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Robust Design Using Stochastic Response Surface and 
Sensitivities 

 
Haoyu Wang1 and Nam H. Kim2 

Dept. of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, 32611 

A robust design method that can reduce the variance of the output performance as well 
as the deviation of the mean value is proposed using a stochastic response surface method 
and an efficient sensitivity analysis. Both the deterministic and random design variables are 
considered. The stochastic response surface using a polynomial chaos expansion is used to 
describe uncertainty propagation. It is shown that the polynomial chaos expansion with 
appropriate bases provides an accurate and efficient tool in evaluating the performance 
variance. The results are compared with the traditional linear approximation and Monte 
Carlo simulation. In addition, the sensitivity of the output variance, which is critical in the 
mathematical programming method, is calculated by consistently differentiating the 
polynomial chaos expansion with respect to the design variables. Lastly, the variance-based 
global sensitivity indices are calculated in order to estimate the effect of the input random 
variables on the output variance. Numerical examples are shown to verify accuracy of the 
sensitivity information and the convergence of the robust design problem. 

I. Introduction 
ngineering system analysis often identifies the effect of input parameters on the output performance function. In 
many engineering applications, the values of input parameters are not deterministic but probabilistic, including 

tolerances, material properties, operating conditions, etc. Such uncertainties propagate through the system analysis 
and, as a result, the output performance also shows probabilistic distribution. In quality engineering, it has been 
realized that the deviation from the target value of performance due to the uncontrollable input variances/noises 
results in quality loss. Thus, robust design, which targets on making performance of product insensitive (robust) to 
the noise factors, has been pulling increasing attention in recent research activities. 

Robust design, initially known as Taguchi parameter design [1, 2], is to design a product in such a way that the 
performance reliability is insensitive to the variation of variables that are beyond the control of design engineers. 
Wang & Kodiyalam [3] formulated robust design as an optimization problem by minimizing the variation of system 
response. Since the reduction of input variance is directly related to the manufacturing cost, the formulation of Chen 
and Du [4] compromises cost reduction with performance variance. A robust design can also be achieved by using 
traditional optimization techniques to minimize the performance sensitivities. Chen & Choi [5] formulated the 
robust design by minimizing a total cost function and sum of squares of magnitudes of first-order design sensitivities, 
which requires the evaluation of second-order sensitivity analysis. This is a different approach compared to the 
variance-based approach. It focuses on the local behavior of the system performance and can achieve local 
robustness. The final design by minimizing local sensitivity cannot guarantee the robustness of system globally if 
the input variances are considerable. 

Traditionally, the performance variance is evaluated either using the Monte-Carlo simulation (MCS) or linear 
approximation. The computational cost of MCS and the lack of accuracy of the linear approximation have been 
issues in the robust design. In this paper, an efficient and accurate method of evaluating the performance variance is 
proposed using the polynomial chaos expansion [6, 7]. The proposed method has comparable accuracy with MCS, 
while requiring much less computational cost. By selecting appropriate bases of the surrogate model, the 
performance variance is calculated analytically. In addition, the derivatives of the performance variance with respect 
to design variables and input random parameters are calculated consistently with the variance calculation method, 
which is critical information for design optimization algorithm. 
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In general, the robust design problem should not be formulated to reduce the variance alone. Even if robustness 
is a requirement from quality point of view, a good design should also satisfy the requirement of the performance. In 
most of cases, quality and performance requirement are two competing design objectives. Thus, the robust design 
problem becomes a multi-objective optimization problem. In multi-objective optimization, there will be multiple 
optimum designs in a sense that one objective function cannot be reduced further without increasing other objective 
functions. The optimal set is referred to as the Pareto optimal set and yields a set of possible answers from which the 
engineer may choose the desired values of the design variables. 

The paper is structured as follows: Section 2 presents how to calculate the performance variance and its 
sensitivity using a surrogate model. Especially, the stochastic response surface using polynomial chaos expansion is 
used. Section 3 introduces global sensitivity indices, which describe the contribution of random inputs to the 
performance variance. In section 4 robust design for dynamic response of a cantilevered composite beam is used as a 
numerical example, followed by conclusions in Section 5. 

II. Performance Variance and Its Sensitivity using SRS 

A. SRS for Variance Calculation 
In this paper, the stochastic response surface (SRS) [7-10] is used as a surrogate model since it is easy to address 

uncertainty properties in system response. The stochastic response surfaces can be view as an extension of classical 
deterministic response surfaces for model outputs constructed using uncertain inputs and performance data collected 
at heuristically selected collocation points. The polynomial chaos expansion uses Hermite polynomial bases for the 
space of square-integrable probability density function (PDF) and provides a closed form solution of model outputs 
from a significantly lower number of model simulations than those required by conventional methods such as 
modified Monte Carlo Methods and Latin Hypercube Sampling. 

Let n be the number of random variables and p be the order of polynomial. The model output can then be 
expressed in terms of the vector of standard random variables (SRV) ξ = {ξ1, ξ2, …, ξn}T as: 
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where pg  is the approximated model output, , ,p p
i ija a …  are deterministic coefficients to be estimated, and 

( , , )p i pξ ξΨ …  are multidimensional Hermite polynomials of degree p given by: 
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where 1{ }pk kξ ==ξ  is the vector of p independent and identically distributed normal random variables that 
represent the model input uncertainties. The coefficients can be calculated using a regression method with samples 
of input/output pairs. The unique feature of the polynomial chaos expansion is that it uses the SRV and Hermite 
polynomial bases. Due to the property that the Hermite bases are orthogonal with respect to an inner product defined 
using Gaussian measures, the polynomial chaos expansion is convergent in the mean-square sense. In general, the 
approximation accuracy increases with the order of the polynomials and should be selected by reflecting the 
accuracy needs and computational constraints. In addition, the approximation in Eq. (1) is robust in a sense that the 
coefficients of the low-order approximation does not change significantly in the high-order approximation. 

 One important issue in robust design is to evaluate the performance variance. Traditionally, a linear 
approximation using Taylor series expansion is often employed for that purpose [11]. However, the error of 
approximation increases according to nonlinearity of the performance. In addition, the coupled effect of input 
variance cannot be counted in the linear model.  

The advantage of the polynomial chaos expansion in Eq. (1) becomes clear in evaluating the variance. In general, 
the polynomial chaos expansion in a surrogate model provides an analytical solution for the variance. If the 
polynomial bases are generally defined as ( )iΨ ξ  with ξ  being the vector of standard random variable, the SRS in 
Eq. (1) can be re-written as  
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where g  is the approximated system performance and N is the number of coefficients in SRS. Since the above 
expression is linear with respect to the unknown coefficients, the performance variance can be written as 
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Thus, the analytical expression of the performance variation can be obtained if the variations of the polynomial 
bases are available. When input variables are SRV, the analytical variations of Hermite bases can be found in 
Ghanem and Spanos [6]. 

B. Variance Sensitivity 
The robust design problem in this paper is formulated as an optimization problem that minimizes the 

performance variation in Eq. (4). In gradient-based optimization algorithms, calculation of sensitivity information is 
a critical issue for saving the computational cost and making the algorithm to converge. The finite difference method 
requires a complete recalculation of the performance variation [12]. The goal is to calculate the gradient information 
without carrying out a complete recalculation of the performance variance. From the fact that the SRV in the 
polynomial chaos remains constant while the design changes, the regression coefficients only depend on design 
variables. In the proposed polynomial chaos expansion, thus, the gradient of the performance variance with respect 
to j-th design parameter, dj, can be written as 
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It is clear that the derivatives of regression coefficients are enough to calculate the derivative of performance 
variation. In the linear regression method, the coefficients of SRS are obtained from 

 1( )T T−=a X X X g  (6) 

where g = [g1, g2, …, gM]T is the vector of performance functions at sampling points, and X is the matrix of bases at 
sampling points, defined as 
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In the above equation, M is number of sampling points, and N is the number of bases. Then, the derivatives of the 
coefficients can be obtained from 

 1(( )T T

j jd d
−∂ ∂

=
∂ ∂
a g

X X X  (8) 

The last term, / jd∂ ∂g , is the derivative of performance function at sampling points, which can be calculated using 
design sensitivity analysis (see Choi and Kim [13, 14]). By substituting Eq. (8) into Eq. (5), the derivative of 
performance variation can be obtained. This procedure of calculating sensitivity of the performance variation is 
much more efficient than the traditional finite difference method because most information, such as a and X, is 
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already available from the performance variation calculation. The only term required for sensitivity analysis is 
/ jd∂ ∂g . 
When finite element analysis is used as a computational tool for calculating the performance function, sensitivity 

analysis provides an efficient tool for calculating the performance derivative. In the context of structural analysis, 
for example, the discrete system is often represented using a matrix equation of the form [K]{D} = {F}. The 
performance function g in Eq. (6) can be expressed as a function of the nodal solution {D}. Thus, the sensitivity of 
the performance can be easily calculated if that of the nodal solution is available. When design variables are defined, 
the matrix equation can be differentiated with respect to them to obtain 

 [ ] { }
j j jd d d

⎧ ⎫ ⎧ ⎫ ⎡ ⎤∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎢ ⎥= −⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎪ ⎪∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎣ ⎦

D F K
K D  (9) 

Equation (9) can be solved inexpensively because the matrix [K] is already factorized. The computational cost of 
sensitivity analysis is usually less than 20% of the original analysis cost so local sensitivity can in fact be obtained 
efficiently. 

C. Example – Cantilevered Beam 
As an illustrative example, a cantilevered beam (Figure 1) is taken from literature [15, 16]. Two failure modes 

are considered in this example: (1) the maximum stress of the beam should be less than the strength of the material 
[Eq.(10)], and the tip deflection should be less than the allowable displacement [Eq.(11)]. These two constraints can 
be expressed by 

 1 2 2
600 600

( ) 0g R Y X
wt w t

= − + ≥  (10) 

 ( ) ( )
2 23

2 0 2 2

4
 0

L Y X
g D

Ewt t w
= − + ≥  (11) 

where R is the yield strength, E is the elastic modulus, X and Y are the independent horizontal and vertical loads 
shown in Figure 1. D0 is the allowable tip displacement which is given as 2.25 in. 

  

Two cross-sectional dimensions, w and t, are considered as controllable design variables. Five random variables are 
defined in Table 1.  

  

 It is obvious that strength constraint defined in Eq. (10) is a linear function of the random inputs. For linear 
performance, the variance can be analytically obtained as 

Figure 1: Cantilever beam subject to two direction loads 

t 
w 

Y 

X 

L = 100" 

Table 1: Random variables for cantilevered beam structure 
Random variable X Y R E 

Distribution type Normal 
(500,1002) lb 

Normal 
(1000,1002) lb 

Normal 
(40000,20002) psi 

Normal 
(29E6,(1.45E6)2) psi 
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Using this property, the accuracy of the proposed variance estimation in Eq. (4) can be verified. Table 2 shows the 
comparison between the variance from the SRS-based method and that from analytical approach. The variance is 
calculated at the deterministic optimal design (w = 1.9574", t = 3.9149"). 

  

 In the case of strength constraint, it is possible to find the analytical expression of the variance. However, in the 
case of nonlinear performance, such as deflection constraint in Eq. (10), there is no easy way of calculating 
analytical expression except for the first-order approximation. The linear approximation of the deflection constraint 
becomes 
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Due to the error involved in the linear approximation, MCS is the only method that can verify the accuracy of 
variance calculation. Since MCS is a sampling-based method, the estimated variance always has variability. Let σ2 
be the variance of a random variable and let s2 be the unbiased estimator of σ2. When n number of samples are used, 
the variance of the MCS-estimated performance variance can be predicted by [17] 
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42
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where 4
4 ( )E Xμ μ= −  is the fourth central moment of random variable X. 4

4 /μ σ  is called kurtosis. 
For the nonlinear performance in Eq. (11), the third-order SRS is used to approximate the deflection and the 

expression in Eq. (4) is used to evaluate the performance variance. Table 3 compares the variance obtained from 
these three methods. As expected, the linear approximation has about 1% error compared with MCS, while SRS-
based variance is within the confidence range of MCS. The error in the linear approximation will increase 
proportional to the nonlinearity of the function. 

  

 Based on the accuracy of the proposed method in calculating performance variance, the variance sensitivity in 
Eq. (5) is also tested using the cantilevered beam model. Table 4 and Table 5 show the variance sensitivities 
obtained from the proposed method compared with those from the central finite difference method (FDM). In FDM, 
the design variables are perturbed by 2% and the variance is recalculated using the SRS. When the performance is 
linear with respect to random variables, the analytical sensitivity can be obtained, for example, by differentiating Eq. 
(12) with respect to design variable. In Table 4, the sensitivity obtained from SRS agrees well with that from 
analytical sensitivity. The finite difference sensitivity shows a small error because the variance is still a nonlinear 
function with respect to the design variable. 

Table 3: Variance estimation of nonlinear performance (deflection) 

2 MCSVar( )g  (500,000 samples) 2 linearVar( )g  2 SRSVar( )g  

0.1947  
(standard deviation = 3.9248E−4) 0.1966 0.1948 

Table 2: Variance estimation of linear performance (strength) 
Analytical variance Variance from SRS (3rd-order) 

2.4E7 2.4E7 
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III. Variance-based Global Sensitivity Analysis 
The sensitivity of variance in the previous section is the derivative with respect to deterministic design variables. 

In some cases, such as tolerance analysis, the output variance is controlled by changing the variance of input 
variables. Since controlling the input variance often accompanies manufacturing cost or additional tests, it is 
important to find the most effective input variable to the performance variance. An index called global sensitivity 
[18-22] can be used for that purpose. The global sensitivity indices are the contributions of input random variables to 
the performance variance. Variance-based methods are rigorous and theoretically sound approaches [18-22] for 
global sensitivity calculation. This section describes the fundamentals of the variance-based approach and illustrates 
how the polynomial chaos expansions are particularly suited for this task. 

The variance based methods: (i) decompose the model output variance as the sum of partial variances, and then, 
(ii) establish the relative contribution of each random variable (global sensitivity indexes) to the model output 
variance. In order to accomplish step (i), the model output is decompose as a linear combination of functions of 
increasing dimensionality as described by the following expression: 

 0 12 12... 1 2
1 1

( ) ( ) ( , ) ( , , , )
n n n

i i i ij ij i j n n n
i i j i

g a a f x a f x x a f x x x
= = >

= + + + +∑ ∑∑x …… …  (15)  

The above decomposition is subject to the restriction that the integral of the weighted product of any two different 
functions is zero. Formally, 

 
1 1 1 1, , , , 1 1( ) ( , , ) ( , , ) 0, for , , , ,

s s s si i i i j j j j s sp f x x f x x d i i j j= ≠∫ ∫ x x… …" … … … …  (16)  

where p(x) is the joint probability distribution function (PDF) of the vector x of input random variables. Depending 
on distribution type of input variables, there exists a family of polynomials that satisfy the above requirement. If, for 
example, the weighting function is the uniform distribution for the random variables or the Gaussian probability 
distribution, the functions of interest can be shown to be Legendre and Hermite orthogonal polynomials, 
respectively. 

Once a performance function is decomposed in the form of Eq. (15), The variance can now be calculated using a 
well-known result in statistics. The result establishes that the variance of the linear combination of random variables 
(xi) can be expressed as: 

 2
0

1 1 1

Var Var( ) 2 ( , )
n n n n

i i i i i j
i i i j i

b b x b x COV x x
= = = >

⎛ ⎞⎟⎜ + = +⎟⎜ ⎟⎟⎜⎝ ⎠∑ ∑ ∑∑  (17) 

Hence, the performance variance can be shown to be: 

Table 5: Sensitivity of variance for nonlinear performance (deflection) 

∂Var/∂w (SRS) ∂Var/∂w (FDM ) ∂Var/∂t (SRS) ∂Var/∂t (FDM ) 

−0.6538 −0.6544 −0.0712 −0.0712 

Table 4: Sensitivity of variance for linear performance (strength) 

∂Var/∂w 
(SRS) 

∂Var/∂w 
(FDM) 

∂Var/∂w  
(Analytical) 

∂Var/∂t 
(SRS) 

∂Var/∂t 
(FDM ) 

∂Var/∂t 
(Analytical) 

−3.6784E7 −3.6801E7 −3.6785E7 −1.2261E7 −1.2265E7 −1.2261E7 
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There are no covariance terms in Eq. (18) because of the orthogonal property shown in Eq. (16). 
In general the global sensitivity can be decomposed into main factors and interactions between different input 

random variables. The global sensitivity index, Si, that considers only main factor is called main sensitivity index, 
which associated with each of the random variables. From Eq. (18), the main sensitivity indices can be calculated by 

 
2 Var( ( ))

, 1,2,
Var( )

i i i
i
a f x

S i n
g

= = …  (19)  

A sensitivity index that considers the interaction between two or more factors is called interaction sensitivity 
index. From Eq. (18), the interaction sensitivity indices can be calculated by 

 
2
... ...

...
Var( ( , ,...))

Var( )
ij ij i j

ij
a f x x

S
g

=  (20) 

As denoted by Chan and Saltelli [18], the summation of all sensitivity indices, involving both main and 
interaction effect of i-th random variable, is called total sensitivity index (Si

total). From Eq. (18), the total sensitivity 
indices can be calculated by 

 1 1 1total

...

, 1,2,
Var( )

n n n

i ij ijk
j j k

i

S S S

S i n
g

= = =
+ + +

= =
∑ ∑∑

…  (21) 

Sobol [20] suggested to use total sensitivity indices to fix unessential variables. If total sensitivity index for 
certainty variable extremely small compare to 1, that means the contribution of the variable is negligible and the 
variable can be fixed. 

IV. Robust Design – Two Layer Beam 

A. Dynamic Response of Composite Beam 
The robust design problem formulation is demonstrated using a cantilevered, composite beam, shown in Figure 2. 

When an electric field is applied to the piezoelectric part, it will generate bending moment and deform the beam. On 
the other hand, when the base is oscillating with a specific frequency, the deformation of the beam will induce 
electric field, which can be used as an energy reclamation device. System dynamic response of the composite beam 
is highly coupled and the closed-form solution is difficult to obtain [23-25]. In this paper a lumped element 
modeling technique (LEM, [26]) is used to obtain the approximate solution for the system. Under the quasi-static 
assumption, the LEM can estimate the first fundamental natural frequency with accuracy. First, the effective 
mechanical compliance (Ce) and the effective mass (Me) can be calculated by lumping the total strain energy and 
kinetic energy, respectively. The detailed procedure is summarized in Appendix. The first natural frequency is then 
calculated using the following expression [26]. 

 1 1
2n

e e
f

C Mπ
=  (22) 
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 When the composite beam is used as an energy reclamation device, the maximum efficiency can be obtained 
when the excitation frequency and the natural frequency are resonant. Thus, the design goal is to find the design 
variables such that the natural frequency is as close as possible to the excitation frequency. However, due to the 
uncertainty of the material properties, the performance function (natural frequency) in Eq. (22) is not a deterministic 
quantity. Thus, the additional design goal is to minimize the variance of the natural frequency due to the input 
random variables. 

B. Robust Design for Two Layer Beam 
When a robust design problem is formulated in a way such that only the variance of the output is minimized, the 

optimization problem may find an inappropriate design without considering the mean value of the performance. 
Thus, it would be appropriate to consider both the variance and the mean value simultaneously. In this paper, the 
robust design problem is formulated as two-objective optimization: one for the variance and the other for the mean 
value. When two objectives are competing with each other, there will be no single optimum design. Instead, a Pareto 
optimal front can be constructed, which represents the best combination between the competing objective functions. 
Due to the uncertainty in inputs, all constraints are modeled as reliability constraints. 

In the composite beam problem, the goal is to design a structure with natural frequency close to the prescribed 
value. Considering the uncertainties involved in input variables, however, the natural frequency at any design will 
have certain variation, which should also be minimized. In addition, the reliabilities for the stress and deflection 
constraints should be considered. In the reliability-based robust design, the reliability constraints are imposed by 
pushing the mean value to the certain levels of standard deviation in the conservation direction. Thus, the robust 
design problem is formulated as 

 

1 0 2

0 0

Minimize and Var( )

s. t. ( ) Var( ) 0

( ) Var( ) 0

f

w

g f g f

R k R

D k w D

σ

μ

μ σ

μ

= − =

− + − ≤

− + − ≤

 (23) 

where μf is the mean of the first natural frequency; f0 is the excitation frequency; σ is the maximum stress; R is the 
material strength, which is assumed as 11,743Pa; w is the tip deflection and D0 is the allowable maximum tip 
deflection, which is 7.138 nanometer; and k is the user-defined constant for specific target reliability level. It is 
assumed that uncertainties only exist in the material properties such as elastic modulus and material density. Table 6 
lists the random parameters of these quantities. All random variables are assumed to be normally distributed and the 
standard deviation for the elastic modulus is 10% of the mean value and that of the density is 5%. 

  

In the composite beam problem, three design variables are defined: beam length L, shim thickness ts, and PZT 
layer thickness tp. The robust design problem involves three deterministic design variables and four random 
parameters. For given design variables, the SRS for the performance functions, such as natural frequency, stress, and 
tip deflection, are constructed according to Eq. (1). Then, the performance variances are calculated from Eq. (4) and 

 

ts 

tp 

b L 

PZT 
Shim 

 
Figure 2: Piezoelectric cantilevered composite beam 

Table 6: Random parameters for the composite beam structure 
Random variable Mean  Standard deviation 

Young’s modus of shim (Es) 169 GPa 16.9 GPa 
Density of shim (ρs) 2330 kg/m3 116 kg/m3 
Young’s modus of PZT (Ep) 60 GPa 6 GPa 
Density of PZT (ρp) 7500 kg/m3 375 kg/m3 
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variance sensitivity from Eq. (5). The values and sensitivities of the two objectives functions g1 and g2 with respect 
to the three design variables are summarized in Table 7 at the initial design (ts = 6μm, tp = 0.2μm, L = 1000μm). 
Table 7 shows that for given design, the mean of the frequency will change at least 15 times more than the 
frequency variance. Thus, it is easier to change the mean values than to change the frequency variance. This 
observation leads to the idea of controlling the input variances directly rather than controlling the design variables in 
the following section. 

  

Since two objective functions are competing with each other, there will be no single optimum design. In such a 
case, the value of one objective function is fixed and then the minimum value of the other objective function can be 
found. By repeating this procedure for different values, a Pareto optimal front can be constructed. Figure 3 shows 
the Pareto optimal front of the two-objective optimization problem in Eq. (23). All points in the Pareto front are 
optimum design in a sense that one objective function cannot be reduced further without increasing the other 
objective function.  

   

C. Global Sensitivity Analysis 
In Figure 3, the change in the mean value (abscissa) is more significant than that in the standard deviation 

(ordinate), which is consistent with the observation in Table 7. This result indicates that when the design variables 
are deterministic, it is relatively easier to change the mean value rather than the performance variance. The 
performance variance can be changed more effectively by controlling input variance. However, controlling input 
variance accompanies manufacturing cost or large number of coupon tests. Thus, in practice, it is important to find 
the contribution of random variables to the performance variance, and then, to spend more resources in controlling 
the most significant random variable.  

In Table 8, the contribution of input random variables to the performance variance is summarized in terms of 
total sensitivity indices in Eq. (21). It can be found that the contributions of ρs and Es are more than 99% of the 
performance variance. Thus, it will be meaningful to reduce the variance of the shim rather than that of the PZT. 

  

Table 8: Total sensitivity indices for the composite beam structure (ts = 6μm, tp = 0.2μm, L = 1000μm) 
total
pES  total

p
Sρ  total

SES  total
S
Sρ  

0.00% 0.96% 85.87% 13.17% 

 
Figure 3.  Pareto optimal front for the robust design of the composite beam 

Table 7: Sensitivities of objective functions at the initial design (ts = 6μm, tp = 0.2μm, L = 1000μm) 

g1(Hz) g2(Hz) ∂g1/∂ts 
(Hz/m) 

∂g1/∂tp 
(Hz/m) 

∂g1/∂L 
(Hz/m) 

∂g2/∂ts 
(Hz/m) 

∂g2/∂tp 
(Hz/m) 

∂g2/∂L 
(Hz/m) 

834.88 144.54 −491.02 562.05 5.335 27.15 −36.55 −0.29 
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V. Robust Design by Tolerance Control 
In the previous section, the input variances were considered as uncontrollable variables and only deterministic 

design variables were considered. However, in tolerance design, the design variables are fixed, while the variances 
of random variables are changed to reduce the output variances further. However, in such a problem, the optimum 
design will reduce all input variances to zero. Thus, the robust design will turn out to be zero variance.  

In practice, reducing input variance requires cost. Different costs are anticipated in reducing the variance of 
different inputs. The cost of controlling individual input variance can be represented by a cost-tolerance model [27]. 
Thus, a more appropriate robust design problem will be: for a given investment how much individual variance 
should be reduced in order to minimize the performance variance. Based on the total budget of controlling input 
variability, the robust design problem can be written as 

 

[ ]1 2

total
1

Minimize Var ( , ,..., )

s . t. ( )

n

n

i i
i

g

C C

σ σ σ

σ
=

≤∑
 (24) 

where σi is the standard deviation of i-th random variable, Ci is the cost function of controlling i-th standard 
deviation, Ctotal is the total investment. 

Similar to the robust design problem with deterministic design variables, the optimization problem in Eq. (24) 
requires the derivative of the performance variance. The only difference now is that the derivative is taken with 
respect to the input variance. By substituting j-th design variable dj in Eq. (5) to j-th random parameter jσ , the 
gradient of output variance in Eq. (24) with respect to j-th random parameter can be written as 

 
1

Var( )
2 Var[ ( )]

N
i

i i
j ji

g a
a

σ σ=

∂ ∂
= Ψ

∂ ∂∑ ξ  (25) 

Similarly, the derivatives of the coefficients can be obtained from 

 1( )T T

j jσ σ
−∂ ∂

=
∂ ∂
a g

X X X  (26) 

 Since all random variable are assumed to be independent, we have the following chain rule of differentiation: 

 
1

1

( )

( )
j j

j jj j

T

T

ξ
σ σξ

−

−

∂∂ ∂
= ⋅

∂ ∂∂
g g  (27) 

where Tj is the transformation of j-th random variable from original random space to standard normal space:  

 ( )j j jT xξ =  (28) 

Therefore, the sensitivity of performance variance with respect to random parameter can be obtained by combining 
Eqs. (5), (8) and (27) if the derivative 1/ ( ) /j j jT xξ−∂ ∂ = ∂ ∂g g  is available. 

As an illustration of the effectiveness and convergence properties of the proposed approach, the cantilevered 
beam model (Figure 1) in Section II is used. Based on the accurately estimated performance variance in Section II, 
the variance sensitivities with respect to input variances are calculated using proposed method in Eq. (25). Table 9 
and Table 10 show the sensitivities obtained from the proposed method along with those from the finite difference 
method. Since the analytical sensitivity is available for the linear performance, Table 9 also lists the analytical 
sensitivity. It turns out that the proposed, SRS-based sensitivity calculation method provides accurate sensitivity 
information. Since the proposed method only requires the calculation of performance sensitivity at sampling points 
[Eq. (27)], the computational cost will be much less than that of the finite difference method. 
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With performance variance and its sensitivity, the robust design problem with input variance control in Eq. (24) 
can be solved efficiently. Consider the robust design problem that minimizes the variance of natural frequency with 
strength and deflection constraints, as 

 
1 1

2 2

1

Minimize Var( )

s. t. ( ) ( ) 0

( ) ( ) 0

( )
n

i i tot
i

E g k g

E g k g

C C

ω

σ

σ

σ
=

− ≥

− ≥

≤∑

 (29) 

where g1 and g2 are strength and deflection constraints in Eq. (10) and (11), respectively. In this optimization 
problem, the deterministic design variables, w and t, are pre-determined (w = 2.73, t = 3.50) from the previous 
optimization. Now, the optimization is performed by changing the standard deviations of input random variables. In 
Eq. (29), ω is the first natural frequency of the beam defined as 

 
2

2
4( )

2 3
EI t E

L
AL

β
ω β

ρρ
= =  (30) 

and E(⋅) and σ(⋅) represent the expect value and standard deviation of random output, respectively, and Ci(σi) is the 
cost-tolerance function for the i-th random variable. For a specific boundary condition, the term, β, is constant. Thus, 
the objective function to control the variance of natural frequency is modified to  

 2Minimize   Var Var
2 3
t Eω

ρβ
⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ = ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 (31) 

Table 11 lists random variables and cost-tolerance functions [27] for the random variables. 

 

Table 11: Random variables and cost-tolerance functions 
Variables X Y R E ρ 

Distribution N(500,σ1
2)lb N(1000,σ2

2)lb N(40000,σ3
2)psi N(29E6,σ4

2)psi N(0.28,σ5
2) 

Cost-tolerance 1.5+200/σ1 1.5+200/σ2 1.5+1.6*107/σ3
2 200Exp(-σ4*10-6) 18Exp(-100σ5) 

σi 25≤σ1≤200 50≤σ2≤400 1000≤σ3≤4000 106≤σ4≤3*106 0.01≤σ5≤0.05 

Table 10: Sensitivity of variance for nonlinear performance (deflection) 
∂Var/∂σX 

(SRS) 
∂Var/∂σX 

(FDM) 
∂Var/∂σY 

(SRS) 
∂Var/∂σY 

(FDM) 
∂Var/∂σE 

(SRS) 
∂Var/∂σR 
(FDM) 

3.41e-3 3.41e-3 5.77e-5 5.77e-5 2.66e-8 2.66e-8 

Table 9: Sensitivity of variance for linear performance (strength) 

∂Var/∂σX 
(SRS) 

∂Var/∂σX 
(FDM ) 

∂Var/∂σX 
(Analytic) 

∂Var/∂σY 
(SRS) 

∂Var/∂σY 
(FDM ) 

∂Var/∂σY 
(Analytic) 

∂Var/∂σR 
(SRS) 

∂Var/∂σR 
(FDM) 

∂Var/∂σR 
(Analytic) 

3.2e5 3.2e5 3.2e5 8.0e4 8.0e4 8.0e4 4000 4000 4000 
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To demonstrate the robust design, total cost of controlling variance at initial design has been chosen as cost 
constraint. Thus, the design goal is to minimize the performance variance, while maintaining the same cost with 
initial variance control. Table 12 shows that the standard deviation of natural frequency reduced from 452.5 Hz to 
325 Hz by redistributing the input variances. Since the natural frequency is independent of the applied loads and the 
two constraints are not active, the final design increased the variances of the first three random variables. The 
optimum design maintains the variance of the elastic modulus and halves the density, which is more cost effective 
than reducing the variance of the elastic modulus. 

  

VI. Conclusions 
In this paper, SRS-based variance calculation is proposed to facilitate robust design application. Accurate 

variance sensitivity analysis is presented for the gradient-based optimizer. A simple cantilevered beam with two 
failure modes, one is linear and another is nonlinear, is used to illustrate the accuracy and robustness of variance 
calculation. 

Robust design for the natural frequency of a cantilevered, composite beam showed that controlling deterministic 
design variables makes less change of the performance variance than that of the performance mean, we found it is 
more important to control the input variance itself rather than the design variable in our specific problem. Global 
sensitivity is then introduced to address which random variables should be paid more attention to reduce total 
performance variance.  

Finally, a cost model based robust design is proposed to control the input variance, an alternative way of 
tolerance design. Design sensitivity analysis of performance variance with respect to input variance has been 
proposed in mathematical programming. Cantilever beam model is used to illustrate the effectiveness of tolerance 
design.  

VII. Appendix 

A. Bending Moment: 

 As indicated in Figure 2, the cantilever composite beam subjects to a bending moment (M0) at the ends of the 
piezoceramic. This is caused by induced strain from applied voltage [28]. Figure A-1 replaces the mass of the 
composite beam as an equivalent uniform load (q) due to its weight. R and Mr are the reaction force and bending 
moment at the clamp.  

Thus, the bending moment in the composite beam can be expressed as 

Table 12: Random variables and cost-tolerance functions 
Design Variables Initial design Optimal design 

σ1 100 200 
σ2  100 400 
σ3 2000 4000 
σ4 1.45*106 1.45*106 
σ5 0.02 0.010762 

Objective 452.5 325.0 
Ctotal 17.8274 17.8274 

M0 

R 

M0 
Mr q 

L 

Figure A-1: Free body diagram of two-layer beam 
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2

0( 0 )
2r
x

M x x L M Rx M q≤ ≤ = + − −  (32) 

where R qL=  and 2 / 2rM qL= . 

B. Geometric Properties of Composite Beam 
Before we calculate the effective compliance and lumped mass, geometric properties such as location of neutral 

axis and flexural rigidity of the composite beam are required in static analysis of the beam. 
If we define c2 as the location of the neutral axis from the bottom of piezoceramic and (EI)c as equivalent 

flexural rigidity in composite beam, they can be calculated by the following two expressions: 

 
( )

2

2
2 2 ,

ps
s s p p

s s p p

tt
E t t E

c
E t E t

+ +
=

+
 (33) 

 ( )c s sc p pcEI E I E I= +  (34) 

where scI  and pcI  are the moment of inertia of the shim and PZT layer with respect to its own neutral axis, 
respectively.  

C. Effective Compliance for Composite Beam: 
To find the effective compliance for the composite beam in Eq. (22), we need to use total potential energy in the 

beam as shown Eq. (35):  

 
( ) ( )

2
2

2
0

2

L
cEI d w x

PE dx
dx

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠∫  (35) 

where 

 
2

4 3 2( )
24( ) 6( ) 4( )c c c

q qL qL
w x x x x

EI EI EI
= − + −  (36) 

Equation (36) is obtained by conventional Euler-Bernoulli beam theory. Thus, by lumping the overall potential 
strain energy at the tip, an effective short circuit mechanical compliance for the composite beam will be calculated 
as 

 
2( )

2
Ftip

e
w

C
PE

=  (37) 

D. Effective Mass for Composite Beam: 
In order to calculate the effective lumped mass in Eq. (22), total kinetic energy in the composite beam [Eq. (38)] 

will be used. 

 ( )2

0
2

L
LcKE w x dx
ρ

= ∫ �  (38) 

where Lcρ  is the equivalent mass density of the composite beam and ( )w x�  is the velocity in the beam. 
For a simple harmonic motion, the velocity of the beam are related to the displacement by  
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 ( ) ( )w x j w xω=�  (39) 

( )w x�  is then expressed as 

 ( )
( )

F
F

tip
tip

w x
w x w

w
=� �  (40) 

Effective mass for the composite beam from its deflection shape is obtained by lumping the kinetic energy of the 
beam at its tip: 

 ( )2
2 2

0

2
( )

F F

L
Lc

e
tip tip

KE
M w x dx

w w
ρ

= = ∫�
 (41) 
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