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Abstract: 
 

The paper provides a review of how to estimate a probability of failure from a small sample 
of data, and shows that the usual estimators of the parameters of the cumulative 
distribution function are biased, and can lead to unconservative estimations. Then, it 
explores different ways to make this estimation conservative: one is based on adding 
constraints when distributions are fitted; the second is based on the use of bootstrap 
methods. We explore the relationship between the chance that the estimate is conservative 
and the accuracy of the estimate. In particular, we study the case when we want to achieve a 
95% chance to have conservative estimators. Finally, these methods are applied to the 
problem of a composite panel under thermal loading. 

 
I. Introduction 

 
In mechanical analysis, uncertainties in input parameters—such as material properties or geometry—prevent the 
engineer from taking analysis results at face value. The quantification of the influence of these uncertainties on 
reliability is crucial in mechanical design. Engineering systems need to be designed so that the risk of failure 
will not exceed an acceptable value. 
 
In the literature (e.g., Ref. [1]), many methods are proposed to estimate the reliability of structural systems and 
to apply them to design under uncertainties. However, there exist uncertainties in the uncertainty analysis itself. 
They are caused by various sources, such as variation in the samples and errors in fitting distributions. It has 
been shown that error in probability distributions due to insufficient information can have large effect on 
probability calculation (e.g., Ref. [2] [3]). In many engineering problems there is an incentive to obtain 
probability of failure estimates that will not be less than the real probability; that is conservative estimation. This 
approach can provide a method of uncertainty estimation with a confidence level.  
 
Given the probability distribution of inputs, we can quantify by Monte-Carlo Simulations (MCS) the 
distribution of the output. The standard application of MCS to estimate the probability of failure is to generate a 
sample of outputs and calculate the number of values that exceed the limit. However, a small sample cannot 
evaluate directly the tails of the distributions; we can evaluate low probabilities only by fitting a distribution to 
the sample. Given a sample of system response g1, g2, …,gn, and a limit state g = glimit defining failure, 
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estimating the probability of failure is equivalent to estimating the Cumulative Distribution Function (CDF) Fg 
of g at g = glimit  

  (1) limit limit( ) 1 (fP P g g F g= ≥ = − )g

 
In this study, we consider several alternatives of estimating the probability of failure Pf such that the estimation 

f̂P 1is likely to be no lower than the true Pf. To do so, we modify the methods of estimating the CDF from a 

sample in order to bias the estimator of Pf. We also explore the possibility of using the bootstrap method for 
probability of failure estimations, and define conservative estimators based on bootstrapping.  
 
In the next section, we discuss how we use sampling to estimate the probability of failure. Section III shows 
how to use constraints to obtain conservative estimators. Section IV describes the bootstrap method and how to 
use it to define conservative estimator. The accuracy of such estimators are analyzed using a simple numerical 
example in Section V, and the conservative estimators are applied to an engineering problem in Section VI, 
followed by concluding remarks in Section VII. 
 

II. Various estimators of CDF 
 
Analytical estimators 
Assuming a certain distribution, an analytical model of CDF can be fitted to the sample by adjusting its 
parameters. In the case of normal distribution, for example, we want to estimate the mean and the standard 
deviation, µ and σ. The classical estimators of the mean and the standard deviation from a sample of size n are: 
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where estimate s of the standard deviation is normalized by (n – 1) to make s2 the best unbiased estimate of the 
variance. However, it is shown that s is a biased estimate of σ [6]. The expectation of s can be approximated by: 
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As a consequence, the estimate of the standard deviation is likely to be underestimated; so the tail of the 
estimated CDF will be biased in the unconservative side. 
 
Estimators based on fitting the empirical CDF 
If we simulate a sample of n points and arrange the points in increasing order , the 

empirical CDF is defined as: 
1 2( )nx x x≤ ≤ ≤…
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It is then possible to estimate the mean and standard deviation of the CDF that best approximates the empirical 
CDF. Two different ways of approximation are studied: 
- Minimizing the RMS (root mean square) error between estimated CDF and empirical CDF 
- Minimizing the Kolmogorov-Smirnov distance. 
 
To minimize the RMS error between empirical and estimated CDF, the errors are calculated at sample points. In 
order to have an unbiased estimator, the values of the empirical CDF are chosen as (see Figure 1): 
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The parameters (µ, σ) will then be calculated by solving the optimization problem: 
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where Fµ,σ is the value of the CDF of a normal distribution with parameters (µ, σ): 
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The Kolmogorov-Smirnov (K-S) distance is the classical way to test if a sample is representative of a 
distribution. The K-S distance is equal to the maximum distance between two CDFs (see Figure 2). The 
maximum distance occurs at one data point. The optimization problem for the K-S distance becomes:  
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Figure 2: Example of a K-S distance between an

empirical CDF (blue) and a standard normal CDF

(red). 
Figure 1: Example of points (red) chosen to fit an

empirical CDF (blue) obtained by sampling 10

points from N(0,1).  
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III. Conservative estimators from biased fitting 
 
We have seen that fitting a distribution to a sample can be seen as an optimization problem. The key idea of this 
section is adding various constraints to the fitting problem so that the resulting estimator becomes conservative. 
We will also present the relationship between conservativeness and accuracy. 
 
In most engineering problems, failure of a random variable occurs far from its mean in one direction. Therefore, 
we limit the requirement that the distribution is conservative to one side of the mean, i.e. the right half data 
points.  
 
The milder conservative CDF can be obtained by constraining the estimator to pass below the data points. The 
more conservative CDF can be obtained by constraining the estimator to pass below the entire empirical CDF. 
They will be called, respectively, RSPC (Right Sample Point Conservative) and RECC (Right Experimental 
CDF Conservative). The choice between the two constraints is a matter of balance between accuracy and 
conservativeness. 

RSPC constraints:  0)(, ≤−
n
ixF iσµ  for nin

≤≤
2

 (9) 

RECC constraints: 01
≤)(,
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2
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When n is odd, the lower bound for i in the above two equations is modified to . ( 1)/n − 2

 
Example 
To illustrate conservative estimators we use an example with 10 sample points generated from N(0,1). Pf is 
defined as the probability that x is larger than 2. The exact probability of failure is 2.28%. Figure 3 shows the 
empirical CDF and the three estimators based on minimum RMS error. 

 

xlimit 

 
 
 

 

 

 

 

Figure 3: Example of estimators based on RMS error for a 

sample of 10 points generated from N(0,1) 

 
 
Table 1: Values of mu, sigma and Pf of the different estimators of Figure 3 

 Minimum RMS error RSPC RECC 

µ -0.07 0.12 -0.01 

σ 0.81 1.31 0.97 

Pf 0.56% 2.68% 7.65% 
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We can see on the graph the effect of the constraints: the RSPC estimator is shifted down to be under the 9th 
point, so that the values of the tail are decreased. The RECC estimator is shifted even more. The conservative 
curves are unconstrained on the left part of the graph, and cross the empirical curve. The mean, standard 
deviation, and Pf for three estimators are summarized in Table 1. 
 
In this example, the minimum RMS error is strongly unconservative even if unbiased estimator is used. The 
RSPC and RECC estimators are conservative, and the RSPC is more accurate than the RECC.  In order to 
generalize these results and come up to reliable conclusions, we will perform statistical experiments based on 
large number of simulations in Section V. 
 
 

IV. Conservative estimators using bootstrap methods 
 
The bootstrap principle 

θ̂

θ̂

The bootstrap method is based on resampling; it allows us to estimate the distribution of any estimator   of a 
statistic θ (for example, the mean of a population) based on a single set of data. The bootstrap idea is to create 
many set of bootstrap samples by resampling with replacement from the original data and compute   for each 
bootstrap sample (Ref. [4] [5]). Then, the set of   provides an approximation of its distribution. Figure 4 shows 
a schematic representation of the bootstrap approach. 

θ̂

 
This approach allows us to estimate the distribution of any statistic without additional data. We can compute 
from that distribution standard error or confidence intervals. However, the bootstrap method provides an 
approximation of a distribution. Any value taken from bootstrap distribution (such as percentile or standard 
error) is random because it depends on the values of the initial sample. In order to obtain accurate results, 
sample sizes must not be below 100. A typical number of bootstrap can be from 500 to 5000. 
 

Initial sample, size n 
(Unknown distribution)

 

bootθ̂

θ̂

bootθ̂

Resampling with 
replacement, size n 

p bootstraps 

. . . . 

Estimate  from bootstrap sample

Resampling with 
replacement, size n 

Estimate  from bootstrap sample

p estimates of θ 

Empirical distribution of  estimator 
Figure 4: Schematic representation of bootstrapping. Bootstrap distribution of θ is obtained by multiple 

resampling (here p times) from a single set of data.  
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Bootstrap and probability of failure 
We assume here that the distribution type of a random variable is known to be normal with unknown parameters 
µ and σ. We estimate these parameters by the average and the standard deviation of a sample from the 
population. We consider the same test case as in Section III: the data for a variable x is generated from standard 
normal distribution N(0,1) and failure is defined as  (so the actual probability of failure is 2.28%). The 
sample size is taken as 100. 

2x ≥

 
For each sample, we generate 5000 bootstrap resamples. We compute the mean and standard deviation of these 
bootstrap resamples and estimate the corresponding probability of failure. Such obtained set of 5000 Pfboot 
defines the empirical bootstrap distribution of the estimator of Pf. 
 
We would like to use this distribution to minimize the risk of providing unconservative estimates of Pf. In other 
words, we want to find a procedure that maximizes the quantity: 

  (11) )ˆ( ff PPProb ≥=α

A procedure that satisfies Equation (11) provides an α-conservative estimator of Pf. We use here the bootstrap 
distribution to approximately satisfy Eq. (11). For example, if we desire α = 0.95, we can select Pf to be the 95 
percentile of the bootstrap distribution of the probability of failure. 
 
We define then two conservative estimators: the 95th bootstrap percentile and the mean of the 10% highest 
bootstrap values. We call these estimators Bootstrap p95 and Bootstrap CVaR 90 (see Figure 5). Note that any 
bootstrap quantile higher than 50% defines a conservative estimator; however, if we choose a very high α  we 
may raise the mean value of    and be over-conservative. Pf

ˆ
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V. Numerical test case: samples gener
 
The goal of this section is to estimate the accuracy 
sections III and IV, using a simple numerical example
we repeat the Pf computation a large number of times i
 
We consider samples of size 100 generated from N(0,1
actual probability of failure of 2.28%. For each sample
is repeated 1000 times. The neutral estimator is comp
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Figure 5: Conservative estimators of Pf from bootstrap 

distribution: 95th percentile and mean of the 10% 

highest values. 
ated from standard normal distribution 

and the conservativeness of the estimators presented in 
, where the actual distribution and Pf are known. To do so, 
n order to extract statistical measures of our estimators. 

); the failure is defined for x = 2, which correspond to an 
, the different Pf estimators are computed. This procedure 

uted using the analytical expressions for the mean and the 
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standard deviation. The RSPC, RECC, Bootstrap p95 and Bootstrap CVaR90 estimators are computed as 
described in the previous sections. 
 
We expect that most of the values will exceed the actual probability of failure, but we do not want to 
overestimate dramatically Pf. We present the results in the form of mean and 90% symmetric confidence 
interval in Table 2. The lower bound of the confidence interval shows the conservativeness of the estimator; the 
mean and the upper bound show the accuracy and the variability of the estimator. 
 
Table 2: Means and confidence intervals of several estimators of Pf 

 
 Statistics obtained over 5000 simulations 

Estimators 90% confidence interval Mean 

Neutral estimator [ 0.0101  ;  0.0404 ] 0.0210 

RSPC [ 0.0153  ;  0.0786 ] 0.0364 

RECC [0.0217  ;  0.1230] 0.0507 

Boot. p95 [ 0.0206  ;  0.0657 ] 0.0400 

Boot. CVaR90 [ 0.0214  ;  0.0676 ] 0.0413 

Actual 0.0228 

  
 
 
 
 

 
 
 
 
 

 
 
The neutral estimator of the standard deviation is, as we have seen analytically, biased; so the mean of the 
probability of failure estimator is less than the actual. Moreover, there is a five per cent chance to underestimate 
Pf by a factor of two (the lower bound of the confidence interval is 1.01%). Thus, classical estimators of CDF 
provide unconservatively biased estimators of Pf; this gives us a particular incentive on finding a way to 
improve the conservativeness of the estimations of distributions. 
 
The RSPC and RECC estimators have a positive bias. As expected, the RECC is more conservative than the 
RSPC; but, as a consequence, the former is more biased and the risk of large overestimations is increased. The 
RECC confidence interval shows that there is a 5% chance to overestimate Pf by a factor of 6. The RECC 
estimators lead to about 95% conservative results for 100-point sample. The choice between the RSPC and 
RECC estimators will be a choice between accuracy and conservativeness. 
 
From the confidence interval column, we see that 5% of the Bootstrap p95 are above 0.0206, which is not far 
from the actual probability of failure. Thus, the 95% conservativeness is approximately reached. The Bootstrap 
CVaR is a little bit more conservative. From the upper bound of the confidence interval, we see that for the 
bootstrap p95 and the CVaR90, the risk of overestimating Pf by a factor of three is of the order of 5%. 
 
Bootstrap methods appear to be much more efficient than the optimization based methods (RSPC and RECC). 
For an equivalent level of conservativeness (95%), the bias is reduced and the risk of large overestimations is 
much lower. However, bootstrap cannot be used with very small sample sizes. In that case, optimization based 
methods can be used instead.  
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VI. Application to a composite panel under thermal loading 
 
In this section, we apply the conservative estimate of probability to an example of a composite panel under 
mechanical and thermal loading, which is used for the wall of a hydrogen tank. The design of composite 
laminates for liquid hydrogen tanks involves several challenges: the cryogenic operating temperatures develop 
large residual strains due to the different coefficients of thermal expansion of the fiber and the matrix. 
 
Qu et al. (2003) performed the deterministic and probabilistic design optimizations of composite laminates 
under cryogenic temperatures, using response surface approximations for probability of failure calculations. 
Acar and Haftka (2005) found that using CDF estimations for strains improves the accuracy of probability of 
failure calculation.  
 
We analyze here the problem that is addressed by Qu et al. (2003); hence the geometry, material parameters and 
the loading conditions are taken from that paper. Our aim is to explore further the possibilities to improve the 
estimation of the probability of failure calculations in a conservative way. 
 
Problem definition: 
We consider the design of a composite panel that is the wall of a hydrogen tank. It is subject to resultant stress 
caused by mechanical loading (Nx is 33 MPa and Ny is 16 MPa) and thermal loading due to the operating 
temperature 20K (Figure 6). The objective is to minimize the weight of the composite panel that is a symmetric 
balanced laminate with two ply angles (that means an eight-layer composite). The design variables are the ply 
angles [±θ1, ±θ2] and the ply thickness t1 and t2. The geometry and loading condition are shown in Figure 6. 
 
 

1 2 

1

NY 

 
 
 
 
 NX  
 
 
 
 

e 

 
 
 
The material used in the laminates is IM600/133 graphite-epoxy, def
properties: 

- Elastic properties (E1, E2, G12 and v12) 
- Coefficients of thermal expansion (α1 and α2) 
- Stress-free temperature Tzero 
- Failure strains (ε1

L, ε1
U, ε2

L, ε2
U, γ12

U). 
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The minimum thickness of each layer is taken as 0.05mm; that corresponds to manufacturing constraints, but 
this is also necessary to prevent hydrogen leakage. The failure is defined as the first ply failure that is when the 
strain values of the first ply exceed failure strains. 
 
The deterministic optimization problem is formulated as: 

Minimize  h )tt(4 21 +=  

    s.t.   

U
1212F

U
22F

L
2

U
11F

L
1

3
21

S

S

S

105.0t,t

γ≤γ

ε≤ε≤ε

ε≤ε≤ε

×≥ −

           (12) 

where SF is a safety factor chosen at 1.4. 
 
The deterministic and probabilistic optimizations were solved by Qu et al. (2003), as summarized in Table 3. 
  
Table 3: Deterministic optima found by Qu et al (2003) 

θ1 (deg) θ2 (deg) t1 (mm) t2 (mm) h (mm) 
27.04 27.04 0.254 0.381 2.540 

0 28.16 0.127 0.508 2.540 
25.16 27.31 0.127 0.508 2.540 

 
Calculation of the probability of failure 
Given the material properties and the design variable, we calculate the ply strains using Classical Lamination 
Theory (CLT). Due to manufacturing variability, the material properties and failure strains are considered as 
random variables. All random variables are assumed to follow uncorrelated normal distributions. The 
coefficients of variation are given in Table 4. E2, G12, α1 and α2 are function of the temperature; since the design 
must be feasible for the entire range of temperature, strain constraints were applied at 21 different temperatures, 
which were uniformly distributed from 20 to 250K. As a consequence, we first calculate the mean value of the 
random variables for a given T and then generate the random number. The mean of the other parameters are 
given in Table 5. 
 
Table 4: Coefficients of variation of the random variables 

E1, E2, G12 and v12 α1 and α2 Tzero ε1
L and ε1

U ε2
L, ε2

U and γ12
U 

0.035 0.035 0.03 0.06 0.09 
 
Table 5: Mean of random parameters 

E1 v12 Tzero ε1
L ε1

U ε2
L ε2

U γ12
U 

21.5x106 0.359 300 -0.0109 0.0103 -0.013 0.0154 0.0138 
 
The critical strain is the transverse strain on the first ply (direction 2 in Figure 6). The variable we consider is the 
difference between the critical strain and the failure strain. The probability of failure is then Pf = 1 – F(0), where 
F is the CDF of the difference between the strain and the strain failure. 
The software ARENA is used to determine which distribution type fits the best the critical strain data; it shows 
that Normal distribution is the best choice. 
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Results 
100 MCS are run in the configuration of the first optimum (27.04, 27.04) and the estimations of Pf are 
computed. In order to estimate the distribution of the estimators, 1000 simulations are done. Finally, 100,000 
samples are generated to estimate the actual distribution of the strains. 
 
Table 6: Percentiles of five estimators of Pf (x 10-4) for deterministic optimum of cryogenic laminate 

 
 Statistics obtained over 5000 simulations 

Estimators 90% confidence interval Mean 

Neutral estimator [ 2.1  ;  26.5 ] 6.9 

RSPC [ 5.2  ;  82.7 ] 23.1 

RECC [ 8.1  ;  140 ] 40.9 

Boot. p95 [ 7.7  ;  67.5 ] 29.8 

Boot. CVaR90 [ 8.5  ;  72.7 ] 32.2 

Actual 8.2 

 
 
 
 
 
 
 
 
 
 
 

Table 6 summarizes the results of five different estimators for the cryogenic laminate. The use of classical 
estimators of µ and σ lead here to a five per cent chance of underestimating Pf by a factor of four, whereas the 
RECC estimator is 95% conservative (the 5% percentile is equal to the actual Pf). However, the right tail of its 
distribution and the bias are very large. The RSPC estimator is less conservative but both variability and bias are 
substantially reduced. 
 
Bootstrap p95 is almost 95% conservative; CVaR90 is a little bit more than 95% conservative. The upper 
bounds of their confidence interval are two times lower than the RECC estimator, for an equivalent level of 
conservativeness. 
 
The overall performance of the conservative estimators is not as good as for the numerical example of section 
IV. We explain these differences by two main reasons: 

- First, the actual distribution of the strains may not be exactly normal, that increases the error in the 
CDF fitting 

- Second, the actual probability of failure is of the order of 10-4 instead of 10-2 previously. Since we 
estimate here the value of the CDF at a farther point in the tail, the variability is logically increased. 

 
 

VII. Concluding remarks 
 
The estimation of the probability of failure of a structure is crucial in reliability based design. In a context of 
expensive numerical experiments, or when the data samples provided are small, the direct use of Monte-Carlo 
Simulation is not possible, and an estimation of continuous distributions is necessary. However, we have seen 
that the classical ways to estimate a CDF from a sample of values may lead to dangerous underestimations of 
the probability of failure. 
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In this paper, several methods of estimating CDF based on finite samples are tested. We first implemented a 
method constraining the estimated CDF to be under the empirical CDF. Then, we have shown how to use the 
bootstrap method to obtain distributions of probability of failure estimators, and how to use this bootstrap 
distribution to define conservative estimators.  
 
In the case of samples generated from standard normal distribution, numerical test case shows that both methods 
improve the chance of the estimation to be conservative. Bootstrap based estimators appear to provide much 
better results than optimization based methods. However, optimization based methods can be used when sample 
size is very small, where bootstrap cannot be used. 
 
We have also applied these procedures to estimate the probability of failure of composite laminates at cryogenic 
temperatures. We found that estimating the probability of failure from the mean and standard deviation of a 
sample lead to a five per cent chance of underestimating Pf by a factor of four. The conservative estimation 
allows us to reduce that risk and avoid the use of additional safety factors. However, controlling the uncertainty 
of the estimation is crucial to limit the risks of oversizing. 
 
For both analytical example and the composite laminate, we found that conservative estimates based on a 
bootstrap approach outperform one-sided fits to the experimental CDF. That is, for the same confidence in the 
conservativeness of the probability estimate, the penalty in the accuracy of the estimate is substantially smaller. 
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