the natural coordinate 
corresponding to the contact point in the tangential direction 
as 

 ( )1

0

n c n c cd
d τ

τ
α αξτ

+

=

= + Δ +x V z e  (24) 

where a summation rule is used for the repeated indices. 
The material derivatives of the structural energy form is 

[13] 

 ( ) ( ) (1 * 1

0

, ; ,n n
V

d a a a
d τ τ

ττ
+ +

Ω Ω
=

⎡ ⎤ ′= Δ +⎣ ⎦ )1 ,n+z z z z z z z  (25) 

where (* 1 ; ,na + )ΔΩ z z z  is the same form as the linearized 
energy form in equation (20) by substituting kΔz  for Δz .  

( 1 ,n )a +′V z z  is the structural fictitious load form, which 
includes all known terms from the response analysis and DSA 
up to the previous time step and its expression is given in 
Figure 4.  The material derivative of the load linear form is 

 ( ) ( )
0

V
d
d τ

ττ Ω
=

′=⎡ ⎤⎣ ⎦z z  (26) 

 
 

 ( ) ( )1
1

1 1

Structural Fictitious Load Form :

,n V i
V ij ij ijkln

j

fic ni i
ij ijn n

j j

z
a z

x

z z
div d

x x

ε σ

σ σ

+
+Ω

+ +

∂′ ⎡= +⎣ ∂

⎤∂ ∂
+ + ⎥
∂ ∂ ⎥⎦

∫z z

V

algC

Ω

 

 
Figure 4. Fictitious Load Form for DSA 

 
4.2 Design Velocity Field Computation 

The computation of 0  and  are directly related to 
the parametric representation of the surface as given in 
equation 

V 0 cV

(1).  For example, Figure 5 shows die geometry, 

which is composed of three surfaces.  Each surface is 
characterized by its surface geometric matrix Gi=1,2,3 as in 
equation (3).  If the corner radius R is considered as a design 
parameter, the design dependence of the surface is written as 
  (27) ( ) ( ) ( ) ( )0 1, 2,3Tc T

i iR R iξ η= =x U MG M W
Since geometric matrix Gi(R) is a function of the corner radius 
R, the design velocity can be obtained by perturbing R to 
R+τδR, and the differentiating with respect to τ as 

 

( )

( ) ( )

( ) ( ) ( )

0
0

0

c
ic

i

T Ti

T new T
i i

d R R
d

R
R

τ

τδ
τ

ξ δ η

ξ η

=

+
=

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

= −

x
V

GU M M W

U M G G M W

 (28) 

where iG  is a geometric matrix of each surface when the 
corner radius is changed to Rnew using the CAD model. 

new

 

 
Figure 5. Example of Die Composed of Three Surfaces 

  
Suppose the contact surface  change its shape due to 

design perturbation.  The contact form in equation 

cΓ
(17) 

depends on the design in two ways: explicitly through the 
contact surface design change and implicitly through the 
response z .  The material derivative of the contact form can 
be obtained as 

 ( )1

0

,
c

n n
N n

d b gg gg gg V d
d τ

ω κ
τ

+

Γ
=

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦⎣ ⎦ ∫z z n Γ  (29) 

where κ is the curvature of the master surface, and  is the 
normal component of the design velocity.  For DSA, 

nV
g and g  

need to be expressed in terms of the implicit term Δz  and the 
explicit term n .  From its definition in equation V (14), the 
material derivative of the gap function can be obtained as 
  (30) ( ˆng = ⋅ Δ +n z V

c

)
where .  However, the derivation of ˆn n n≡ −V V V g  is not 
straightforward and the relation of g g α αξ= + +z n n e  is 
needed to make the stiffness matrix symmetric.  Equation (30)
thus becomes 
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 ( ) ( ) (1
,
cg gα α α α α αβ βξ ξ −= − ⋅ − ⋅ + ⋅ ⋅n z n e n e n e )m  (31) 

where m .  In equation αβ α β= ⋅e e (31), 

 ( )1 1
, , , ,

0

n c c n c n cd
dα α α α αβ β

τ

ξ
τ

+ +

=

≡ = Δ + +e x z V x  (32) 

The expression of βξ  can be obtained from the consistency 
condition in equation (13) as 

 
( ) ( )
( ) ( )

1 1
,

ˆn n

n

A A gβ αβ α αβ α α

β β

ξ

ξ ξ

− −= Δ ⋅ + ⋅ + ⋅

≡ Δ +

cz e V e n

z V
1n c+

V
 (33) 

where , .  By using the relations from 
equations 

A m gαβ αβ αβ= − ⋅n x
(30) to (33), the material derivative of the contact 

variational form can be separated into two parts: the implicitly 
dependent and the explicitly dependent parts, as 

 ( ) ( ) (1 * 1

0
, ; ,n n

N N N
d b b b
d τ τ

ττ
+ +

=
⎡ ⎤ ′= Δ +⎣ ⎦ )1 ,n+z z z z z z z  (34) 

where 

 

( )
( )

( )
( )( ) ( )

* 1

, ,

1
,

2 1

ˆˆ; ,
c

c

c

n
N n

c c
n

n c

n

b

g

d

d

g n e m d

α α α α

αβ α

α αβ β

ω

ω ξ ξ

ξ ξ

ω

+

Γ

Γ

+

−

Γ

Δ = ⋅ ⋅Δ Γ

⎡− ⋅ Δ ⋅Δ⎣

⎤+ ⋅ Δ Γ⎦
⎡+ ⋅ Δ ⋅⎣

∫
∫

∫

z z z z nn z

n z z + n z

n x z

z n e ⎤ Γ⎦

 (35) 

is the same form as the linearization of the contact variational 
form in equation (17) if we substitute kΔz  for Δz .  This 
linearized bilinear form is used in the incremental equation 
(20) of the governing variational equation (18).  The second 
term on the right of equation (34) is the fictitious load form 
due to frictionless contact, which is defined as 
 ( ) ( )1 * 1, ; ,

c

n n n n
N N n nb b gω κ+ +

Γ
′ ⎡ ⎤≡ + ⋅⎣ ⎦∫z z z V z z n V dΓ  (36) 

 
5. FRICTIONAL CONTACT DESIGN SENSITIVITY 
ANALYSIS 

When friction exists on the contact surface, the structure 
experiences a tangential frictional force, in addition to the 
normal contact force.  Since the frictional behavior is 
complicated, many idealizations have been made.  The 
Coulomb friction law is one of the frequently used methods to 
describe frictional behavior.  However, this method presents 
numerical difficulties because of a discontinuity of the 
frictional force.  A more advanced friction model assumes that 
the frictional force elastically increases until it reaches the 
limit value, and then the macroscopic slip occurs along the 
contact surface.  This model is based on the experimental 
observation and corresponds to the non-associative flow rule 
in elastoplasticity.  Thus, the return-mapping algorithm can be 
used to determine the frictional force like in elastoplasticity. 
 
5.1 Frictional Model 

The frictional force appears parallel to the contact surface 
and is expressed as 

 f α
α=f e  (37) 

where  is the dual basis of  and has the following 
relation: 

αe αe

  (38) 
1m

α
β αβ

α
αβ β

δ
−

⋅ =

=

e e

e e
where  and αβ  is the Kronecker delta symbol, 
i.e., having a value of one when , and otherwise 
remaining at zero.  The frictional contact form of the problem 
can then be defined by multiplying the frictional force by the 
virtual relative slip as 

mαβ α β= ⋅e e δ
α β=

 ( ),
cTb fα αΓ

dξ Γ= ∫z z  (39) 

The expression αξ  can be obtained from the consistency 
condition in equation (13) as 
 (1

,
ˆ cA gβ αβ α αξ −= ⋅ + ⋅ )z e n z  (40) 

In the regularized frictional model, frictional force fα is 
calculated by using a return-mapping algorithm like in 
elastoplasticity.  Initially, the frictional force increases in 
proportion to the relative slip amount.  This trial frictional 
force is then compared with the limit value N gμω , where μ  
is Coulomb friction coefficient.  If the trial force is smaller 
than the limit value, then the trial force becomes the frictional 
force (stick condition).  If the trial force is greater than the 
limit value, then the limit value is used for the frictional force 
(slip condition).  Figure 6 shows the frictional force used in 
this paper. 
 

 
 

Figure 6. Return-mapping Algorithm for Frictional Force 
 

As with the frictionless contact form, the nonlinear 
frictional contact form in equation (39) has to be linearized as 
part of the implicit solution process.  The linearized frictional 
contact form is denoted by (* ; ,Tb Δ )z z z , an expression that is 
developed in the following section.  If the following notations 
are used, 

 
( ) ( ) ( )

( ) ( ) ( )
1 1 1

* 1 * 1 * 1

, , ,

; , ; , ; ,

n n n
N T

n n n
N T

b b b

b b b

Γ

Γ

+ + +

+ + +

= +

Δ = Δ + Δ

z z z z z z

z z z z z z z z z
 (41) 

then linearized incremental equation can be extended to the 
frictional contact problem as 
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( ) ( )

( ) ( ) ( )
* 1 1 * 1 1

1 1

; , ; ,

, , ,

n k k n k k

n k n k

a b

a b

Ω Γ

Ω Ω Γ

+ + + +

+ +

Δ + Δ

= − − ∀ ∈

z z z z z z

z z z z z z Z
 (42) 

It is shown in the next section that the same left side of 
equation (42) can be used in DSA. 
 
5.2 Design Sensitivity Formulation of Friction Form 

Unlike the frictionless contact form, the frictional contact 
form depends on analysis results at the previous load step 
because of the updating algorithm of the frictional force.  
Thus, the sensitivity equation constitutes three parts: implicitly 
dependent terms, explicitly dependent terms, and path-
dependent terms.  The material derivative of the frictional 
contact form can be obtained from equation (39) as 

 ( ) (1

0

,
c

n
T

d b f f f
d α α α α α αΓ

τ
)n dξ ξ κ ξ Γ

τ
+

=

⎡ ⎤ = + +⎣ ⎦ ∫z z V (43) 

The material derivative of βξ can be obtained from 
equation (40) as 

 

,

, ,

, , ,

, ,

ˆˆ

ˆ

c

c c

c c

n n c n c

A

g

g g

g

αβ β α γ γ α α α β β

α β β α γβ αγβ β γ

α β γ αγ γ αβ β

α α β γ αγ γ

c

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ

= − ⋅ + ⋅ + ⋅Δ − ⋅

⎡ ⎤− ⋅ − ⋅ − ⋅⎣
− ⋅Δ + ⋅Δ + ⋅

+ ⋅ − ⋅ + ⋅

e z z e e z e e

e e e x n x

e z n z n z

e V e V n V

⎦  (44) 

Note that equation (44) includes the implicitly dependent 
( )Δz  and the explicitly dependent term ( .  No path-
dependent term exists, and the expression is the same for both 
stick and slip conditions. 

)nV

For the stick condition, the traction force increases in 
proportion to the amount of relative slip between two contact 
surfaces.  The material derivative of the frictional force in 
equation (37) becomes 

 

( )
( )

( )
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1
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1
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n
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n
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V

e V e V

ξ
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 (45) 

where ( ){ }1c c n n+
, ,t .  In 

equation 
mαβ αβ γ α γβ γ γ αβΦ ω ξ ξ⎡ ⎤≡ ⋅ + ⋅ − +⎣ ⎦x e e x

(45), first and second lines represent the implicitly 
dependent term, third and fourth lines represent the explicitly 
dependent term, and firth line represents the path-dependent 
term. 

By substituting equations (44) and (45) into equation (43)
, the material derivative of the frictional contact form is 
explicitly obtained in terms of Δz , , and the path-
dependent terms, as 

nV

 ( ) ( ) (1 * 1

0

, ; ,n n
T T T

d b b b
d ττ

+ +

=

⎡ ⎤ ′≡ Δ +⎣ ⎦

where the linearized friction form is defined by collecting all 
terms that include Δz  as 
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 (47) 

and the fictitious load form due to friction is obtained by 
collecting those explicitly dependent terms and path-
dependent terms as 

 
( ) ( )

( )
1 * 1, ; ,

c

c

n n n n
T T

n n
t

b b f

f m d

α αΓ

α α αβ α βΓ
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+ +′ = +

+ +

∫
∫

z z z V z Vd
 (48) 

For the slip condition, the magnitude of the frictional 
force is determined from the normal contact force, while the 
applied direction is parallel to the trial force.  From the return-
mapping algorithm given in Figure 6, the material derivative 
of the frictional force for the slip condition is obtained as 

 
( )1 ˆn n

n

tr tr trn
tr

f p

g
f p p f f p

α α

β
α α β α β

μω

μω

+ = ⋅ Δ +
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n z V

p e
f

 (49) 

where tr tr=p f f , tr trp fα α= f , and .  In 
equation 

pβ = ⋅p eβ

(49), trfα  is the same as in equation (45) for the stick 
condition.  By substituting equations (44) and (49) into 
equation (43), the material derivative of the frictional contact 
form is obtained.  If the implicitly dependent terms are 
combined, the linearized frictional contact form can be 
obtained as 
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(50) 

)1 ,n+z z z z z z z  (46) 
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In a similar way, the explicitly dependent terms and path-
dependent terms are combined to define the fictitious load 
form due to friction as 

 

( ) ( )
( )(

)

1 * 1, ; ,
c

c

n n k n n
T T

nn
tr
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b b f
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m d
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+ +′ = +

−

+

∫

∫

z z z V z V

f

d

 (51) 

By adding equations (36) and (48) for the stick condition, or 
equations (36) and (51) for the slip condition, the total 
fictitious load from due to frictional contact can be defined as 
 ( ) ( ) (1 1, ,n n n

V N Tb b b+ + +′ ′ ′≡ + )1 ,z z z z z z  (52) 
Finally, by adding the material derivatives in equations (25), 
(34), and (46), and using equation (52), the design sensitivity 
equation for the frictional contact problem is obtained as 

 
( ) ( ) ( )

( ) ( )
* 1 * 1

1 1

; , ; ,

, ,

n n
V

n n
V V

a b

a b

+ +

+ +
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Ω Γz z z z z z z

z z z z z Z∈
 (53) 

where  
 ( ) ( ) (* 1 * 1 * 1; , ; , ; ,n n n

N Tb b bΓ
+ + +Δ ≡ Δ + Δ )z z z z z z z z z  (54) 

Since the left side of equation (53) is same as the left side of 
equation (42) if Δz  is replaced by Δz , the design sensitivity 
equation uses the same stiffness matrix as response analysis 
that already has a factorized form.  This provides an excellent 
efficiency in computation of design sensitivity. 

Figure 7 shows the flow chart of response analysis and 
DSA. The response analysis is carried our using a meshfree 
code developed at Iowa. The response analysis of the 
stamping process involves elastoplasticity, finite deformation, 
and frictional contact of shell structure. For response analysis 
of a finite deformation elastoplastic shell structure, which 
corresponds to ‘Compute Structural stiffness and Force’ in 
Figure 7, the Hughes-Winget’s incrementally objective 
integration with the elastoplastic return-mapping algorithm for 
shell structure is used. The detail discussion of response 
analysis and DSA can be found in Reference [13] for 
frictionless contact. The nonlinear response analysis is to find 
the equilibrium state corresponding to the applied loads. Time 
variable t is used to denote the intensities of load applications, 
or different punch location in stamping process, and 
correspondingly different configurations. The basic approach 
in nonlinear response analysis is to assume that the solution at 
time t is known and that the solution at time t+Δt is required, 
which is obtained based on the Newton-Raphson iteration 
method. After the solution is obtained, the DSA is performed 
with NDV number of design variables. In DSA, since the 
global stiffness matrix K is same as that in response analysis, 
the sensitivity calculation is carried out without iteration, 
which makes DSA very efficient. 
 

6. NUMERICAL EXAMPLE 
The S-rail benchmark problem of NUMISHEET’96 is 

selected in this paper to demonstrate the efficiency and 
accuracy of the proposed method for a stamping process  

 
 

Figure 7. Flow Chart of Response Analysis and Design 
Sensitivity Analysis 

 

 
Figure 8. Schematic of S-rail Forming and Springback 
 

optimization.  As mentioned before, this is a quite challenging 
problem, even for accuracy of the analysis, let alone for DSA 
and optimization.   

 8 Copyright © 2005 by ASME 



The blank sheet with thickness t=0.92 mm is placed on 
the die and hold by the blank holder with constant force 10 
kN.  Then the punch is pressed down with 37 mm stroke and 
removed.  Due to elasticity, significant springback occurs.  
The material properties are Young’s modulus E=69 GPa, 
Poisson’s ratio ν=0.33, and the yield strength σY=241 MPa.  
For elasto-plasticity, the combined linear isotropic-kinematic 
hardening rule is used with a hardening slope of H=200 MPa.  
The modified Coulomb friction law is used with a friction 
coefficient of 0.1.  Figure 8 shows the tool surfaces for the S-
rail forming process and Figure 9 shows the blank sheet. 
 

 
 

Figure 9. Blank Sheet of S-rail Forming and Springback 
 

 
(a) Before Springback 

 
(b) After Springback 

 

Figure 10. Deformed Shape 
 

Since the die, punch, and blank holder are rigid, only 
blank sheet is discretized using 540 meshfree particles.  In 
addition, the vertical displacement of the blank holder needs 
to be computed.  Therefore, 2701 degrees-of-freedoms are 
used to model the stamping process.  200 time steps have been 
used to carry out the nonlinear analysis, which took 39908 
seconds using a workstation with 1GHz Itanium CPU.  
Figures 10 (a) and (b) show deformed shapes before and after 
springback.  In order to calculate the deformed shape after the 
tools are removed, one point is fixed to avoid rigid-body 
motion.  For the shell element, fixing one point is enough 
since the rotational degrees of freedom is fixed too.  The 
deformed shape along the line A-A′ on Figure 9 is shown in 
Figure 11, where significant springback has occurred.  Thus, 
stamping process optimization is carried out to minimize the 
springback. 

 
Figure 11. Deformed Shape along Line A-A′  

Before and After Springback 
 

 
Figure 12. Shape and Configuration Parameters for S-rail 

Stamping Process 
 

The stamping parameters are defined as shown in Figure 
12.  The stamping parameters u1~u4 represent the horizontal 
and vertical location of each side of punch and u6~u9 represent 
those of die.  The stamping parameters u5 and u10 represent 
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corner radius of punch and die respectively.  The stamping 
parameter u11 represents the blank holding force.  The 
computational time for the continuum-based sensitivity 
analysis per each stamping parameter is 2113 seconds, which 
corresponds to 5.3% of the response analysis time, and thus 
very efficient compared to the finite difference method.  The 
accuracy of the sensitivity results of vertical displacements 
after springback along the lines A-A′ and B-B′ with respect to 
stamping parameter u6 is compared with the finite difference 
results in Table 1.  Extremely accurate sensitivity results are 
obtained, as shown in Table 1. 
 

Table 1. Accuracy of design sensitivity results 
Perf. ψ Δψ ψ′×Δτ (Δψ/ψ′Δτ) 

×100 
Z109 -1.3555E-03 5.1913E-10 5.1989E-10 99.85
Z114 -5.2567E-03 -3.2754E-09 -3.2873E-09 99.64
Z119 -2.8827E-02 -3.2496E-09 -3.2619E-09 99.62
Z122 -3.7159E-02 4.4464E-10 4.4617E-10 99.66
Z125 -3.6658E-02 -3.2416E-10 -3.2346E-10 100.22
Z126 -3.7233E-02 -5.0735E-10 -5.0659E-10 100.15
Z131 -3.1223E-02 2.2928E-09 2.3064E-09 99.41
Z133 -2.1987E-02 2.2657E-09 2.2798E-09 99.39
Z138 -9.0185E-04 -2.4509E-10 -2.4106E-10 101.67
Z141 -6.2609E-04 -1.1656E-09 -1.1672E-09 99.86
Z142 -1.0870E-03 -3.4639E-10 -3.4813E-10 99.50
Z144 -1.3831E-05 -1.5467E-10 -1.5505E-10 99.76

 
The stamping process optimization problem is formulated 

to minimize the springback as 

  (55) 

( )
( )

before _ sb after _ sb
144 144
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109 109
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where before _ sb
144z  and  are vertical displacements at the 

left end of the blank sheet in Figure 11 before and after 
springback, respectively.  Similarly, 

after _ sb
144z

before _ sb
109z  and  are 

vertical displacements at the right end of the blank sheet 
before and after springback, respectively.  The initial values of 

after _ sb
109z

( )before _ sb
144 z_ sb before

144z −  and ( )before _ sbz − before _ sbz109 109  are 3.2 mm and 
2.7 mm, respectively.  Thus, the first constraint, which is 

imposed on the amount of springback at the right end of the 
blank sheet is violated significantly at the initial design of the 
manufacturing process.  This optimization formulation was 
used, instead of trying to minimize the spring back at both 
ends simultaneously, since it converged better in the 
optimization process.  The effective plastic strain constraints 
are imposed to limit the amount that may result in material 
failure or severe necking.  The maximum effective plastic 
strain at the initial stamping process is 0.188, which makes the 
initial stamping process satisfy the effective plastic strain 
constraints.  Limits of stamping parameters are established 
according to work piece geometry and kinematics.  Since the 
stamping parameters represent structure’s relative movements, 
the initial values are set to zero. 

The stamping process optimization problem is solved 
using the sequential linear programming method in DOT by 
providing the meshfree analysis results and design sensitivity 
computed using the proposed method.  As shown in Figure 
13, the optimization problem is converged in six iterations, 
which is quite fast considering the degree of high nonlinearity 
involved in the structural analysis.  The cost function, which is 
the spring back at the left end of the blank sheet, is reduced by 
75% (from 3.2 mm to 0.8 mm) during the optimization.  On 
the other hand, the springback at the right end of the blank 
sheet, which is the first constraint, is reduced significantly 
from 2.7 mm to 0.35 mm as shown in Figure 14.  The 
effective plastic strain constraints are also satisfied.  The 
design parameter history is given in Figure 15.  It is noticed 
that the corner radius of the die, u10, and the corner radius of 
the punch, u5, are significantly reduced.  It is also interesting 
to note that the blank holding force, u11, is decreased from the 
initial design, which in turn reduces the frictional force.  
Unlike some optimum design results of linear models, it is not 
easy to explain why these optimum stamping process 
parameters yield minimized springback. 

The deformed shape for the optimum manufacturing 
process is shown in Figure 16.  Over deflection of the initial 
stamping process around the blank holder area is significantly 
reduced in order to minimize the springback that is shown in 
Figure 11.  The vertical slope is also improved as compared to 
the initial stamping process. 

 
7. CONCLUSION 

A continuum-based design sensitivity analysis (DSA) 
method for the stamping process has been developed.  Since 
the proposed DSA method uses the same tangent stiffness as 
the analysis at the converged configuration of each time step, 
no iteration is required to solve the sensitivity equation.  
Consequently, DSA takes much less computational time than 
the nonlinear response analysis.  The sensitivity information is 
compared with finite difference results with excellent 
agreement.  The effectiveness of the proposed continuum-
based DSA method is demonstrated through optimization of 
the benchmark S-rail stamping process, where springback is 
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significantly reduced by determining optimal tool shape and 
blank holding force. 
 
8. ACKNOWLEDGEMENT 
This research is supported by a research grant from General 
Motors Corporation.  This support is gratefully acknowledged. 

 

 
Figure 13. Cost Function History of S-rail Forming 

 
 

 
Figure 14. Constraint History of S-rail Forming 

 
 

 
Figure 15. Design Parameter History of S-rail Forming 

 
 

 
Figure 16. Deformed Shape along A-A′ Before and After 

Springback of the Optimum Stamping Process 
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