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A concept of safety envelope for load tolerance is introduced, which shows a capacity of 

the current design, a future reference for design upgrade, maintenance and control. The 

safety envelope is applied to estimate load tolerance of a structural part with respect to the 

reliability of fatigue life. First, the dynamic load is decomposed into the average value and 

amplitude, which are modeled as random variables. Through the fatigue analysis and 

uncertainty propagation, the reliability of fatigue life is calculated for a given distribution of 

random variables. The effect of different distribution types of random variables is 

investigated. In order to improve finding the boundary of the envelope, sensitivity 

information is utilized. When the relationship between the safety of system and applied loads 

is linear or mildly nonlinear, linear estimation of the safety envelope turns out to be efficient. 

During the application of the algorithm, a stochastic response surface of fatigue life with 

respect to load capacity coefficient is constructed, and Mote Carlo Simulation is used to 

calculate the reliability and sensitivities. 

Nomenclature 

 f = load history 

 G = system response 

 ,  = load capacity coefficients 

  = reliability index 

 Pf = probability of failure 

  = mean 

  = standard deviation 

 T = transformation from any random space to standard normal space 

 u = standard normal random variable 

 L = logarithmic fatigue life 

 p = multidimensional Hermite polynomials of degree p 

 a = coefficient of polynomial 

 u = standard normal space 

 x = random space 

I. Introduction 

RADITIONALLY structural design under uncertainty includes structural dimension, shape, and material 

properties as uncertainty parameters. These parameters are relatively well controlled so that the variability is 

usually small. However, the uncertainty in load or force is much larger than that of others. The variability of the load 

is often ignored in the design stage and is very difficulty to quantify it. Without knowing the accurate uncertainty 

characteristics of input, it is hard to rely on the reliability of the output. In this paper, a different approach is taken by 

asking how much load a system can support. The amount of load, which a structure system can support, becomes 
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important information for evaluating a design. Traditional design concerns load capacity by introducing safety factor, 

which suppose to give a safety margin for the uncertain load conditions. Kwak and Kim
[2]

 proposed a concept of 

allowable load set, where deterministic loads are used without considering uncertainties involved in it. In linear 

systems, the allowable load set becomes piecewise linear and convex.  

In this paper, the idea of allowable load set is extended to the fatigue life estimation under uncertainty in the 

applied dynamic loads through the stochastic response surface technique and sensitivity information. The dynamic 

load is parameterized such that the uncertainties in the parameters are considered. Since the problem at hand 

includes fatigue life of dynamic system, it is computationally intensive, without mentioning the probability of failure. 

Thus, it is important to calculate the uncertainty propagation efficiently. Instead of searching the load tolerance 

directly, an estimation method using the data at the current load and its sensitivity is proposed. This idea can be 

further extended to the multi-dimensional case, in which the load tolerance becomes a safety envelope. 

With reference to Figure 1, the analysis procedure can be decomposed into three different levels: (1) Calculate 

the fatigue life of the system when a dynamic load history is provided. In this particular application, a commercial 

program, FE-Safe, is used to calculate the fatigue life. (2) Construct the stochastic response surface to calculate the 

reliability of the system’s fatigue life due to the uncertainty in load parameters. (3) Predict the load tolerance and 

construct the safety envelope using the path following continuation algorithm. 

   

II. Parameterization of dynamic loads and concept of safety envelope 

Safety of the system strongly depends on the assumptions given in input conditions. Among them, the 

assumption in the applied load may be the most important factor. Thus, it would not make any sense to analyze and 

design a structure without considering the variability of the load. The same design can be safe or failed based on 

input loads. However, input loads are often unknown, especially for dynamic systems. In addition, it is subjective. 

The load characteristic of one operator may completely different from that of the other operator. In order to perform 

reliability analysis, it is necessary to know uncertainty characteristics of inputs. However, distribution type and 

parameters of loads are often unknown. As a partial remedy for this difficulty, it is assumed that the representative 

dynamic load history f0(t) is available either from experiment or from computer simulation. This dynamic load can 

be decomposed into the average value and amplitude. The parameterization of the dynamic load can then be 

introduced by changing the average value and amplitude as 

  ave 0 ave( ) ( )f t f f t f     (1) 

where fave is the average value of f0(t), and  and  are load capacity coefficients (LCC) for the average value and 

amplitude, respectively. When  =  = 1, the applied load is identical to the initial load history. In Eq. (1),  can not 

be negative.  

In the reliability analysis,  and  are considered as random variables that can represent the statistical behavior of 

the applied dynamic load. In traditional reliability-based design, variability in parameters is usually modeled by 

assuming specific type of random distribution. In this paper, the effect of different distribution types on the system 

response is investigated by introducing the concept of conservative distribution type, which provides a safer way to 

model uncertainties. 

 

Figure 1. Analysis procedure of constructing safety envelope 
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When the two LCCs are gradually increased from zero, the initially safe system becomes unsafe at certain values 

of LCCs. If all combinations of LCCs that make the system unsafe are collected and connected, a closed envelope 

can be constructed. Figure 2 shows a schematic illustration of the safety envelope when two variables are involved. 

However, search for all possible LCCs are time consuming and, in many applications, impractical. In this paper, a 

systematic way of searching the boundary of the safety envelope is proposed using a Euler-Newton continuation 

method
[2]

, an effective path following algorithm. 

When the relationship between the safety of the system and the applied loads is linear or mildly nonlinear, this 

approach can produce an effective way of estimating the safety envelope once sensitivity information is provided. In 

context of reliability based safety measure, the target of safety envelope is that failure probability cannot reach over 

the prescribed value. Thus, a reliability based safety envelope has been introduced. 

III. Fatigue life prediction 

The computational model is the front loader frame of civil construction equipment. The model consists of 

172,000 finite elements. Dynamic loads are measured in 26 different channels; i.e., 26 DOFs. More than 9,000 peak-

and-valleys of dynamic loads are sampled during 46 min. In fatigue analysis, first a unit static load is applied per 

each channel or load degree-of-freedom to calculate the stress influence coefficient. The stress influence coefficients 

are multiplied by dynamic load history to calculate the dynamic stress. 

Based on different stress amplitude at different time, the fatigue damage is linearly accumulated, which is 

proposed by Miner. The stress-life method is used to determine the fatigue life because the primary concern is not 

the base material, but the fabricated joints; that is, weld joints. Since the stress state is not uni-axial, critical plane 

algorithm is used to convert it to uni-axial fatigue data. In addition, the Goodman model is used to compensate non-

zero mean stress. The design goal is to maintain the operation for 60,000 hrs. Since load data are measured for 40 

min., this corresponds to about 78,000 cycles. The target probability of failure is 0.1. 

IV. Reliability Analysis and Probability Sensitivity using SRS 

Stochastic response surface method
[1]

 is used to predict the relationship of fatigue life and load capacity in 

standard Gaussian space. The uncertainty propagation is based on constructing a particular family of stochastic 

response surfaces known as polynomial chaos expansion. This kind of SRS
[5]

 can be view as an extension of 

classical deterministic response surfaces for model outputs constructed using uncertain inputs and performance data 

collected at heuristically selected collocation points. Let n be the number of random variables and p the order of 

polynomial. The model output can then be expressed in terms of standard random variables {ui} as: 

 0 1 2 3

1 1 1 1 1 1

( ) ( , ) ( , , )
jn n i n i

p p p p p

i i ij i j ijk i j k

i i j i j k

G a a u a u u a u u u
     

            (2)  

where pG  is the model output, the , ,p p

i ija a   are deterministic coefficients to be estimated, and the p(u1,…,up) are 

multidimensional Hermite polynomials of degree p. In general, the approximation accuracy increases with the order 

 

 
Safety envelope 

Safe 

Figure 2. Safety envelope for two variables 
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of the polynomial, which should be selected reflecting accuracy needs and computational constraints. The accuracy 

and convergence of SRS can be found in Kim et al
[5]

.  

In this paper, the fatigue life of a structural part is considered as a model output. However, the range of the 

model output changes over several order of magnitude. Accordingly, Logarithmic fatigue life is approximated using 

the SRS in Eq. (2). 

Reliability analysis is then carried out by the Monte Carlo simulation operated on the SRS. In MCS, probability 

of failure is calculated by 

 ( ( ) 0) ( )
x

fP I G f d


  x x x  (3) 

where ( ) 0G x  is the failure region, ( )f   the joint probability density function, and ( ( ) 0)I G X  the indication 

function such that I = 1 if ( ) 0G X  and I = 0 otherwise. In Eq. (3), 
x  denotes the entire random design space. In 

the SRS, however, all input random variables are transformed into the standard random variable space 
u

. Since 

the explicit expression of the model output is given in terms of Hermite polynomial as in Eq. (2), the MCS is not 

expensive even with 10
5
 samples. 

In estimating the safety envelope, the sensitivity information is very important. When moment-based methods 

are used, the sensitivity of the reliability index can be calculated without requiring additional computation. However, 

sensitivity calculation in sampling-based methods, such as in Eq. (3), is not trivial due to the uncertainty involved in 

the Monte Carlo integral. Let  be a statistical parameter. Then, the sensitivity of failure probability can be obtained 

by following a similar Monte Carlo integral as 

 
1 ( )

( )
( ( ) 0) ( )

( )

fP f
I G d

f


  




    
   

    


u
x T u

x
x u u

x
 (4) 

where ( ) u  is the joint PDF of standard random variables. 

As an illustration of the accuracy of sampling based probability sensitivity analysis, consider a simple linear 

analytical function G(x) = 1.6 − 3x, with x being a random variable that is normally distributed according to 

N(0,0.4
2
). When the input variable is normally distributed, sensitivity with respect to random parameters in Eq. (4) 

can be obtained by 

 
1

1 1N
f j

j i

j i

P
I u

N 





  (5) 

 
1

1 1
( 1)

N
f j j

j i i

j i

P
I u u

N 


 


  (6) 

The accuracy of the sampling-based sensitivity calculation in the above equations can be evaluated by comparing 

with the sensitivity from FORM. Since the function is linear and the input is normally distributed, the reliability and 

its sensitivity from FORM will yield the exact values. Table 1 compares the probability of failure and its sensitivity 

with respect to random parameters. The proposed sensitivity calculation results agree with that from FORM. 

 Table 1. Accuracy of sampling based sensitivity analysis 

 FORM MCS on SRS (10
5
 samples) Ratio (%) 

Pf 0.0915 0.0914 100.11 

dPf/d 0.4100 0.4109 99.78 

dPf/d 0.5469 0.5484 99.73 
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V. Estimation of safety envelope using sensitivity 

First, a single parameter is selected to estimate the safety envelope of the structure using sensitivity information. 

Suppose the average value of the dynamic load maintains constant, while the amplitude is changed randomly. From 

Eq. (1), the uncertainty of the amplitude can be represented using the following decomposition of the dynamic load: 

  ave 0 ave( ) ( )f t f f t f    (7) 

When  = 1, we can recover the original load history. When  = 0, the dynamic load becomes a static load with the 

average value. In this definition,  cannot take a negative value. 

Since no accurate information is available for the dynamic load, we assume that  is a random variable. In order 

to simplify the problem, we further assume that the parameter  shows a normal distribution. Since  = 1 represents 

the original dynamic load, we assume that  is normally distributed with the mean of one and the standard deviation 

of 0.25 (COV=0.25). The random variable  can be converted into the standard random variable u by  

 
1 0.25

u

u

    

 
 (8) 

where u ~ N(0,1
2
),  ~ N(1,0.25

2
),  = mean,  = standard deviation. In order to see the effect of mean change, we 

fix the standard deviation. Thus, the only variable is the mean value of random variable . The goal is to find the 

value of  that the system fails.  

For any given sample point u corresponding  can be obtained from Eq. (8), and using  a new dynamic load 

history can be obtained from Eq. (7). By applying this dynamic load history, the fatigue life of the system can be 

obtained.  

Because the fatigue life changes in several orders of magnitudes, it is better to construct the response surface for 

the logarithmic fatigue life. A cubic stochastic response surface is constructed as a polynomial chaos expansion for 

the logarithmic fatigue life as 

 
2 3

10( ( )) log (Life) 5.7075 0.7223 0.0581( 1) 0.0756( 3 )L u u u u u        . (9) 

Since the required life by the working component is 60,000 hours and each cycle corresponding to 46 minutes, 

the target of the fatigue life can be written in logarithmic scale by 

 

target 10

10

log (60,000 hours)

log (78,261 cycles)

4.9

L 





 (10) 

The system is considered to be failed when the predicted logarithmic life in Eq. (9) is less than the target 

logarithmic life in Eq. (10). Accordingly, we can define the probability of failure as 

 target target( ) 0fP L L P     , (11) 

where Ptarget is the target probability of failure. For example, when Ptarget = 0.1, the probability of failure should be 

less than 10%. Even though the interpretation of Eq. (11) is clear, it is often inconvenient because the probability 

changes in several orders of magnitudes. In reliability analysis, it is more common to use the reliability index, which 

uses the notion of the standard random variable. Equation (11) can be rewritten in terms of the reliability index as 

 target target( ) ( )fP P      , (12) 

where  is called the reliability index and  is the cumulative distribution function of the standard random variable. 

When Ptarget = 0.1, target  1.3. The advantage of using the reliability index will be clear in the following numerical 

results. 
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Using the response surface in Eq. (9), reliability analysis is carried out using the SRS at  = 1. The results of 

reliability analysis are as follows:  

 

17.81%

0.922456

3.972

fP














 



 (13) 

where ∂/∂ is the sensitivity of the reliability index with respect to . Since Ptarget = 0.1 and target = 1.3, the 

current system does not satisfy the reliability requirement.  

It is obvious that for a deterministic, linear system, the system response is linear to the applied load. Thus, 

estimating the safety envelope is trivial. However, the fatigue reliability of a system is not linear with respect to the 

applied load history. When the fatigue reliability is mild nonlinearity, it is still possible to estimate the safety 

envelope using sensitivity information. Based on the result from Eq. (13), the value of  that satisfies the required 

reliability can be estimated using a linear approximation. The linear approximation of  can be obtained by 

 
1 targetestmated

1

( )
1 0.9049












 











  





, (14) 

which means that  needs to be decreased by 10% from the original load amplitude in order to satisfy the required 

reliability. 

In order to verify the accuracy of the estimated result, several sampling points are taken and reliability analyses 

are performed. Figure 3 shows the reliability index with respect to , while Figure 4 shows the probability of failure 

Pf with respect to . The solid line is linearly approximated reliability using sensitivity information. When  is 

normally distributed, the reliability index is almost linear and the estimation using sensitivity is close to the actual 

reliability index. When the target probability of failure is 0.1 and  has the distribution of N(, 0.25
2
), the safety 

envelope can be defined as 

 0 0.9049   (15) 

Thus, the current design, considering 25% standard deviation in the load amplitude, is not enough to achieve 90% 

reliability. The structure should be operated under milder working conditions, which means either lower the mean of 

the load amplitude by about 10%. 

  

 

 Pf 

  

target 

Ptarget 

Figure 3. Reliability index  with respect to  Figure 4. Probability of failure Pf with respect to  
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VI. Influence of different distribution type on load tolerance and conservative distribution type 

In the previous section, LCC is assumed to be normally distributed. However, in many cases, the distribution is 

unknown and it is difficult to identify it accurately. In addition, different distribution types may yield completely 

different results in load tolerance estimation. Figure 5 and 6 shows the difference between normal and lognormal 

distributions. Note that lognormal distribution shows higher nonlinearity in the relation of reliability indices and the 

mean of LCC. The linear prediction of load tolerance for lognormal LCC cannot be accurate enough, but it is still 

possible to apply piecewise linear prediction to load tolerance design by restrict step size to acceptable range. 

Identifying the load distribution is one of the most difficult tasks in the uncertainty analysis because different 

operating conditions will yield completely different distribution types. Thus, design engineers often look for a 

conservative distribution type. For example, in Figures 5 and 6, lognormal distribution is more important when μ is 

large, whereas normal distribution is important when μ is small. Using sensitivity and linear approximation, it 

would be possible to predict which distribution type has a significant effect on the load tolerance. Once dominant 

distribution type is selected, the detailed load tolerance can be constructed. 

  

VII. Multi-dimensional safety envelope 

When more than one parameter is involved in load tolerance estimation, the safe region of the parameters is 

called the safety envelope. The technical challenge is how to find the boundary of the envelope without trial-and-

error approach. In this paper, an efficient search algorithm is proposed based on Euler-Newton continuation 

method
[4]

. For the illustration purpose, consider two parameters,  and , as random variables. Furthermore, it is 

assumed that both parameters show normal distribution. It is clear that the two parameters must have non-negative 

values. The capacity of the system with respect to the mean values of  and  is interested. If the required 

probability of failure is 10% ( target 1.3  ), following steps can been taken to construct the safety envelope: 

Step 1: By fixing 0   and increasing   from zero, find the initial boundary point ( 0  ) on the envelope 

( ( , ) 1.3     ); 

Step 2: Using sensitivity information, find the next solution on safety envelope using Euler-Newton continuation 

to meet the constraint 1.3  ; 

Step 3: Since only , 0     is meaningful, continue Step 2 until the curve end in this region; 

 

Figure 7 shows the two-dimensional safety envelope for the loader frame while LCCs are both normally 

distributed. It is clear for the figure that the system has much more safety margin in the average value than that of 

the amplitude. 

 Pf 

  

Figure 5. Reliability index  with respect to μ Figure 6. Probability of failure Pf with respect to μ 
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VIII. Conclusion 

In this paper, a systematic road map of safety envelope has been presented. FE-based fatigue evaluation, SRS-

based reliability and sensitivity analysis, path following algorithm are integrated to construct a design reference for a 

structure. Conservative distribution type will be considered to give safer design of load without complete knowledge 

of uncertainty properties. Complete work will be done by constructing a multi-dimensional safety envelope for load 

tolerance by considering conservative distribution type. 
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Figure 7. 2-D Safety envelop for fatigue reliability 
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