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Sampling procedures are commonly used to estimate probability of failure in reliability-
based structural design. For estimating very low probabilities the number of required 
samples can be high, and the present paper suggests that this number can be reduced when 
the limit state (or failure criterion) is expressed as the difference of two functions of 
independent sets of random variables (e.g., capacity minus response). For this case of 
separable limit states, the sampling may be performed in two stages. First the cumulative 
distribution function (CDF) of one of the function created by sampling one set of random 
variables, and then the probability of failure is obtained by sampling the other set of 
variables using the CDF constructed in the first phase. The paper first considers simple 
Monte Carlo sampling, then incorporates tail-modeling for constructing the CDF. A simple 
example of two uniformly distributed variables is used for illustrating the method, and a 
beam problem is used to demonstrate its usefulness.  

Nomenclature 
a = lower bound of a uniform distribution 
b = upper bound of a uniform distribution 
CVp = coefficient of variation of probability of failure simulation 
c = capacity of a system 
Fc = cumulative distribution function of the capacity 
Fr = cumulative distribution function of the response 
Fx = random horizontal load on beam 
Fy = random vertical load on beam 
fc = probability density function of the capacity 
fG = probability density function of the limit state function 
fr = probability density function of the response 
fx = probability density function of the random variable, x 
G = limit-state function for probability of failure 
g = threshold value of tail model 
I = indicator function 
i = random variable index 
N = sample size 
Ng = number of tail data above the threshold 
Nmc = sample size of crude Monte Carlo simulation 
Nsmc = sample size of separable Monte Carlo simulation 
pf = actual probability of failure 
R = range of a distribution 
r = response of random input variables 
S = random applied stress on beam 
t = thickness of beam 
w = width of beam 
x = generic random variable 
x1, x2 = mutually independent random variable vectors 
Y = random yield strength of beam 
y = generic function 
z = distribution of random limit state values, G, above the threshold, g 
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α = inequality test of indicator function 
γc = ratio of failure region to the range of the capacity, for uniform distributions 
γr = ratio of failure region to the range of the response, for uniform distributions 
µ = mean of random variable 
σ = scale parameter of tail model 
σp = standard deviation of the average of N probability of failure simulations 
ζ = shape parameter of tail model 

I. Introduction 

P ROBABILITY of failure in reliability-based structural design are often estimated using sampling procedures. 
When estimating very low probabilities, the number of required samples can be high, thus Monte Carlo 

simulation (MCS) becomes a costly process. Several methods for predicting the probability of failure have been 
developed to relieve the simulation time burden. Importance sampling is a method that concentrates the random 
sample values to the region where failure occurs (Kalos and Whitlock, 1986). Though proven to be an effective 
alternative, importance sampling requires prior knowledge of the conditions for failure, which is not always 
available. As done by Qu et al. (2000 and 2004) and Kale et al. (2005), response surface approximation is a different 
method used to reduce computation time. Kim et al. (2006) used a technique called tail modeling to accurately 
predict the extreme tail of the limit state function using generalized Pareto distributions. Tail modeling required 
fewer samples since only the tail of the cumulative distribution function (CDF) was being fit.  

This paper considers a method that exploits the fact that in most structural problems, the failure condition may be 
written as response exceeding capacity, which are both functions of independent sets of random variables. For very 
safe structures, failure usually occurs when very high response happens for a structure with unusually low capacity 
(e.g., due to damage). The small probability of failure corresponds to a small portion, or extreme tail, of the limit 
state’s distribution. Each of the probabilities of high response and low capacity may not be extremely small, but 
when these occurrences are independent, the probability of both occurring simultaneously is the product of the two. 
Hence, when the response and capacity are independent, it may be possible to analyze them separately with a 
moderate sample size, and still be able to estimate very low probabilities of failure. Therefore, to bypass the 
requirement of sampling the extreme tail of the limit-state function, the variables could be considered independently, 
by separating the response and the capacity, as discussed by Melchers (1999). 

The objective of the present paper is to explore this possibility for the case where the response and capacity are 
controlled by two different sets of random variables, which we call a separable limit state. First, the a background on 
limit states, Monte Carlo sampling, and tail modeling is presented. Then separable Monte Carlo method (SMC) is 
explained and the formula for the probability of failure is derived from the definition of a mean of a function. The 
probability of failure equations for SMC was analyzed and profitable scenarios for implementation of SMC on limit 
states are discussed. An efficiency comparison of limit state Monte Carlo and separable Monte Carlo was performed 
using uniform distributions. Finally, a beam problem example was analyzed using variations on limit state and 
separable simulation methods to demonstrate the usefulness of SMC. Tail modeling was also considered for the 
beam problem to determine its effectiveness with both sampling methods.  

II. Limit States and Probability of Failure Calculations 
The limit state is the criterion evaluated to determine if failure occurs. We consider the special case when the 

limit state can be expressed as the difference between capacity, c, and a response, r. Furthermore, we assume that 
uncertainty in the response is due to one set of random variables, x1, and the uncertainty in the capacity is due to a 
second set of random variables, x2. The general limit state function for probability of failure calculations is shown in 
Eq. (1). 

1 2 1 2( , ) ( ) ( )G c r= −x x x x        (1) 

Therefore, the system fails when G < 0 and safe when G ≥ 0. The general form of the probability of failure is 
observed in Eq.(2), for when the limit state function is less than zero. 

0

( )G
G

p f Gf
<

= ∫ dG       (2) 
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Where, fG(G) is the probability density function (PDF) of the limit state function, G, which is integrated for 
values less than zero. Furthermore, for a small probability of failure, the domain of failure according to the limit 
state is very small and in the extreme tail of the PDF. Accurate modeling of tails requires either many Monte Carlo 
samples to obtain it analytically, or a more advanced technique, such as tail modeling. To relieve some of the 
computational costs, this paper investigates separable methodology on the limit state of two procedures for 
calculating the probability of failure: Monte Carlo method and tail modeling of the limit state function. 

A. Monte Carlo Sampling 
Monte Carlo simulation (MCS) is a random sampling technique used to determine information about functions 

of random variables, including mean, distributions, and, in this case, probability of failure. The standard Monte 
Carlo approach involves designating 0 or 1 for each run in the simulation, corresponding to pass or fail of the limit-
state function, respectively. Denoting the terms of Eq. (1) as ci = c(x1i) and ri = r(x2i), the probability of failure 
according using the limit state is 

1 ( , ) 0
1

N
p I G c ri if N i

 ≈ <∑  =
       (3) 

where, I[α] is the indicator function, which equals 1 if α is true and 0 if α is false. The capacity and response have a 
subscript, i, to represent the independent random sample value generated for each simulation, according to their 
respective distributions. Obviously, since only the sum of the number of failures is being averaged, a very large 
sample size is required to accurately predict a very small probability of failure. 

B. Tail Modeling 
Accurately modeling the extreme tail of a distribution is often difficult for complex distributions, or without 

using a very large number of samples. However, it is also very critical to estimate accurately since the tail is where 
failure occurs for low probability of failures. Kim et al. used a generalized Pareto distribution (GPD) to approximate 
the tail region of the limit-state function. Figure 1 displays the upper tail region of the cumulative distribution 
function (CDF) modeled by generalized Pareto distribution. Tail modeling approximates the CDF of limit-state 
function, G, above a designated threshold value, g, written as z = G - g.  

 

 
Figure 1. Tail modeling of F(G) using the threshold value of g 

 
The expression for the tail model using generalized Pareto distributions is 

1

,( ) 1 1 ( )gN
F G G g

N
ξ

ξ σ
ξ
σ

−

+

= − + −        (4) 

where, N is the total number of points sampled, Ng are the number of sample points above the threshold, and ξ and σ 
are shape and scaling parameters, respectively. The GPD parameters are determined using maximum likelihood, 
based on the N samples. The failure is defined by the limit state function when G < 0 and safe when G ≥ 0, therefore 
the probability of failure can be determined at G = 0. Rewriting Eq. (4), the probability of failure can be written as 

1

1g
f

N
p g

N
ξξ

σ

−
 = − 
 

      (5) 
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III. Calculations for Separable Limit States 
The calculation for the probability of failure using separable Monte Carlo (SMC) is similar to finding the mean 

of a function, y(x), where x is a random variable with a probability density function of fx(x). 

( ) ( )y xy x f x dxµ = ∫       (6) 

This equation forms the basis for SMC, because the probability of failure can be expressed (Melchers, pp. 31-49, 
1987) as 

( ) ( )f c r
Rr

p F r f r= ∫ dr       (7) 

where, Fc is the cumulative distribution function (CDF) of the capacity and fr is the PDF of the response; which are 
integrated over the range of the response, Rr. 

Rewriting the integral in terms of simulations yields 

1

1 ( )
N

f c i
i

p F
N =

≈ ∑ r       (8) 

Considering Eq. (8), it can be said for this method that sample values of the response are inserted into the CDF 
of the capacity, thus evaluating each response at the corresponding level of failure according to the capacity. 
Separable Monte Carlo method takes the average of the capacity’s CDF at randomly generated, different response 
sample values. Figure 2 graphically shows the process for an SMC simulation from Eq. (8).   

 
Figure 2. Transformation of the random response sample value in the capacity’s CDF 

 
Figure 2 is one run in the simulation, which is repeated N times using a new random number each run. The 

appealing aspect of this method of simulation is that a single run yields a much better estimate of the probability of 
failure, than does limit-state Monte Carlo. Separable Monte Carlo method can provide more than just a binary result 
of 0 or 1 for each run. Each run of SMC determines the probability of failure of a random response in the capacity. 
Alternately, the probability of failure can be expressed as evaluating the capacity in the cumulative distribution of 
the response, as in Eq. (9). 

( )1 ( ) ( )f r c
Rc

p F c f= −∫ c dc       (9) 

Or for simulations, 
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( )
1

1 1 ( )
N

f r i
i

p F
N =

≈ −∑ c     (10) 

This representation is the opposite of Eq. (8), in which the capacity is sampled at values of the CDF of the 
response. Depending on the scenario of the system, either Eq. (8) or Eq. (10) might be more effective when 
performing simulations to estimate the probability of failure. If the response has a small standard deviation or is 
deterministic, then the Eq. (8) form of SMC would require fewer simulations for the same level of accuracy than if 
Eq. (10) were applied. On the other hand, if the capacity has a smaller standard deviation, then Eq. (10) will more 
efficiently estimate the probability of failure. 

Of course, the key to taking advantage of Eq. (7) or Eq. (9) is the easy availability, or ease of generation, of the 
cumulative distribution. Fortunately, this is the case for many problems in structural design; where the CDF is 
determined analytically, which is often the case for the capacity. If that information is not directly known, then 
Monte Carlo sampling could be used to estimate the CDF. However this leads to a two-stage MCS, where sampling 
is done to obtain the CDF, then more sampling is required to determine the probability of failure. Another option is 
to us a combination of MCS and tail modeling to acquire the tail modeling parameters which estimate the CDF, as in 
Eq. (4). This paper will consider each of these scenarios in a beam problem example, presented in a later section. 

IV. Efficiency Comparison via Analytical Example 
To explore the efficiency of the two methods, expressions for the probability of failure and required sample size 

were derived for uniform distributions. For simplicity, assume that the random determinants of response and 
capacity produced a uniform distribution for each. Uniform distributions were chosen for convenience of 
calculations. Figure 3 shows a general scenario of probability of failure for two uniform distributions. 

 

 
Figure 3. General uniform probability density functions for response and capacity 

 
From Fig. 3, R is the range of the distribution, a is the lower bound, and b is the upper bound. Since the 

probability of failure will not be changed by translation or inflation of r and c, it is convenient to represent the 
distributions and their overlap by ratios γr and γc, as shown in Eq. (11). 

r c
r

r

b a
R

γ −
=  r c

c
c

b a
R

γ −
=         (11) 

The definition of these ratios only applies when the bounds of the two distributions remain in the same sequence 
shown in Fig. 3 (ar ≤ ac and br ≤ bc)  This implies that 0 ≤ pf  ≤ 0.5, which is most often the case in engineering 
situations. Through some derivation, which is attached in the appendix, the probability of failure was found in terms 
of γr and γc. 

1
2f r cp γ γ=     (12) 

A measure of the accuracy of a limit state Monte Carlo simulation can be quantified with the variance of the 
estimate. 

2 (1 )f f
p

p p
N

σ
−

=      (13) 
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As a way to express the cost of a simulation, Eq. (13) was rewritten in terms of the number of samples required, 
Nmc, to achieve a specified level of accuracy or coefficient of variation, CVp = σp / pf. 

2 2

(1 ) 1 2 1f
mc

r cf Vp Vp

p
N

p C C γ γ
−  

= = − 
 

        (14) 

This form better displays the inverse nature of sample size to probability of failure and the overlap ratios. 
Analyzing Eq. (14), it is apparent that for very small probability of failures, or very small γr and γc, a very large 
sample size is required. 

Similarly, the variance of the probability of failure calculation by SMC using Eq. (7) is given in Eq. (15).   

( )
22 ( ) ( )p c f r

Rr

F r p f r dσ = −∫ r       (15) 

The expression was again written in terms of required sample size and simplified by substituting Eqs. (11) and 
(12), resulting in Eq. (16). 

2
1 4 1

3smc
rVp

N
C γ

 
= − 

 
     (16) 

For completeness, the required sample size was also derived for the alternate separable Monte Carlo form from 
Eq. (9). 

2
1 4 1

3smc
cVp

N
C γ

 
= − 

 
     (17) 

Analyzing Eqs. (16) and (17) reveal that depending on the SMC method chosen, depends only on the variable 
being sampled. Additionally, both expressions for sample size of SMC are identical when the ranges of the response 
and capacity are equal. The efficiency analysis considers Eq. (16), where the response is sampled in the CDF of the 
capacity. The effect of γr and γc would just be reversed if Eq. (17) was used instead. 

Considering small probabilities, γr and γc are typically small, so the second term in Eqs. (14) and (16) may be 
neglected. Then after some manipulation of the equations, another descriptive formula for efficiency analysis is 
shown in Eq. (18). 

2 2
3

smc c
f

mc r

N p
N

γ
γ

=      (18) 

Dissecting the components of the equation shows when SMC is more efficient than standard Monte Carlo. First, 
the smaller the probability of failure gets, the smaller the number of samples are required for SMC with respect to 
limit state MC. Also, the method is advantageous when more of the uncertainty comes from the capacity rather than 
the response (γr > γc).  For example, when the response is deterministic, γr = 1. 

To graphically illustrate the effect of pf on both simulation methods, a plot of sample size vs. pf  was generated in 
Fig. 4. 
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Figure 4. Sample size of crude and separable MC for uniform distributions with CVp = 1% and γr = γc 

 
For a better representation of the advantage of SMC at small probability of failures, the ratio of sample sizes 

were compared in Fig. 5 versus the two terms of interest, pf and γc / γr. The actual plots use the ratio of Eqs. (19) and 
(20), whereas the estimated plots are from Eq. (21). 

Figure 5. Actual and estimated ratio of separable to limit state MC sample sizes for uniform distributions 
with CVp = 1% a) versus pf  with γc / γr = 1 and b) versus γc / γr with pf  = 10-6 

 

V. Beam Problem Example 
The cantilever beam problem presented by Kim et al. was considered to demonstrate separable Monte Carlo 

application. As shown in Figure 6, a beam with length, L, width, w, and thickness, t, is subjected to random 
horizontal and vertical loads, Fx and Fy, respectively. The width and thickness were taken as deterministic values of 
2.453in and t = 3.884in, respectively. 
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Figure 6. Cantilever beam subjected to random horizontal and vertical random loads 

 
The probability of failure calculations are based on the strength limit-state function given in Eq. (19) along with 

the random variables’ distributions in Table 1. 

2 2
600 600( , ) x yG Y S S Y F F Y
w t wt

 = − = + − 
 

        (19) 

Table 1. Distributions of random variables in cantilever beam problem 

 
 

In this problem, the capacity is yield strength, Y, and the response is the applied stress S. The probability of 
failure of the cantilever beam system was found in the previous work and verified to be nominally 0.00134. The next 
two sections evaluate the accuracy of predicting the probability of failure through five methods. First, the probability 
of failure was determined through standard Monte Carlo simulations using the limit state method from Eq. (3). Then 
separable Monte Carlo was used in both directions, response into capacity and capacity into response, as discussed 
in Eqs. (8) and (10). The final two methods of determining the probability of failure was based on tail modeling. The 
tail model was first considered for the limit state of the beam stress, as performed by Kim et al. (2006) (Eq. (5)). The 
other use of tail modeling involved separable Monte Carlo methods to separate the response and capacity. Since the 
tail model only estimates the CDF above the threshold, the value of g was fixed at about the 95% level, to ensure 
equal analysis of both methods with different sample sizes. In other words, the tail model estimated the top five 
percent of the CDF of the limit state and response.  

For separable Monte Carlo, one of the random variables must be chosen for the CDF and the other chosen for the 
PDF. Since the probability density function of the capacity is easily obtained from the given information, a tail 
model was generated for the CDF of the response. Given this choice of CDF and PDF, Eq. (9) was used to calculate 
the probability of failure as 

[ ] ,1 ( ) ( ) 1 ( ) ( )
g

f r A c r c
g

p F c f c dc F c f c dcξ σ

∞

−∞

 = − + − ∫ ∫         (20) 

Since more than just the upper five percent estimate of the CDF from tail modeling was required, Arena® 
software was used to estimate the CDF below g, labeled as Fr(c)A. This is a safe estimate that still emphasizes tail 
modeling, because Arena® can model the middle part of the CDF well, however the tail is more difficult. Therefore 
tail modeling was used for the part of the integral above the threshold  
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Table 2 presents the coefficient of variation of the five probability of failure calculation methods, for different 
sample sizes.  

 
Table 2. Coefficient of variation (%) of probability of failure from beam example 

N Limit state 
MCS  

SMC simulation    
(R into C) 

SMC simulation    
(C into R) 

Tail model of   
limit-state  

Tail model of response 
(C into R) 

103 87.65 33.30 13.49 - 26.92 

104 27.72 11.37 2.59 19.55 10.47 

105 8.76 4.44 1.12 7.30 2.19 

106 2.77 1.64 0.44 1.72 0.95 

 
Referring to the standard limit state MCS results in the table, to obtain one failure, at least 103 simulations must 

be performed for pf = 0.00134, nominally. The separable Monte Carlo, where the capacity was sampled in the CDF 
of the response was the most efficient method in this example, since the capacity had a smaller standard deviation, 
or was closer to deterministic. This form of SMC obtained about the same lever of accuracy as standard Monte 
Carlo with two orders of magnitude fewer samples (104 vs. 106). Using separable Monte Carlo in conjunction with 
tail modeling was slightly less accurate than without tail modeling. This result is likely due to the uncertainty 
involved with estimating the tail modeling parameters, ξ and σ, and from using two different CDFs (one from 
Arena® and one from tail modeling. The tail modeling of the limit state however, was more accurate than just limit 
state MCS.  

There are two factors that could have been considered to better isolate and emphasize the differences in each 
method. First, tail modeling is most effective for complicated distributions; however, the response in this case was 
simply normal. This resulted in the known expression of a normal CDF modeling the distribution better than the tail 
modeling estimate. If the response was a complicated distribution, then the tail modeling should have increased the 
effectiveness of SMC. The second factor is the lack of consideration of the variability in sampling for estimating the 
parameters of the response’s normal distribution. Though this factor is expected to be quite small, it would have 
increased the coefficient of variation of the probabilities of failure calculated with the CDF of the response. 

VI. Conclusions 
A separable method was applied to limit states to separate the response and capacity. Standard limit state Monte 

Carlo was compared for efficiency to separable Monte Carlo simulation methods using uniform distributions. 
Simplified forms of the probability of failure and sample size equations were developed using ratios of the overlap 
region of the uniform distributions to the ranges of response and capacity, respectively. The simplified form of the 
required sample size using separable Monte Carlo to the standard method was proportional to the probability of 
failure and a ratio of the standard deviations of the capacity and response. It was observed that the advantage of 
using separable Monte Carlo is greatest for very small probability of failures. Both simulation methods were then 
applied to a beam problem. The selection of the appropriate cumulative distribution function is important in 
separable methods, which depends on the nature of the random variables. The CDF was obtained analytically, 
through Monte Carlo sampling, and tail modeling. The most effective simulation method for the beam problem was 
separable Monte Carlo when the capacity was sampled in the CDF of the response. Tail modeling also improved the 
efficiency of the limit state analysis.  

 
American Institute of Aeronautics and Astronautics 

 

9



Appendix 
Derivation of Sample Size Expressions for Uniform Distributions 

Equation Section (Next) 
Uniform distributions were chosen for convenience of calculations.  Figure A1 shows a general scenario of 

probability of failure for two uniform distributions. 
 

 
Figure A1. General uniform probability density functions for response and capacity 

 
From Fig. A1, R is the range of the distribution, a is the lower bound, and b is the upper bound.  Since the 

probability of failure will not be changed by translation or inflation of r and c, it is convenient to represent the 
distributions and their overlap by ratios as shown on Fig. A2. 

 

 
Figure A2. General uniform PDFs for 0 ≤ pf  ≤ 0.5, showing ratios of ranges 

 
The ratios described are labeled γr and γc, and are given as 

r c
r

r

b a
R

γ −
=  r c

c
c

b a
R

γ −
=        (A1) 

Figure A2 only applies when the bounds of the two distributions remain in the same sequence shown in Fig. A1 
(ar ≤ ac and br ≤ bc).  This implies that 0 ≤ pf  ≤ 0.5, which is most often the case in engineering situations. The 
derivations will show detail for the separable method when the response is sampled in the CDF of the capacity, 
shown in Eq. (A2).  

( ) ( )f c r
Rr

p F r f r= ∫ dr      (A2) 

The alternate method has a nearly identical derivation, so only the result is provided. To better understand the 
scenario in which separable Monte Carlo is being applied, the cumulative distribution function of the capacity for 
the uniform distribution is shown in Fig. A3.   
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Figure A3. CDF of the capacity for ar ≤ ac and br ≤ bc (0 ≤ pf  ≤ 0.5) 

 
An expression of the probability of failure from Eq. (A2) is 

( )2
1

2( )( ) 2

br
c rc 1

f r c
r r c c r r c car

a br ap dr
b a b a b a b a

γ γ
−  −

= = − − − −  ∫ =         (A3) 

A measure of the accuracy of a Monte Carlo simulation can be quantified with the variance of the estimate. 

2 (1 )f f
p

p p
N

σ
−

=      (A4) 

Therefore, to achieve a given variance, σp
2, with CMC requires Nmc samples. The relative error is given by the 

coefficient of variation, CVp = σp / pf.  Rewriting Eq. (A4), 

2

(1 )f
mc

f Vp

p
N

p C
−

=       (A5) 

Simplifying further, Eq. (A3) can be used for pf to obtain 

2
1 2 1mc

r cVp
N

C γ γ
 

= − 
 

     (A6) 

Next, an expression for the required sample size of separable Monte Carlo will be derived. Based on the variance 
of the probability of failure calculation for SMC is given as 

( )
22 ( ) ( )p c f r

Rr

F r p f r dσ = −∫ r       (A7) 

Referring to Fig. A3, the separable Monte Carlo variance now becomes 
 

2
2 1 1

br
c

p
r r c car

r a p d
N b a b a

σ
   −

=   − −   ∫ f r−         (A8) 
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Integrating and solving for the sample size yields 

3
2 3

2
1 1 ( )

3
c c r c

smc f c r f f
r r c cp

b a b aN p a a p
b a b aσ

     − − = − + −    − −      
p +        (A9) 

 
The expression can be considerably simplified by substituting in the ratios from Eqs. (A1) and (A3). 

Additionally, the variance is replaced by the coefficient of variation, resulting in Eq. (A10). 
 

2
1 4 1

3smc
rVp

N
C γ

 
= − 

 
     (A10) 

Similarly, for the alternate form of SMC where the capacity is sampled in the CDF of the response, the required 
sample size is 

2
1 4 1

3smc
cVp

N
C γ

 
= − 

 
     (A11) 
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