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This paper presents an approach for the reliability–based design optimization of highly 

safe structural systems where a tail–model is used for computing the reliability constraint 

during design optimization.  It is generally accepted that using central models (e.g., moment–

based method or stochastic response surfaces) for estimating large percentiles such as those 

required in reliability constraint calculations can lead to significant inaccuracies in the result.  

The tail–model is an adaptation of a powerful result from extreme value theory in statistics 

related to the distribution of exceedances.  The conditional excess distribution above a 

certain threshold is approximated using the generalized Pareto distribution (GPD).  The 

shape and scale parameters in the GPD are estimated using the least–square method.  The 

tail–modeling technique is utilized to approximate the performance measure in inverse 

reliability analysis.  The accuracy and convergence properties are studied using an analytical 

function.  The effectiveness and efficiency of the proposed approach are demonstrated using 

benchmark problems in structural design under uncertainty. 

I. Introduction 

HEN a system contains uncertainty in input parameters, the performance function of the system also shows a 

probabilistic characteristic.  In reliability analysis of structural systems, the cumulative distribution of the 

performance function is one of the most important criteria in determining the safety level of the system.  In 

evaluating the reliability of the system, engineers are often interested in the probability of failure of the performance 

function.  Many techniques have been to proposed to model the probability of failure, such as moment matching 

method (Parkinson et al., 1993), first–order reliability method (Enevoldsen and Sorensen, 1994), Monte Carlo 

simulation (Qu et al., 2003), stochastic response surface (Kim et al., 2004), and worst–case analysis (Sundaresan et 

al., 1993).  All methods have their own advantages and disadvantages in terms of accuracy, computational cost, and 

robustness. 

Reliability–based design optimization (RBDO) involving a computationally demanding model has been limited 

by the relatively high number of simulations required for evaluating the reliability constraints, in particular, for 

highly safe structural systems (e.g., three–sigma and six–sigma designs).  Traditional approaches based on Monte 

Carlo methods for these tasks often fail to meet constraints (computational resources, cost, time, etc.) typically 

present in industrial environments.  To overcome this issue, several approaches have been proposed, including 

moment–based methods, response surface methods, and stochastic response surface methods.  The moment–based 

methods (FORM, SORM) approximate the uncertainty propagation to be a linear or quadratic relation.  The 

construction of stochastic response surfaces (e.g., polynomial chaos expansion) coupled with Monte Carlo methods 

has been proposed; see, for example, Kim et al. (2004). 

Even though the stochastic response surface method provides an efficient approach for uncertainty quantification, 

it has the drawback that it represents a central model and not those required (namely, tail–models) for evaluating 

reliability constraints where the interest lies in the occurrence of rather exceptional events.  It is generally accepted 
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that using central models (e.g., stochastic response surfaces) for estimating large percentiles such as those required 

in reliability constraint calculations can lead to significant inaccuracies in the RBDO results (e.g., Maes and Huyse, 

1995). 

This paper presents an RBDO approach for highly safe structural systems where the reliability constraint is 

computed from rather general tail–models available from extreme value theory in statistics (Castillo, 1988).  The 

conditional excess distribution above a certain threshold is approximated using the generalized Pareto distribution 

(GPD).  The parameters in GPD are calculated using either the maximum likelihood or the least square method.  By 

incorporating the tail–modeling technique with the probability of failure, the reliability analysis and optimization of 

a structure can be solved with highly safe reliability constraints.  The proposed method does not approximate the 

functional expression of the model output; rather approximates the tail of the cumulative distribution.  Thus, it has 

an advantage of the system reliability analysis and design in which no single form of functional expression is 

available. 

The paper is structured as follows.  In Section 2, the tail of the cumulative distribution function is modeled using 

the generalized Pareto distribution.  The application of the tail–model to the reliability analysis and inverse 

reliability analysis is presented in Section 3.  The RBDO framework using the tail–modeling technique is presented 

in Section 4.  Two numerical examples are presented in Section 5, followed by conclusions in Section 6. 

II. Tail Modeling and Generalized Pareto Distribution 

The cumulative probability distribution of a random variable associated with reliability constraints in RBDO can 

be viewed as consisting of three parts: a lower tail, a central part, and an upper tail.  Identifying a probabilistic 

model for large (extreme) values of the random variables is then a key for a more accurate evaluation of the 

reliability constraints.  At this point, the extreme value theory in statistics can prove very helpful as it provides a 

powerful result related to the distribution of exceedances called generalized Pareto distribution (Pickands, 1975) that 

can be adapted for solving the problem of interest. 

The fundamental idea of the tail–modeling technique stems from the property of tail equivalence.  Two 

distribution functions ( )F x  and ( )G x  are called tail equivalent (Maes and Breitung, 1993) if  

 
1 ( )

lim 1
1 ( )x

F x

G x





. (1) 

As far as the extreme behaviors of the two distributions are equivalent, the tail–model of ( )F x  can be used to 

approximate the upper (or lower) tail of ( )G x .  This approach does not take into account the central behavior of the 

distribution.  Rather, it focuses on the upper or lower tail behavior, which fits for the purpose of structural reliability 

analysis. 

Let x  be the vector of input random variables.  Due to the uncertainty propagation, the performance function, 

( )y x , also shows random distribution.  Let the performance function be a random variable and g  be a large 

threshold of y  (see Figure 1).  For the region that y  is greater than g , the GPD represents a rather general 

approximation of the conditional excess distribution ( )gF z  where z y g  ; that is, the distribution of values of 

random variable y  above the threshold g .  Specifically, a theorem from extreme value theory establishes that for 

large values of g , the conditional distribution ( )gF z  can be well approximated by: 

 
,

ˆ( ) ( )gF z F z  , (2) 
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In Eq. (3), max(0, )A A

  and 0z  .  

,
ˆ ( )F z   in Eq. (3) is called the generalized Pareto distribution (GPD), and 

  and   are the shape and scale parameters, respectively, which need to be determined.  Note that the conditional 

excess distribution ( )gF z  is related to the cumulative distribution of interest ( )F y  through the following expression: 

 
( ) ( )

( )
1 ( )

g

F y F g
F z

F g





. (4) 

 

  

 Figure 1: Tail–modeling of ( )F y  using the threshold value of g . 

  

 Figure 2: Generalized Pareto distributions for different shape parameters. 

 

The flexibility of the GPD in Eq. (3) can be examined by changing its parameters and plotting the distribution 

above the threshold.  Figure 2 shows the different cumulative distributions that are generated from the GPD when 

the scale parameter,  , is fixed to one, and the threshold, g , is selected such that ( ) 0.98F g  .  When the shape 

parameter 0  , it represents the heavy tail behavior, such as Pareto distribution.  On the other hand, when 0  , 

it represents the light tail behavior, such as the beta distribution.  Note that the uniform distribution can also be 

modeled using 1   . 

Tail–modeling can be performed in three stages.  First, a set of samples of the random performance function is 

generated.  A Monte Carlo simulation or a Latin Hypercube Sampling is often used for this purpose.  In structural 
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problems, the samples of the input random variables are first generated from the given distribution types.  The 

samples of the random performance function are then calculated through the structural analysis.  However, tail–

modeling is not limited for the case when the distribution types of input random variables are known.  As far as the 

samples of the random performance function can be obtained, either from analysis or experiment, this method can be 

applied. 

Second, a threshold value, g , is selected from the distribution of the performance function y .  The appropriate 

value g , that is, the specification of the beginning of the upper tail, has been the subject of extensive research, and 

empirical values for it have been proposed (e.g., Boos, 1984; Hasofer, 1996; Caers and Maes; 1998).  In Hasofer 

study, for example, the use of 1.5gN N  is suggested where 
gN  is the number of data that belong to the tail part 

and N  is the total number of data.  In this paper, the CDF ( )F g  of the threshold is prescribed, from which g  and 

gN  can be obtained.  This method works better because interest region is given in terms of the probability of failure. 

Last, the shape and scale parameters in the GPD are estimated by fitting the tail–model with the empirical CDF.  

Prescott and Walden (1980) and Hosking (1985) used the maximum likelihood method to estimate the parameters.  

In this paper, the least square method is employed to estimate the two parameters, in which the error between the 

tail–model and the empirical CDF is minimized by 

 
2

minimize ( , )
g

N

i i

i N N

p F y  
 

    , (5) 

where the empirical CDF is given by  

 
0.5

, 1, ,i

i
p i N

N


   . (6) 

Note that only the tail part of the data is used in estimating the parameters.  A new method will be introduced to 

estimate the tail parameters using the inverse measure in the following section. 

In general, two sources of errors are involved in tail–modeling: (a) lack of modeling capability, and (b) errors in 

random sampling and in the empirical CDF.  The former is related to the flexibility of the tail–model in representing 

various tail behaviors, and the latter is related to the number of samples and to the appropriate selection the 

threshold.  The effects of these two sources of errors will be discussed in the numerical examples. 

III. Reliability Analysis Using Tail–Modeling 

Reliability analysis in structural problems often means the evaluation of the probability of failure.  In this section, 

the tail–model will be used to calculate the probability of failure analytically.  In addition, the inverse reliability 

analysis can easily be performed because the analytical expression of the reliability is available.  The accuracy and 

convergence of the tail–model will be discussed using various distribution types.  

A. Probability of Failure 

In structural reliability analysis, the probability of failure, fP , is often used as a constraint, so that it should be less 

than the prescribed target probability of failure, ,targetfP .  An analytical expression for the constraint value is now 

developed in three steps based on the GPD approximation and the available data.  First, an explicit expression for 

( )F y  is obtained from Eq. (4), as 

 ( ) [1 ( )] ( ) ( )gF y F g F z F g   . (7) 

Second, in the above expression ( )gF z  is substituted by the corresponding GPD in Eq. (3), and for the prescribed 

( )F g , the threshold is interpolated using 

   1

1 1

1

( ) j

j j j

j j

F g p
g y y y

p p



 




  


, (8) 

where jp  is the empirical CDF from Eq. (6).  After the substitutions, ( )F y  can be written as: 
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  

1

( ) 1 1 ( ) 1 ( )F y F g y g








     . (9) 

When the performance function, y , is defined such that the structural system is failed when 0y   and safe 

when 0y  , the probability of failure can be written as 

  

1

: 1 ( 0) 1 ( ) 1 )fP F y F g g








      . (10) 

Equation (10) provides an analytical expression of the probability of failure, which can be directly used in 

evaluating the constraints in RBDO. 

The estimation of the probability of failure in Eq. (10) is only valid when the threshold 0g  , which means that 

1 ( )fP F g  .  Equivalently, the limit state ( 0)y   must belong to the tail part.  When the safety margin of the 

structural system is small, the probability of failure does not belong to the tail part, and the above formula cannot be 

used for estimating the probability of failure.  The requirement of the structural safety is usually given in the range 

of small probability of failure so that the above requirement is satisfied.  During the process of design optimization, 

however, it may be possible that a design may produce a relatively unsafe configuration.  In such a case, a special 

treatment is required to estimate the probability of failure below the threshold.  However, the estimation does not 

have to be accurate because it is not the final design. 

B. Reliability Index and Inverse Reliability Analysis 

In reliability–based design optimization, two methods are often referred: the reliability index approach and the 

performance measure approach, or often called the inverse measure approach.  An inverse measure is the value of 

the performance function that corresponds to the given value of the probability, while a reliability index is the index 

of the standard normal distribution, corresponding to the specific value of the performance function.  These two 

approaches work well with the first–order reliability method (FORM), where the performance function is assumed 

to be normally distributed after linearization. 

For the estimated probability of failure in Eq. (10), the reliability index,  , can be calculated using 

 1( )fP   , (11) 

where ( )   is the CDF of the standard normal random variable.  The reliability constraint is then imposed using the 

reliability index, as 

 1

target ,target: ( )fP     , (12) 

where target  is the target reliability index that corresponds to the target probability of failure, ,targetfP . 

On the other hand, the inverse measure approach calculates the value of the performance function, 
*y , 

corresponding to the target probability of failure. Using tail–modeling in Eq. (10) with ,targetf fP P , the inverse 

measure can be obtained by 

 
,target* ( , ) 1

1 ( )

fP
y g

F g




 



  
    

   

. (13) 

The reliability constraint is then imposed using the performance function as 

 
* 0y  . (14) 

When the tail is heavy, i.e., 0  , the above formula can be used to find the value of the performance function 

* ( )y g  that has probability of failure fP .  On the other hand, when the tail is light, i.e., 0  , the value of the 

performance function can be found up to 
* /y g    , at which 0fP  . 
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In the view of the inverse measure approach, it is possible to formulate the least square method in Eq. (5) in 

terms of the performance function, as 

 
2

*minimize (1 ) ( , )
g

N

i i i

i N N

p y y  
 

    , (15) 

where (1 )ip  is used for the weight. 

In the literature (Lee et al., 2002; Youn et al., 2003), it has been presented that the inverse measure approach is 

more stable than the reliability index approach.  When the probability of failure is zero, the latter shows a singularity.  

The difficulty in the reliability index approach is related to the transformation in Eq. (11).  The reliability index 

approaches to the value of infinity as the probability of failure is reduced.  Thus, it is difficult to calculate the 

reliability index when the target reliability is far from the failure surface.  On the other hand, the inverse reliability 

analysis always yields a finite value of performance function that satisfies the target reliability.  Ramu et al. (2004) 

presented an inverse measure, called probabilistic sufficiency factor (PSF), when sampling–based methods are used. 

C. Accuracy and Convergence Study 

In order to see the capability of tail–modeling, a simple function, y x , is considered with x  being a random 

variable with various distribution types.  The error related to random sampling is removed by using the Latin 

Hypercube sampling with equal space on the probability scale: ( 0.5) /ip i N  .  The sampling points can be found 

using the inverse CDF.  First, 500N   samples are generated using the Latin Hypercube sampling method, and then 

sorted in the ascending order.  The threshold is selected at ( ) 0.95F g  , and corresponding threshold value is found 

through the interpolation in Eq. (8).  Using the data above g , two parameters are estimated using the least square 

method, as in Eq. (5).  Using the estimated parameters, the inverse measure (performance function) are calculated 

for a given target probability of failure using Eq. (13).   

The accuracy of the inverse measures from tail–modeling is compared with that from the exact CDF in Table 1.  

Based on the results at 4

,target 10fP  , the tail model is accurate for light tails, such as beta distribution, and 

relatively inaccurate for the heavy tails, such as lognormal distribution.  It fact the error in the gamma distribution 

increases as the first parameter is increased, in which the distribution approaches to the normal distribution.  The 

results in Table 1 are repeatable because the equal space on the probability scale is used in the Latin Hypercube 

sampling (lhsdesign function in MATLAB).  In such a case, the empirical CDF is given by ( 0.5) /ip i N  .  It is 

observed that the percent error in Table 1 remains constant when the standard deviation of the distribution is 

changed.   

 

Table 1: Tail–modeling accuracy of the inverse measure for various distributions (N = 500, 
4

,target 10fP  ) 

Distribution 
*

exacty  
*

taily  Error  in y  (%) 
fP  Error in fP  (%) 

Normal (0,1) 3.7190 3.5578   4.335E+0 3.878E−5   6.122E+1 

Lognormal (0,1) 41.2238 44.8401 –8.772E+0 1.336E–4 –3.357E+1 

Exponential (1) 9.2103 9.2184 –8.700E–2 1.008E−4 –8.020E–1 

Uniform (0,1) 0.9999 0.9999 –5.272E–11 1.000E–4 –5.271E–7 

Gamma (1,1) 9.2103 9.2184 –8.700E–2 1.008E−4 –8.020E–1 

Weibull (2,1) 18.4207 18.4367 −8.700E−2 1.008E−4 −8.020E−1 

Beta (1,2) 0.9900 0.9900 –4.948E–3 1.010E–4 –9.806E–1 

 

The errors in Table 1 are contributed from the lack of modeling capability of the tail–model.  Even if the number 

of sampling is dramatically increased, the errors will not change significantly.  For example, when 10
6
 sampling 

points are used, the tail–model for the normal distribution still has 4.412% error.  Figure 3 further illustrates the 

modeling errors of the probability of failure compared with the exact values.  Except for normal and lognormal 

distributions, all other distributions show good agreements.  It turns out that the normal distribution overestimates 

the probability, while the lognormal distribution underestimates it. 

The tail-model in Table 1 is based on the threshold that corresponds to the CDF of ( ) 0.95F g  .  It is possible 

that the selection of the threshold may affect the accuracy of the tail–model.  In order to see the effect of the 
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threshold, the value of ( )F g  is selected between 0.90 and 0.98 for the normally distributed one.  Table 2 presents 

the percent error of the inverse measure at different target probability of failure with different threshold values.  It is 

noted that the accuracy is improved as the threshold is close to one.  However, it is necessary to ensure that enough 

number of points should be included above the threshold, so that the lease square optimization in Eq. (5) is stable 

and robust. 

  

 Figure 3. Comparison of probability of failure for various distribution types 

 

 Table 2: Effect of threshold in tail–modeling (normal distribution, percent error of the inverse measure) 

,targetfP  10
−2

 (y = 2.326) 10
−3

 (y = 3.090) 10
−4

 (y = 3.719) 10
−5

 (y = 4.265) 10
−6

 (y = 4.753) 

F(g) = 0.90   1.86E−1 3.33E+0 8.24E+0 1.36E+1 1.88E+1 

F(g) = 0.91   1.04E−1 2.90E+0 7.49E+0 1.26E+1 1.77E+1 

F(g) = 0.92   3.73E−2 2.48E+0 6.73E+0 1.16E+1 1.65E+1 

F(g) = 0.93 −1.43E−2 2.06E+0 5.95E+0 1.06E+1 1.53E+1 

F(g) = 0.94 −4.90E−2 1.65E+0 5.16E+0 9.45E+0 1.39E+1 

F(g) = 0.95 −6.51E−2 1.26E+0 4.34E+0 8.27E+0 1.25E+1 

F(g) = 0.96 −6.06E−2 8.77E−1 3.48E+0 7.00E+0 1.09E+1 

F(g) = 0.97 −3.49E−2 5.20E−1 2.58E+0 5.59E+0 9.06E+0 

F(g) = 0.98   4.17E−3 1.98E−1 1.59E+0 3.94E+0 6.82E+0 

 

Next, the error related to random sampling and empirical CDF is tested using the same function.  In order to see 

the uncertainty related to the sample size, the previous study is repeated for different number of samples.  Instead of 

using the equally spaced CDF in the Latin Hypercube sampling, a random sampling method in the uniform interval 

is used.  Accordingly, the sampling method will produce uncertainty.  Table 3 summarizes the convergence study 

results according to the number of samples.  Each data is obtained from 500 repetitions.  The mean values of the 

errors are not reduced as the number of samples is increased, but the standard deviations are.  In order to obtain the 

same level of standard deviation at N = 500 and 
4

,target 10fP  , more than 67 10  sampling points will be required in 

the Monte Carlo simulation.  Figure 4 shows the empirical CDF and the tail–model of the normally distributed 

function when N = 500. 
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Table 3: Convergence study of tail–modeling errors for normally distributed function (percent error of the inverse 

measure) 

,targetfP  
10

−2
 (y = 2.326) 10

−3
 (y = 3.090) 10

−4
 (y = 3.719) 

Mean Stdv Mean Stdv Mean Stdv 

N = 100 −6.7984E−2 5.4947E−2 7.4895E−1 5.6264E−1 3.2011E+0 1.2126E+0 

N = 200 −6.0369E−2 2.0830E−2 1.1909E+0 1.6473E−1 4.1786E+0 3.3356E−1 

N = 500 −6.2226E−2 8.9495E−3 1.2759E+0 5.4919E−2 4.3709E+0 1.0366E−1 

N = 1000 −6.2146E−2 3.6247E−3 1.2903E+0 2.2619E−2 4.4024E+0 4.2405E−2 

N = 5000 −6.2235E−2 3.2867E−4 1.2942E+0 2.0410E−3 4.4113E+0 3.8114E−3 

 

  

 Figure 4. Cumulative distribution of normally distributed function from tail–modeling 

 

IV. Reliability–base Design Optimization – Problem Formulation 

In order to illustrate the use of tail–modeling in the RBDO framework, a simple optimization formulation 

(Enevoldsen and Sorensen, 1994) is discussed in this section.  The cost function is assumed to be easily evaluated 

using the mean values of random variables and the constraints are defined using probabilistic distributions of the 

performance functions.  Specifically, consider the following form of the RBDO problem: 

 
,target

minimize ( , )

subject to ( ( , ) 0) f

L U

c

P y P 

 

x d

x d

d d d

, (16) 

where x  denotes the vector of random variables, d  represents the design variables, and ( , )c x d  identifies the cost 

function evaluated using the mean values.  The system performance criterion is described by the performance 

functions ( , )y x d  such that the system fails if ( , )y x d 0 .  Using the tail–model in Eq. (10), the probability 

constraint can be calculated by 

    

1

,target( , ) 0 1 ( ) 1 fP y F g g P








    x d . (17) 
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The prescribed failure probability limit 
,targetfP  is often represented by the reliability target index as 

1

target ,target( )fP   , where   is the cumulative distribution function of standard normal random variable.  In the 

reliability index approach, the reliability constraint in Eq. (17) is imposed using Eq. (12).  In the performance 

measure approach, on the other hand, it is imposed using Eq. (14). 

In many engineering applications, the target reliability index is usually greater than 3.0, which corresponds to 

0.13% of the distribution. Thus, tail–modeling is important to accurately estimate the probability in this region. 

V. Numerical Example 

Consider the cantilevered beam design problem, shown in Figure 5 (Wu et al., 2001).  The objective is to minimize 

the weight or equivalently the cross sectional area, A w t  , subject to two reliability constraints, which require the 

reliability indices for strength and deflection constraints to be larger than three.  The expressions of two performance 

functions are given as 

Strength:  
2 2

600 600
s X Yy S R F F R

w t wt

 
     

 
 (18) 

Tip Displacement:  

2 23

2 2

4 Y X

d O O

F FL
y D D D

Ewt t w

   
       

   
 (19) 

where R  is the yield strength, XF  and YF  are the horizontal and vertical loads and w  and t  are the design 

parameters.  L  is the length and E  is the elastic modulus.  , , , andX YR F F E  are random in nature and are defined 

in Table 4. 

  

 

 Table 4: Random variables for the cantilevered beam problem 

Random 

Variable 
FX FY R E 

Distribution 
Normal 

(500,100)lb 

Normal  

(1000,100)lb 

Normal  

(40000,2000) psi 

Normal  

(29E6,1.45E6) psi 

 

In order to model the tail part of the cumulative distribution of the stress function, 1,000 samples are used with 

the upper part of tail is modeled using ( ) 0.95F g  .  Optimization sub-problem is solved to find the shape and scale 

parameters that minimize the error between the empirical CDF and the CDF from the proposed tail–modeling. After 

that, the probability of failure is calculated from Eq. (10). 

Design optimization problem is formulated and solved to minimize the weight of the cantilevered beam subject 

to the probability of failure of stress being less than 0.00135 ( 3.0)  .  Figure 6 shows the history of objective 

function (cross-sectional area) during design optimization.  Since the initial design (w = 1 and t = 2) violates the 

constraint significantly, the objective function increases at first four iteration.  Table 5 shows the optimization 

results.  The results are also compared with other methods using FORM and MCS.  Figure 7 shows the tail–model at 

the optimum design. 
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Figure 5: Cantilever beam subjected to horizontal and vertical random loads 



 

American Institute of Aeronautics and Astronautics 

 

10 

 Table 5: Optimization results of the beam problem 

 FORM 

(Ramu, 2004) 

MCS 

(Qu, 2003) 
Tail model 

 – – –0.171 

 – – 1,671 

Width (w) 2.446 2.453 2.455 

Height (t) 3.892 3.884 3.843 

Obj. fn (wt) 9.520 9.527 9.435 

Cons. fn  (y*) – – –6.68E-6 

 3.00 3.016 3.000 

Pf 0.00135 0.0013 0.00135 

 

  

 Figure 6: History of objective function during optimization. 

  

 Figure 7: Tail–modeling result at the optimum design. 
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VI. Conclusions 

A tail–modeling technique is utilized to estimate the high reliability of structural systems.  The tail–modeling 

allows to focusing on the behavior of the tail with equivalent tail behavior.  The generalized Pareto distribution 

provides a convenient tool for estimating high probability data with much less number of samplings than the 

conventional Monte Carlo simulation.  Difficulty in convergence for the gradient-based optimization algorithm (all 

sampling-based methods) requires further research in this field. 
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