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Abstract 
Mechanical properties of materials in small-scale applications, 
such as thin coatings, are often different from those of bulk 
materials due to the difference in the manufacturing process. 
Indentation has been a convenient tool to study the mechanical 
properties in such applications. In this paper, a numerical 
technique is proposed that can identify the mechanical 
properties by minimizing the difference between the results 
from indentation experiments and those from finite element 
analysis. First, two response surfaces are constructed for 
loading and unloading curves from the indentation experiment 
of a gold film on the silicon substrate. Unessential coefficients 
of the response surface are then removed based on the test 
statistics. Different from the traditional methods of 
identification, the tip geometry of the indenter is included 
because its uncertainty significantly affects the results. In order 
to validate the accuracy and stability of the method, the 
sensitivity of the identified material properties with respect to 
each coefficient is analyzed. 

1. Introduction 
Micro-scale materials show different properties from those of 
bulk materials.[1] Recent advances in technology allow 
experiments to be carried out on such a small scale. Indentation 
is a powerful tool to study mechanical properties. It is widely 
used in the automotive, semiconductor, biomedical, and 
magnetic recording industry, and by academics.[2-4] In this 
paper, a numerical method is presented that can identify the 

material properties using the data obtained from indentation 
experiments. 

Recently, numerical studies emerged to catch up with the 
experimental research on micro-scales. Numerical methods can 
determine properties or parameters that are difficult to obtain 
from experiments. They are able to elucidate physical 
mechanisms or procedures that are difficult in experiments. 
They can also provide suggestions and give a guide for 
experiments.  

For nano-scales molecular dynamics (MD) simulation, 
pioneered by Landman et al.[5], is a useful tool for analyzing 
nanometric or atomic phenomena, including indentation and 
scratch. Using MD simulation, indentation and scratch of 
different materials have been broadly studied to explore the 
inner physical mechanism.[6-8] However, MD simulation is 
limited by the scale of the problem in time and dimension. 
Typically, the current computational facilities can only 
accomplish the simulation conditions of tens or hundreds of 
pico-seconds and hundreds of angstroms. Moreover, the small 
indenter size used in MD simulation (tens of angstroms) is 
often too small for practical applications. Thus, a different 
mathematical tool that can cover larger scales in time and 
dimension is required for the nano-scale simulation of 
indentation problems.  

Another type of tool is a quasi-continuum method, which 
bridges atomistic simulations and continuum modeling. Several 
types of quasi-continuum methods have been developed in the 
research community.[9-14] The general ideas are similar to each 
other; that is, to use continuum assumptions to reduce the 
degrees–of–freedom and computational demands in 
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homogeneously and smoothly deformed regions, and to use the 
atomistic model to capture atomistic detail in regions where it 
is required. Some mechanical problems have been successfully 
solved by this method, but some issues are still under 
discussion, such as coupling between the continuous and 
atomistic regions, inertial and thermal effects. 

Finite element analysis (FEA), based on continuum 
assumption and domain discretization, was developed to 
analyze micro-scale indentation and scratch problems. Dao et 
al.[15] and Bucaille et al.[16] used FEA to study instrumented 
sharp indentation and proposed analytical expressions of 
elastoplastic properties based on FEA results. Bucaille et al.[17] 
used FEA to perform scratch analysis using a cone-shape 
indenter in order to study the influence of the rheology. Most 
small-scale indentation experiments in reality are within sub-
micron scale (hundreds of nanometers) due to the size of the 
indenter geometry. The feasibility and accuracy of FEA for this 
scale is being investigated. 

Recent technological advances in indentation test facilities 
have led to the availability of accurate measurements of 
indentation force and indentation depth, from which hardness 
and other mechanical properties can be extracted. At the same 
time, theoretical studies have emerged to elucidate mechanical 
characterization and physical mechanisms.[1, 15, 17-21] For 
example, Goddard and Wilman[21] developed analytical models 
for friction coefficients of different indenters. Oliver and 
Pharr[19] and Doerner and Nix[20] developed methods to obtain 
hardness and the elastic modulus from the maximum load and 
the initial unloading slope.  Recently, Dao et al.[15] and 
Bucaille et al.[16] constructed dimensionless functions to 
determine the plastic characterization of metals based on FEA 
simulation.  

In practice, the success of FEA strongly depends on the 
accuracy in the material properties. For macro-scales, many 
standard experimental procedures have been developed to 
obtain these properties. In micro-scale, however, very limited 
experimental procedures are available due to scale-related 
issues.[15] First, it is difficult to fabricate a perfect indenter 
shape. The effect of inaccurate tip geometry becomes 
significant when the indentation depth is small. In addition, the 
measurement error in such a small scale can be critical. 
Sensitivity analysis with respect to experimental data provides 
important information in such a case. 

The organization of the paper is as follows: In Section 2, the 
feasibility of FEA is first verified to be a useful and powerful 
tool to study micro-scale indentation by studying the 
indentation response of elastoplastic aluminum alloys. A new 
procedure using multivariable optimization is then proposed to 
identify the material properties of a gold film on a silicon 
substrate in Section 3. Since experimental error in such a small 
scale can significantly affect the accuracy of the identified 
material properties, sensitivity analysis of optimum material 
properties to experimental data is presented in Section 4, 
followed by conclusions in Section 5. 

2. Indentation Simulation 
As discussed above, finite element analysis is based on 
continuum assumption. When a problem reaches atomic scale, 
this assumption is no longer valid. The problems studied below 
are larger than atomic scale, but less than micrometers. The 
objective of this section is to verify the feasibility and accuracy 
of FEA at this scale. Since the motion of the indenter is slow 
and uniform, nonlinear static FEA is performed with 
elastoplastic material and contact constraints between the 
indenter and specimen. Since the deformation is large and non-
uniform, the large deformation theory is used, by which 
detailed pile-up and sink-in effects can be more accurately 
captured. In this paper, a commercial program, ABAQUS[22], is 
used for numerical simulation. 

2.1. Indentation Modeling 
The indentation by a diamond tip on two different types of 
aluminum alloys with a constant loading and unloading rates is 
implemented. The indented specimen has the dimensions of 
300 μm  depth and 300 μm  length. The size of the sample 
must be large enough such that the effect of the far field 
boundary is not significant. In addition, the element near the 
indenter tip must be small enough so that the deformation at the 
tip can be captured accurately.  

The Berkovich indenter is used in this model. The 3D 
Berkovich indenter is approximated by an axisymmetric 2D 
model. The projected area of the 2D cone is the same as that of 
the 3D Berkovich indenter. The equivalent half angle of the 
indenter becomes o70.3θ = . 

The two aluminum alloys 6061 and 7075 are used as the 
indented specimen. A homogeneous section property is 
assumed in the model. Table 1 shows the material properties for 
the two aluminum alloys. In Table 1, E is the elastic modulus, 
Yσ  the initial yield stress, n the strain hardening exponent, 

and ν  Poisson’s ratio. The indenter is made of diamond with 
a high elastic modulus of 1,100 GPa. 
 
Table 1. Material properties of aluminum alloys 

Material (GPa)E  (MPa)Yσ  n  ν  
Al 6061 66.8 284 0.08 0.33 
Al 7075 70.1 500 0.122 0.33 

 
The total strain is decomposed by two parts, the elastic strain 
eε  and the plastic strain pε , such that 

e pε ε ε= + . (1) 

The elastic behavior is modeled by the elastic modulus and the 
plastic behavior is modeled by a simple power law, 

y

n
y

E

K

ε σ σ
σ

ε σ σ

≤⎧⎪⎪= ⎨⎪ >⎪⎩
, (2) 

where K  is a strength coefficient. Considering continuity at 
the initial yield point,  
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n
Y E Kσ ε ε= = , (3) 

such that 1n n
YK E σ −= . The material behaviors of AL 6061 

and AL 7075 are shown in Figure 1. 
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Figure 1: Elastoplastic material behaviors of aluminum alloys 
 

An axi-symmetric finite element model is constructed to 
analyze the indentation process (Figure 2). Linear quadrilateral 
elements are used to build the indented specimen. Due to the 
high elastic modulus and brittle behavior, the diamond indenter 
is modeled using a rigid body. A total of 4,763 elements are 
used to model the specimen. In order to represent indentation 
accurately, the elements near the indenter have a small size 
with an edge length of 1.5 μm . Far from the contact area, the 
elements have a typical edge length of 12μm . 

 

 
Figure 2: Finite element model of axi-symmetric indentation 
with a conical tip 
 

The surface-to-surface contact constraint is established 
between the rigid indenter and top surface of the specimen. The 
impenetrability condition is imposed between the “master 
surface” indenter and the “slave surface” specimen. 

Mathematically, the contact problem is equivalent to 
constrained optimization, which can be solved using the 
Lagrange multiplier method. Since the friction coefficient is 
difficult to calculate and since the indentation problem does not 
have large slip, frictionless contact is assumed. However, 
friction will be an important factor in the scratch simulation. 

In Figure 2, the bottom surface of the specimen is fixed in 
the y -direction and the left side is fixed in the x -direction. 
The incremental solution procedure is displacement-controlled 
with a loading/unloading rate of 20 μm/sec  in the y -
direction. For AL 7075, the indentation is performed for 0.75 
seconds and then the indenter is removed in order to observe 
the elastic spring-back and the plastic permanent deformation. 
For the AL 6061, the indentation is carried out for 0.5 seconds. 
Even though the indentation depth is only 15μm , the contact 
constraints bring nonlinearity. 

2.2 Simulation and Experimental Results 
The indentation force as a function of the indentation depth 
during loading and unloading steps is an important factor in 
evaluating the elastoplastic properties of the material. Figure 3 
shows the relation between the indentation force and the 
indentation depth of both aluminum alloys. For AL 7075, the 
maximum force reaches around 10 N when the indentation 
depth is 15 μm . For AL 6061, the maximum force reaches 
around 3 N when the indentation depth is 10 μm . The slope of 
the force-depth curve gradually increases because the material 
has strain hardening and the contact area is increased. The 
analysis results show a consistent behavior with the 
experiments[15], which verifies the feasibility and accuracy of 
FEA for small scale indentation problems. 
 
 
 
 
 
 
 
 
 
(a) FEA results   (b) Experiment results 
Figure 3: Indentation response of aluminum alloys by finite 
element analysis and experiment[15] 
 

The equivalent stress distribution of AL 7075 after unloading 
is shown in Figure 4. As expected, the maximum residual stress 
occurs at the tip location. In addition, the residual stress at the 
pile-up region is also high. The equivalent plastic strain in 
Figure 5 indicates that the majority of the volume under the 
indenter has plastic strains exceeding 19.41%, and the 
maximum strain is 233%. 
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Figure 4: Equivalent stress contour plot for AL 7075 after 
unloading (unit: MPa) 

 
Figure 5: Effective plastic strain near the indenter tip 
 

3. Identification of the Material Properties of a Gold 
Film 
Based on the study of aluminum alloys, the material properties 
of a gold film on a silicon substrate are estimated by comparing 
the history of the force-depth curve between the indentation 
experiment and FEA. The 180 nm thick crystalline gold used in 
the film is produced by the electron beam evaporation process. 
The gold material has 99.99% purity with no native oxide. 
Since the grain size of the gold is much smaller than that of the 
bulk material, the material properties are expected to be 
different from those of bulk materials. The crystalline gold is 
modeled using an elastoplastic material with strain hardening. 
The silicon substrate is assumed to be elastic because the 
experiment shows no permanent deformation. 

In Section 2, the geometry of the indenter is assumed to be a 
conical shape. The radius of the tip is ignored because it is 
relatively small, compared to the indentation depth. However, 
when the indentation depth is small, the detailed geometry of 
the indenter can affect the results from both experiment and 
analysis. For example, the indentation depth of the gold film is 
around 50 nm, whereas the radius of the tip is around 1,000 
nm. Since only a small portion of the tip is indented, the tip can 
be considered a sphere. Then the accuracy of the indenter 
geometry contributes to the force-depth response during the 
indentation. 

In general, the indenter geometry can be obtained from the 
Scanning Electron Microscopy image (Figure 6). However, the 
tip geometry contains a certain level of uncertainty because it is 
obtained from pixel images. The effect of such uncertainty is 
usually small when the indentation depth is large enough. 
However, the effect becomes significant when the indentation 
depth is less than 100 nm, which is the case of interest. By 
fitting scanned points in the image, it is shown in Figure 6 that 
the radius of the tip is between 1.05 μm  and 1.2μm . Due to 
the approximation of the fitting, it is not accurate to use the 
fitted curve as the indenter shape in the study. The unique 
feature of the paper is the inclusion of the tip geometry as a 
design variable during material property identification. 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6
Radius (micro-meter)

H
ei

gh
t (

m
ic

ro
-m

et
er

)

SEM image
R=1.05
R=1.20

 
Figure 6: The tip geometry of the indenter from SEM and its 
approximations with a sphere. 
 

A constrained nonlinear multivariable optimization method 
is implemented to identify the material properties as well as the 
radius of the tip. This method seeks the minimum of a function 
(the error between the experiment and numerical analysis) of 
several variables starting with the initial estimation. The design 
variables are the elastic modulus E , initial yield stress Yσ , 
strain hardening exponent n , Poisson’s ratio ν , and the 
indenter radius r .  

The objective function is the error in the force-depth curves 
between the experiment and FEA. Figure 7 shows the force-
depth curve from the experiment and the simulation with the 
initially estimated material properties (Table 2). Let the 
indentation depth is discretized by N  discrete points, out of 
which the loading step has 1N  data points, while the 
unloading step has 2N  points. Mathematically, the objective 
function can then be defined as 

2

1

1
( )

N
i i
s t

i

f F F
N =

= −∑ , (4) 
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where i
sF  and i

tF  are indentation forces from experiment 
and analysis, respectively, at the i-th indentation depth. In 
Figure 7, the indentation depth of the unloading step is reversed 
such that the indentation depth continuously increases during 
the unloading step. 
 
Table 2. Initial and identified material properties 

Design 
variable 

Lower 
bound 

Upper 
bound 

Initial 
estimatio

n 

Optimized 
value 

(GPa)E  25 80 78.5 33.35 
(MPa)Yσ  150 450 300 353.71 
n  0.05 0.3 0.122 0.115 
ν  0.1 0.45 0.3 0.220 
μ( m)r  1.05 1.2 1.1 1.090 

 

 
Figure 7: Indentation force vs. indentation depth with initial 
estimation of material properties 
 

In order to compute the difference between the simulation 
force i

sF  and experimental force i
tF , the two forces should 

be calculated at the same indentation depth iu . However, it is 
impractical to obtain the same simulation data pair ( , )i

s iF u  
with the experiment data pair ( , )i

t iF u  because both are 
performed independently. In order to make this comparison 
consistent, the experimental data are approximated using a 
polynomial response. The approximate response has the 
following expression: 

1

( ) ( )
k

t i i
i

F u x uβ
=

= ∑ , (5) 

where ( )tF u  is the approximated indentation force, iβ  the 
regression coefficient, and ( )ix u  the regression basis. In this 
paper, a monomial basis of order five is used; i.e., 6k =  and 

2 3 4 5[ ( )] [1 ]jx u u u u u u= . Since the force-depth 
curves for loading and unloading are different, two responses 
are constructed: one for the loading step and the other for the 
unloading step. Figure 8 shows the experimental data points 
and the response surface constructed by calculating the 
regression coefficients in Eq. (5), for both the loading and 
unloading steps. In Figure 8(b), the abscissa in the unloading 

step represents the tip location relative to the maximum depth 
from the loading step. 
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Figure 8: Force distribution in the loading and unloading steps 
 

Once the response surfaces ( )tF u  of the experimental data 
have been obtained, the optimization problem can be solved to 
minimize the error function in Eq. (4). The optimized material 
properties and the radius of the tip are shown in the last column 
of Table 2. The most significant difference between initial and 
optimum values occurs in the elastic modulus.  

Figure 9 shows the force-depth comparison between the 
experiment data, initial and optimum designs. The maximum 
indentation force at optimization is -495.69 Nμ , while that 
from experiment is -495.04 Nμ . The error in the objective 
function reduces significantly from the initial design (14887.1) 
to the final optimization (116.7). The force-depth curve with 
optimization values matches the experiment curve much better 
than the initial design parameters, which also shows the 
accuracy of the optimization. Since the slope of the unloading 
curve is strongly related to the elastic modulus, the difference 
in the unloading slope between the initial and the final designs 
verifies that the initial estimation of the elastic modulus was too 
high. 

In the micro-scale indentation, indenter geometry plays an 
important role in the results. Figure 10 compares the results of 
identification with and without inclusion of the radius of the tip 
as a parameter. It is clear that the identified material properties 
with the radius of the tip fit well with the experimental results. 

4.  Sensitivity Analysis 
Indentation forces and depths that are measured from the 

experiment are used as a reference during the material property 
identification. These experimental data are fitted using response 
surfaces such that continuous responses can be obtained. The 
identification problem then minimizes the difference between 
these response surfaces and the results from FEA by changing 
the material properties and the tip radius. Since experimental 
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data may have measurement errors and noise, they are not 
accurate in general and their effect on the identified parameter 
values can be significant. This is especially so because, since 
the magnitudes of forces and depths are small in the thin film 
indentation, these errors and noises may significantly affect the 
accuracy of the identified material properties. The effect of 
identified parameter values with respect to the experimental 
data can be found using the sensitivity analysis technique.[23] 
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Figure 9: Force and depth comparisons of experimental, initial 
design and optimized results 
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Figure 10: Comparison of the force-displacement curve with 
the identified material properties (with and without tip radius) 
  

In practice, calculating sensitivity with respect to much 
experimental data is exhaustive and cannot provide physically 

meaningful results. Since experimental data are represented by 
the coefficients of the response surface, the sensitivities with 
respect to these coefficients are calculated in this paper. The 
sensitivity information will provide the dependence of the 
identified material parameters on the accuracy of experimental 
data. 

4.1. Significance of Coefficients 
Before performing sensitivity analysis, the test that can 
determine the significance of each approximation coefficient in 
Eq. (5) is conducted. Such a test is useful in determining the 
importance of each regression variable in the model. For 
example, the model can be more effective by including 
additional variables. On the other hand, no significant 
difference can be found by deleting one or more variables that 
are already in the model.[24] 

Let us consider the regression basis jx  and its coefficient 
jβ . It is clear that if the coefficient jβ  is small, then jx  can 

be deleted from the model without significantly affecting the 
results. More specifically, the criterion of the deletion is based 
on the following test statistic:  

2j

j

jj

t
C

β
β

σ
= , (6) 

where jjC  is the diagonal element of 1( )T −X X  correspon-
ding to jβ , 2σ  is the estimated variance given by 

2 ESS
N k

σ =
−

,                   (7) 

and X  is the regression variable matrix, defined as 
1 1 1
1 2

2 2 2
1 2

1 2

...

...
[ ]

...

k

k

N N N
k

x x x

x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X
# # % #

, (8) 

where k  is the number of the regression bases and N  is the 
number of experiment observations. In Eq. (7), ESS  is the 
square-sum residuals, defined as 

( )2
1

N
i i

E t t
i

SS F F
=

= −∑ , (9) 

where i
tF  is the observation value from the experiment and 

i
tF  the fitted value. 
The test statistic is distributed as the student distribution 
N kt − .[24] If the test statistic is small, then the contribution of the 

regression variable and its coefficient is small. In general, a 
critical statistic /2,N ktα − , depending on parameter α , is first 
determined. The regression basis jx  and its coefficient jβ  
are kept if its test statistic is larger than the critical statistic, as 

/2,j N kt tβ α −> , (10) 
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which means that the effect of the regression basis is 
significant.[24] In the identification problem of Section 3, the 
rejection criterion in the student’s distribution is selected as 

0.05α = . Thus, the critical statistic for both loading and 
unloading steps becomes 1.960.  

In the nonlinear regression in the loading and unloading 
steps, the test statistics for each regression coefficient is shown 
in Table 3. It is noted that for the loading step the magnitudes 
of test statistics are increased at the higher order of 
polynomials. The opposite trend is observed for the unloading 
step. All test statistics are greater than the critical statistic 
except for 0β  in the loading step. Thus, the constant term in 
the response surface of the loading step can be removed 
without significantly affecting the result. 
 
Table 3. Nonlinear regression and significance statistics 

Loading step Unloading step Coef. Value Stat. Value Stat. 
0β  6.945e−1 0.649 4.966e+2 −279.179 
1β  −2.391e+0 −6.263 8.476e+1 23.009 
2β  −6.304e−1 −14.829 −6.953e+0 −3.335 
3β  3.358e−2 17.101 1.235e+0 2.684 
4β  −8.060e−4 −20.324 −1.353e−1 −3.156 
5β  6.585e−6 22.728 4.638e−3 3.295 

4.2. Sensitivity Analysis 
With the regression variables that have significant effects on 
the response, the sensitivities of the identified parameters with 
respect to the regression coefficients are calculated. Consider 
the general form of an optimization problem with inequality 
constraints, defined as 
minimize ( , )

subject to ( , ) 0, 1, ,j

f p

g p j k≥ =

d

d …
,    (11) 

where [ , , , , ]YE n rσ ν=d  is the vector of material properties 
and indenter geometry that can be changed during the 
optimization, and p  is a fixed parameter during the 
optimization (for example, a regression coefficient). The goal is 
to calculate the sensitivities of the optimized parameter *d  
with respect to the regression coefficient ip β= . 

The optimality condition for the above optimization problem 
can be stated using the Karush-Kuhn-Tucker condition,[23] as 

1

0, 1, ,

0, 1, ,

r
j
j

i ij

j

gf
i m

d d

g j q

λ
=

∂∂
− = =

∂ ∂

= =

∑ …

…
, (12) 

where m  is the number of identified parameters, q  the 
number of active constraints when the optimization problem is 
converged, and jλ  the Lagrange multiplier for the j-th active 
constraint. Since the optimality condition must satisfy for all 
parameters, Eq. (12) can be differentiated with respect to 
parameter p  to obtain[23] 

*

*

( ) [ ]
[ ] [ ] 0

[ ] 0T

f
p p p p

p p

∂ ∇ ∂∂ ∂
− − + − =

∂ ∂ ∂ ∂

∂ ∂
+ =

∂ ∂

Mx
A Z M

d g
M

λ
λ

, (13) 

where λ  is the vector of Lagrange multipliers obtained while 
solving the optimization problem, ( ) /j jf f d∇ = ∂ ∂  is the 
derivative of the objective function, [ ] [ / ]j ig d= ∂ ∂M  is the 
derivative of the active constraints, [ ]A  is the Hessian matrix 
of the objective function, [ ]Z  is the matrix defined as 

2

1

[ ]
q

j
kl j

k lj

g
Z

d d
λ

=

∂
=

∂ ∂∑ . (14) 

The sensitivity equation (13) is a linear system of equations 
and solves for * / p∂ ∂d  and / p∂ ∂λ . 

When there is no active constraint, the sensitivity formulas 
in Eq. (13) can significantly be simplified, as 

* ( )
[ ] 0

f
p p

∂ ∇∂
+ =

∂ ∂
d

A . (15) 

Thus, in order to calculate the sensitivity of the identified 
parameters with respect to a regression coefficient, the gradient 
of objective function and its Hessian matrix are required.  

From the expression of the objective function in Eq. (4), 
these terms can be calculated as 

1

1
2( )

N i
si i

s t
j ji

f F
F F

d N d=

∂ ∂
= −

∂ ∂∑  (16) 

and 
2 2

1

2
( )

N i i i
s s si i

s t
j k j k j ki

f F F F
F F

d d N d d d d=

⎛ ⎞∂ ∂ ∂ ∂ ⎟⎜= + − ⎟⎜ ⎟⎟⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠∑ . (17) 

In addition, the coupled term can be expressed by 

1

2 N i i
t s

j ji

f F F
p d N p d=

⎛ ⎞∂ ∂ ∂ ∂⎟⎜ = −⎟⎜ ⎟⎟⎜∂ ∂ ∂ ∂⎝ ⎠ ∑ . (18) 

In the case of the loading step, 
1

1

1

2
( )

N i
sm

i
m j ji

f F
u

d N dβ
−

=

⎛ ⎞∂ ∂ ∂⎟⎜ = −⎟⎜ ⎟⎟⎜∂ ∂ ∂⎝ ⎠ ∑ . (19) 

Or, in the case of the unloading step, 
2

1

1

2
( )

N i
sm

i
m j ji

f F
u

d N dβ
−

=

⎛ ⎞∂ ∂ ∂⎟⎜ = −⎟⎜ ⎟⎟⎜∂ ∂ ∂⎝ ⎠ ∑ , (20) 

where 1 431N =  and 2 26N =  are taken from the loading 
and unloading steps, respectively. 

In order to solve the sensitivity equation (15), the 
derivatives are calculated using the central finite difference 
method. For example, the derivative of i

sF  can be 
approximated by 
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( ) ( )
2

i ii
s j j s j js

j j

F d d F d dF
d d

+ Δ − − Δ∂
=

∂ Δ
, (21) 

where jdΔ  is a small perturbation of the parameters. The 
second-order derivatives of i

sF  are much smaller than the first 
term and, thus, they are negligible. 

Tables 4 and 5, respectively, show the sensitivities of the 
identified parameters with respect to the regression coefficients 
at the loading and unloading steps. Since the magnitudes of the 
parameters are different, the sensitivities are normalized using 
their identified values. 

As shown in the two tables, the sensitivity of the identified 
parameters increases at the higher order polynomials for both 
loading and unloading steps. This result foresees the difficulty 
in the identification problem. In the view of the regression 
coefficients in Table 3, the values of the coefficients are smaller 
at the higher order polynomials, but they are more sensitive to 
the identified parameters.  

In both the loading and unloading steps, the hardening 
exponent always has the biggest sensitive value compared with 
other variables with respect to each regression coefficient, 
which means that the hardening exponent is the most sensitive 
variable due to the error in the experiment measurement. 

5.  Conclusions 
Mechanical properties of materials in micro-scales are different 
from those of bulk materials. In this paper, a new procedure is 
proposed to identify the material properties of elastoplastic thin 
gold films by (i) including the tip geometry of the indenter as a 
design variable, (ii) approximating the experimental data using 
polynomial responses, and (iii) performing sensitivity analysis 
with respect to regression coefficients. 

A comparison between experiment and analysis is made for 
the responses throughout the whole indentation process, not the 
data at the end of the process. This is important, because the 

material shows loading history dependent responses. The 
uncertainty related to the indenter tip geometry is taken care of 
by including the radius of the tip as a variable of the 
optimization. Two fifth-order response surfaces are constructed 
to fit the experimental data and a test statistic is used to identify 
unessential coefficients. It turns out that the constant term of 
the load step is unessential and, thus, removed. The response 
surfaces have smaller values of coefficients at the higher-order 
terms, which is common for the regular response surfaces. 
However, the test statistics show different trends for loading 
and unloading steps. In the case of the loading step, the test 
statistic is higher for the higher-order terms. In the case of 
unloading step, however, it is higher for the lower-order terms. 
Sensitivity with respect to the regression coefficients shows 
consistent trends: higher-order terms have higher sensitivities. 
This trend foresees difficulties in material property 
identification, as smaller coefficients have higher sensitivity. It 
turns out that the hardening exponent is the most sensitive 
variable due to the error in the experiment measurement. 
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