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ABSTRACT 
Characteristics of magnetic–levitation system are studied using 
dynamic models that include motion–dependent lift, drag, slip, 
and roll motions.  In addition, the contact constraint between the 
vehicle and the track is modeled using the penalty method.  
Unknown numerical parameters are identified using the 
optimization technique.  The numerical tests are focused on the 
damping characteristic, stability in lifting and slip motions, the 
lifting efficiency compared with the concentric force, and 
contact with track. 

INTRODUCTION 
The maglev system utilizes magnetic fields produced from 
ground based electrical power sources to levitate the vehicle 
above the track.  The vehicle is then accelerated along the track 
using high–power electro-magnets [1-3].  Recently, Post and 
Ryutov [4, 5] proposed a new concept, Inductrack, that provides 
passive means of levitation.  The realization of a stabilized ride 
using maglev has been a major hurdle in developing its 
feasibility for this purpose.  The main scope of this paper is to 
examine the feasibility of the Inductrack magnetic levitation 
system, developed at the Lawrence Livermore National 
Laboratory, by identifying the dynamic characteristics of the 
magnetic–levitation suspension system with computational 
dynamic analysis. 

The maglev system is composed of a vehicle (cradle) with 
permanent magnets and a rail with coils in it.  The magnets and 
the coils produce an electromagnetic field, and once the cradle 
starts moving, the change in magnetic field results in 
electromagnetic force.  A moving cradle with a special 
configuration of high–strength permanent magnets generates 
passive magnetic levitation when it moves over multi-loops of 
wire embedded in the track underneath.  This system is 
configured so that the resulting electromagnetic forces are 
decomposed into driving forces and lifting forces.  Compared to 
other maglev systems, the Inductrack system can provide 

levitation forces with simpler and less expensive equipments. 
Early stage development of the maglev system has focused 

on how to generate enough lifting force using a special array of 
magnets.  It has been demonstrated by Post and Ryutov [6] that 
the Inductrack concept can be used to build a simpler and less 
expensive system using Halbach array [7] of permanent 
magnets, which induces repelling currents in a close-packed 
array of shorted conducting circuits in the track.  Based on 
lumped–circuit analysis, they showed that the maximum 
levitation capacity was up to 40 tons per square meters of 
magnets.  As shown in Figure 1, permanent magnets with a 
direction of magnetization that is rotated by 90o degrees with 
respect to adjacent magnets produce a sinusoidal variation of a 
magnetic field at a constant distance from the bottom of the 
array.  This array maximizes the magnetic field below the array, 
while cancelling out the field above it.  When the array of 
magnets moves over the inductively loaded circuit track, the 
track induces repelling currents that levitate the magnet, or the 
cradle attached to it.  Conceptually the system is stable because 
the levitation force is only generated when the cradle is moving, 
and it settles on the track when the speed is reduced below a 
threshold. 

However, the practical application of the maglev system 
requires stability and reliability of the system under various 
operating conditions.  Motion–based magnetic forces are 
important because they can induce various types of instability in 
the maglev system.  In addition, the periodic structure of the 
magnetic forces may also induce parametric and combination 
resonances; especially, the lifting force is inversely proportional 
to the exponential distance between the permanent magnet and 
the track.  A small perturbation of the cradle position can cause 
a large variation on the lifting force, which is then related to the 
stability and ride quality of the system.  Thus, it is essential to 
model the dynamic system when the body force field is coupled 
with kinematics of the system. 
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In this paper, a new dynamic system modeling technique is 
proposed to consider the highly nonlinear effect of the electro-
magnetic force field that is changed in the pattern of the 
sinusoidal wave along the track. The coupled mechanical and 
magnetic system is governed by nonlinear system of differential 
equations. The dynamic behavior of the mechanical system 
depends on the force generated by the magnetic field, while the 
magnetic force depends on the location and velocity of the 
structure. 

2. Review of Magnetic Suspension System Modeling 

2.1. Magnetic Suspension Modeling 
The theoretical study of the magnetic levitation force has been 
performed in depth by Post and Ryutov [6] using the lumped–
circuit analysis. In this section, the theory of the magnetic 
suspension that can be used in the dynamic analysis in the 
following sections is presented. 

Consider a Halbach array of magnets, as shown in Figure 1, 
with width w , wavelength λ , and peak strength 0B  of 
magnetic field at the surface.  The cradle is attached on top of 
the magnets, and the coils are winded on the outer surface of the 
window–frame track.  The coordinate system is established such 
that the origin is on the top surface of the track, the cradle is 
traveling in the z–coordinate direction, and it is levitated in the 
y–coordinate direction.  Let the array be moving in the z–
direction with velocity zv , and the gap between the bottom 
surface of the magnets and the coils be g .  The wave number of 
the Halbach array is 2 /k π λ= , and the angular frequency of 
the magnetic field due to the motion of the cradle is zkvω = .  
Then, the magnetic field from the array can be approximated by 
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where zB  and yB  are, respectively, the longitudinal and 
vertical components of the magnetic field at the distance y  
from the coils.  The magnetic field is an exponential function of 

distance y  and shows a sinusoidal behavior as it moves along 
the track.  With the strength of 0 1.0 TeslaB = , for example, a 
square meter sized magnet can levitate about 40,000 kg [4]. 

From the assumption that the coils in the track have 
negligible thickness, the induced flux can be obtained by 
integrating zB  over the upper and lower legs of the coils, as 

0
0 sin( ) exp( )sin( )

wB
t kg t

k
φ φ ω ω= = − , (2) 

where 0φ  is the peak flux enclosed by the circuit, which 
depends on the gap g .  In Eq. (2), the contribution from the 
coils in the lower legs are ignored because their contribution is 
less than 0.2% when the height of the track is the same as the 
wave length of the magnets. 

The moving magnets over the closed circuit induce 
currents, which are governed by the following circuit equation: 

0 cos( )
dI
L RI t
dt

ωφ ω+ = , (3) 

where ( )I t  is the induced current, L  the inductance, and R  the 
resistance of the circuit.  The flux varies with sin( )tω , and the 
voltage is proportional to the rate of change of the flux through 
the circuit.  The induced current in the steady–state can be 
obtained by solving Eq. (3) as 
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where the peak flux 0φ  is available from Eq. (2). 
The induced current interacts with the magnetic field to 

produce the following levitation (lift) and drag forces: 
lift

drag
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=
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where w  is the width of the magnets.  As the speed of the 
cradle increases, the ratio /R Lω  becomes smaller.  In such a 
case, the cos( )tω  term in Eq. (4) can be negligible, and the 
induced current ( )I t  is in phase with the flux ( )zB t  in Eq. (1), 
which yields the maximum levitation force.  The forces in Eq. 
(5) vary along the wavelength of the magnets.  Using the 
relation of t kzω =  and averaging Eq. (5) over the wavelength 
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Figure 1. Passive magnetic levitation using a Halbach array of magnets.  The horizontally-
polarized magnets concentrate the flux on one side of the array and help to form the 
sinusoidal flux shape.  Driving coils generate synchronous pulses to provide thrust in z-
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of the magnets, the averaged levitation and drag forces can be 
obtained, respectively, as 
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These forces are exerted by a single circuit.  In the following 
derivations, all forces are averaged over the wavelength of the 
array, and the angled bracket 〈 〉i  will be dropped for notational 
simplicity. 

The efficiency of the magnetic suspension system is often 
measured as the life/drag ratio.  From Eqs. (6) and (7), this ratio 
becomes 
lift

drag

2 zF L v L
F R R

ω π
λ

= = . (8) 

As the velocity increases, the ratio increases linearly; thus, the 
system becomes more efficient at high velocity. For the 
estimated operating velocity of the cradle (40 m/sec), the ratio 
can reach up to 200:1. Figure 2 shows the normalized levitation 
and drag forces as a function of the ratio /L Rω . The levitation 
force, liftF , increases quickly at low speed and eventually 
converges to its maximum value, while the drag force, dragF , 
reaches its maximum value at the transition velocity /R Lω =  
and then reduces gradually. Note that the maximum value of the 
drag is half of the maximum levitation force. 

The magnetic suspension model described in Eqs. (6) and 
(7) has several distinguished characteristics compared to the 
traditional spring–damper suspension system.  First, the 
levitation force is an exponential function of the gap g .  It can 
be considered as a nonlinear spring.  It also depends on the 
velocity of the cradle.  When the velocity is increased above a 
threshold, the moving magnet array induces enough currents in 
the coils and thereby levitates the cradle.  On the other hand, 
when the driving force is less than the drag force, the cradle 
simply slows down and comes to rest on the track using 
auxiliary wheels.  Second, there is no damping mechanism in 

the suspension system.  This characteristic has not been 
discussed in the literature, but it is very important to the stability 
of the system.  Based on linear perturbation theory, Post and 
Ryutov [4] showed that the magnetic suspension system has 
negative damping, even if its magnitude is reduced as the 
velocity increases.  If a fluctuation occurs due to a flaw in the 
coils or an external excitation, the cradle will vibrate 
continuously.  The only available damping is from the 
aerodynamic drag and structural damping, whose effect was not 
studied before. 

2.2 Thrust Mechanism 
Even if the levitation can be achieved without requiring external 
power sources, it is always accompanied with the unwanted 
drag force, as can be seen in Eq. (8).  In order to overcome the 
drag, an external thrust force must be provided to the system.  In 
practice, driving coils are implemented between lifting coils in 
the track so that impulsive currents are provided according to 
the position of the cradle to produce the thrust force (see Figure 
1).  In order to achieve the maximum thrust, the impulsive 
current is provided when the peak of the magnetic field yB  is 
present.  From Eq. (1), the peak of yB  occurs when the position 
of the magnets is integer times the wave length; i.e., z nλ= , 
where n  is a positive integer.  At that location, the maximum 
magnetic field becomes 
,max 0

kg
yB B e−= . (9) 

When the magnetic field reaches its maximum value in the 
position of the driving coil, an impulsive current DI  is provided 
to generate a thrust force to the magnets.  The peak of the thrust 
force from the circuit, which depends on the drive current, is 
given by 

,maxp D yF I B w= . (10) 

When the drive current is delivered in half sine–wave pulses 
with a pulse length of τ , the incremental moment per pulse can 
be found by integrating the thrust force over the pulse length, as 

0
sin( )p p

t
m v F dt F

τ π τ
τ π
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For a given Halbach array in Figure 1, the pulse of current can 
be provided at every half–wavelength.  Thus, the frequency of 
the pulse is 

2 /pf v λ= . (12) 
Then, the averaged thrust force driveF  over the wavelength of 
the array becomes 

drive 0
2 kg

p D
v

F f m v I B e w
τ

λ π
−= ∆ = . (13) 

The thrust force increases proportional to the velocity of the 
cradle.  However, the length of the pulse τ  needs to be 
decreased at high velocity.  The above thrust force can also be 
used to decelerate the cradle. 

2.3. Aerodynamic Drag 
As the cradle moves with a high speed, the drag force caused by 

0 2 4 6 8 10
wL/R
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Figure 2. The normalized levitation and drag forces as a 
function of speed.  Note that the drag force reduces after 
the transition speed /R Lω = . 
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air can affect the motion of the cradle.  This drag force is 
different from that of magnetic drag described in Eq. (7).  It is 
necessary to compare the magnitude of this drag force with the 
drag force caused by magnetic levitation in the previous section.  
The Reynolds number is first defined as 

Re
vlρ
µ

= , (14) 

where ρ  is the density of the fluid, l  the length of the cradle, 
and µ  the absolute viscosity.  For the standard air at the room 
temperature, the following data can be used: 31.29 /kg mρ =  
and 51.862 10 /kg m sµ −= × ⋅ .  When the cradle is moving 
with the velocity of 40 /m s , the Reynolds number is larger 
than 106.  Thus, it is assumed that the flow condition is turbulent 
and the following drag coefficient is used: 

2.58
10

0.455
(log Re)FC = . (15) 

The drag force can be obtained by 
2

wetted
1
( )( )
2D FF C V Sρ=  (16) 

Based on the current speed and geometry of the cradle, the 
expected drag force is about 2.5 N.  Considering that each 
Halbach array can produce the levitation and drag forces larger 
than 1,000 N, the contribution from the aerodynamic drag force 
can be negligible. 

In addition to the drag force, the pressure force can affect 
the dynamic behavior of the cradle. In the longitudinal direc-
tion, the cradle can be approximated by a thin plate. Thus, the 
pressure different between the front and rear surface can be 
ignored. In the levitation direction, the cradle can be considered 
as a bluff body, which produces large pressure difference.  
However, the velocity in the longitudinal direction is less and 
0.1 m/sec for the expected operating condition.  In addition, the 
motion of the cradle is oscillatory.  Thus, the effect of the 
pressure force can also be ignored in the levitation direction. 

3. Dynamic Models of Maglev System 

3.1. Inductrack Model 
Even if the magnetic suspension model in the previous section 

shows the feasibility of passive levitation, a practical system 
needs to consider various situations including stability, ride–
control, etc.  A small–scale Inductrack model has been built by 
Lawrence Livermore National Laboratory sponsored by NASA 
with the track of 20–meter long and the cradle of 9.3 kilograms, 
as shown in Figure 3.  The proof–of–the–concept cradle 
includes six Halbach arrays, and each array is composed of five 
NdFeB magnets with 1 cm thickness, as shown in Figure 1.  
Three arrays are positioned in front and the other three in rear.  
The width of the arrays on the top is 12 cm, while those on the 
side are 8 cm.  The role of the array on the top is mainly to 
provide levitation force, while the two arrays on the side are for 
stability by providing a strong concentric force.  However, the 
levitation forces are compensated between top and side 
magnets, whereas the drag forces are accumulated for both 
magnets.  This unexpected effect was not discussed in the 
original report because the theory is based on the flat magnets 
over the window–frame track.  The properties of the permanent 
magnets are summarized in Table 1. 

The 20–meter long track is built on top of the steel box 
beam, and coils are winded on the track.  A coil assembly 
consists of 13 turns of levitation coils and one turn of driving 
coil.  The levitation coil is made of a #10 square insulated 
magnetic wire and the drive coil is made of a #6 square 
insulated magnet wire.  The thickness of the coil assembly is 5 
cm.  The track detects the position of the cradle using photo 
diode detectors and triggers the drive coil to produce a pulse of 
7 kA current during 600 secµ  time period.  Since the magnetic 
field yB  changes its sign, the direction of current must switched 
to provide a forward thrust force.  The parameters of the drive 
coil are also summarized in Table 1. 

The cradle is 65 cm long and is made of carbon–fiber 
composite material. The weight of the cradle is 3.8 kilograms 
without magnets and 9.3 kilograms with magnets. Four 
auxiliary wheels are attached at the lower corners of the cradle 
in order to provide smooth landing when the speed is reduced 
below the threshold and to prevent the magnet from touching 
the coils. 

In addition to the thrust force from the drive coil, a 
mechanical launcher is used to generate the initial speed.  The 

Figure 3. Inductrack proof–of–the–concept model.  Six magnet arrays are located in front and 
rear.  The two top arrays provide lift force, while four side arrays provide concentric force. 
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mechanical launcher consists of six bungee cords and aluminum 
sliding cage.  The current design can generate the initial velocity 
of 9 m/sec. 
Table 1. Parameters of the Inductrack system 

Param Value Note 
0B  0.52T Amplitude of the magnetic field 
k  20k π=  Wave number of the Halbach Array 
L  1.8e-6H Lumped self-inductance 
R  1.5e-3Ω  Resistance of the single circuit of track 
ω  kvω =  Frequency of the magnetic field 
m  9.3kg Mass of the cradle 
λ  0.1m Wave length 
τ  600 secµ   
DI  7000 A Drive current 
cN  13 Number of lifting coil per wavelength 
topw  12 cm Width of magnet array on the top 
sidew  8 cm Width of magnet array on the side 
 

3.2. 1–DOF Model 
For most mechanical systems, the force is prescribed as a 
function of time.  However, in the Inductrack system the 
magnetic force depends on the position and motion of the 
cradle.  In the modeling perspective, this is equivalent to adding 
nonlinear spring.  The only difference is that the stiffness of the 
spring is not only a function of the position, but also a function 
of the motion.  Using this analogy, an exponentially varying 
nonlinear spring can be attached to the bottom of the permanent 
magnets.  However, this spring components need to be modeled 
carefully since the force changes according to the motion and 
location of the cradle. 

As a first numerical study, one degree–of–freedom (DOF) 
model is considered.  The cradle is modeled as a lumped mass 
and it is only allowed to move in the vertical direction.  The 
longitudinal speed zv  of the cradle is assumed to be constant.  
Even if this model is the simplest one, the fundamental 
characteristics of the model, such as a damping property and 
stability, can be obtained. 

Let the gap between the top magnets and coils be 1g  and 
the gap between side magnets and coils be 2g .  Since only the 
vertical motion is allowed, these two gaps have the following 
relation: 2 0 1 0( )cos 45g g g g= − − ° , where 0g  is the initial 
gap for all three magnets.  When these three magnets move 
along the track, they induce the flux in the coils.  The induce 
flux in Eq. (2) comes from the assumption that the flat magnets 
move over the box–frame track that has the same width with the 
magnets.  Since the track geometry of the Inductrack model is 
not a box shape and the magnets are not a single piece, 
however, Eq. (2) cannot be used directly.  In order to consider 
the effect of non-regular track geometry, a shape parameter α  is 
introduced to express the peak flux, as 

1 20
0 top side( 2 )kg kgB

w e w e
k

α
φ − −= + . (17) 

In the following section, an optimization technique will be 
employed to identify the shape parameter by comparing the 
simulation results with those from the experiment. 

For the cradle model described in the previous section, the 
averaged levitation force can be written as 

1 2
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The scalar value 2 cN  is multiplied because there are cN  
number of lifting coils in the wavelength of the magnets and 
two sets of arrays, one in front and the other in rear. The arrays 
on the top produce a positive levitation force, while the arrays 
on the side reduce it. In the case of one–DOF model, the 
longitudinal speed is fixed; thus, only 1g  is a variable. 

Using the levitation force in Eq. (18), the second–order 
ordinary differential equation (ODE) can be written as 

lift 1( , )y zma F v g mg= − , (19) 
where g  is the gravitational acceleration that is applied to the 
negative y–coordinate direction.  Aerodynamic damping is not 
considered.  The above second–order ODE is converted to the 
system of first–order ODEs, as 
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where the generalized coordinate is defined as 1{ , }
T

yy v=q .  
The initial condition is given as 0 {1cm, 0}T=q . 

The above ordinary differential equation is solved using 
“ode15s” function in MATLAB, which uses a variable order 
solver based on the numerical differentiation formulas. When 
the problem is “stiff”, it uses the backward differentiation 
method. 

Since the system does not have any damping, it will 
continuously oscillate when the initial condition is not in 
equilibrium.  Figure 4 shows the phase portrait of the system 
[7].  The amplitude of the velocity is about 0.2 m/sec, while that 
of the displacement is 0.3 cm.  The phase portrait does not show 
any spiral behavior, which means that the system does not have 
any damping.  The center of the ellipse corresponds to the 
equilibrium configuration.  For the different initial position, the 
radius of the ellipse will be changed.  This observation is 
different from that of Post and Ryutov [3] in which they showed 
that the system has negative damping based the linear 
perturbation.  However, the numerical result in Figure 4 shows 
that the system does not have any energy–dissipating 
mechanism and it is neutrally stable. 

Theoretically, the levitation force can be increased 
proportional to the velocity of the cradle.  However, in practice, 
the levitation force is always limited by the weight of the cradle.  
When the velocity of the cradle is increased, the gap 1g  is also 
increased so that the levitation force remains in the same 
magnitude.  In addition, the gap will not increase continuously 
because the two side arrays generate a large counter-balance 
force in such a case.  Figure 5 shows the levitation force and 
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gap as a function of velocity of the cradle.  From the figure, it 
can be concluded that the cradle shows a stable behavior in the 
high velocity. 
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Figure 4. Phase portrait of one–DOF model between 1g  and 
yv .  The system is neutrally stable. 
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Figure 5. Change of levitation force and gap with respect to 
longitudinal velocity.  Due to the counter-balance force from the 
side arrays, both of them show a stable behavior. 

3.3. 2–DOF Model 
A two–DOF model consists of the vertical and the longitudinal 
motions of the cradle.  The cradle is considered as a lumped 
mass.  The main purposes of this model are (1) to identify the 
unknown parameters, (2) to study the effect of magnetic drag 
force and the behavior of the cradle under variable velocities, 
and (3) to model the contact condition between the track and the 
cradle using the penalty method. 

The configuration of the cradle is the same with the one–
DOF model.  Accordingly, the levitation force in Eq. (18) can be 
used.  In addition to yF , there exists a drag force due to the 
motion of the cradle, which can be obtained from Eq. (7) and 
the configuration of the cradle in Figure 3, as 

1 2 0 0
drag top side 2

/
2 2

2 1 ( / )
kg kg

c
R LB

F w e w e N
L R L

ωφ
ω
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By comparing Eq. (21) with Eq. (18), it can be easily found that 
the two side magnets compensate the levitation force, while 
they are accumulated directly to the drag force.  Thus, the 
system has more drag and less levitation than that is designed 

based on the flat magnets on the box–frame track, which is 
consistent with the experimental observation [5]. 

In order to overcome the drag force, a thrust force is 
applied to the cradle by providing the drive coils with impulsive 
current that is synchronized with the position of the cradle.  In 
practice, three adjacent coils are simultaneously excited per 
magnet array in order to increase the thrust force.  The thrust 
force in Eq. (13) is obtained assuming that a single coil is 
excited when the magnetic field reaches its maximum value.  A 
scalar variable β  is included in order to consider the effect of 
three coils. Accordingly, the thrust force of the cradle in Figure 
3 is given as 

1 2
drive top side 0

2
2 2 zkg kg

D
v

F w e w e I B
τ

β
λ π

− −⎡ ⎤= +⎣ ⎦ . (22) 

The thrust force is linearly proportional to the longitudinal 
velocity, whereas the drag force in Eq. (21) is decreased once it 
reaches the maximum value at the transient velocity 

/R Lω = .  Thus, it is possible to find the velocity that makes 
the drag and thrust equilibrium.  In that speed, the cradle will 
move with the constant speed. 

Before presenting the differential equation for the two–
DOF model, the method of imposing the contact constraint is 
discussed first.  The magnetic arrays are not allowed to 
penetrate the track, which can be imposed using the following 
contact constraints: 
1

2

( ) 0

( ) 0

g t

g t

≥

≥
. (23) 

A Lagrange multiplier or a penalty method can be used to 
impose the unilateral boundary condition into the differential 
equation [9].  When the Lagrange multiplier method is applied 
to the variational principle, the governing equation becomes a 
differential–algebraic equation, and an additional variable is 
added to the system.  The advantage of this method is that it can 
impose the contact constrain exactly, and the Lagrange 
multiplier corresponds to the contact force.  When the penalty 
method is used, however, no additional variable is added to the 
original differential equation.  If the contact condition is 
violated, then it is penalized using a large penalty parameter. 

In this paper, the penalty method is used to impose the 
contact condition.  The differential equation of the dynamic 
problem with the penalized contact constraint becomes 

( )lift 1 1 2

drive 1 drag 1

( , ) 2

( , ) ( , )

y z

z z z

ma F v g mg g g

ma F v g F v g

ε − −= − − −

= −
, (24) 

where ε  is the penalty parameter, and the symbol g −  
represents the negative part of the function, as 

, when 0

0, when 0

g g
g

g−

≤⎧⎪⎪= ⎨⎪ >⎪⎩
. (25) 

The penalty function for the two side arrays is applied in the 
direction normal to 45 degree inclined surface, and only the 
vertical component is considered. The above ordinary differen-
tial equation is solved with the following initial conditions: 



 7 Copyright © 2006 by ASME 

0 0

0 0

(0) , (0)

(0) , (0)

y y

z z

y y v v

z z v v

= =

= =
. (26) 

The second–order differential equation can now be converted to 
the system for first–order differential equation, as 

( )lift 1 2

drive drag

/ 2 /

( )/

y

y

z

z

vy

v F m g g g m

vz

v F F m

ε − −

⎧ ⎫⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ − − −⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪= =⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

q

�

�
�

�

�

, (27) 

When the cradle is in contact with the track, the above 
penalty method yields a perfectly elastic contact.  In order to 
consider the effect of inelastic contact, a penalty function can be 
imposed in the vertical direction.  In such a case, the penalty is 
applied to the velocity, in addition to the displacement. 

Before the numerical simulation of the two–DOF model, 
the unknown parameters, α  and β , need to be identified.  For 
that purpose, the test results performed by Tung et al. [5] is 
utilized.  The maximum traveling distances for different initial 
velocities are first measured.  The difference between these 
distances and those from the dynamic analysis is minimized by 
changing the two parameters.  The design identification problem 
can then be written as 

4
test simulation 2

1

Minimize ( , ) ( )i i
i

f d dα β
=

= −∑ . (28) 

The above minimization problem is solved using MATLAB 
“fminsearch” function.  The initial values are chosen from their 
ideal cases.  Table 2 shows the initial and optimum values of the 
parameters.  As expected, the shape parameter α  is reduced 
from its ideal values, while β  is increased.  At the optimized 
values of the parameters, the error function ( , )f α β  is reduced 
significantly. 

Figure 6 shows the traveling distance during the first two 
seconds with respect to various initial velocities.  For the 
comparison purpose, the travel distance with the constant 
velocity is also plotted.  When the initial velocity is less than the 

critical velocity ( 0v  = 16.2 m/sec), the velocity decreases and 
the cradle eventually stops.  At the critical velocity, the cradle 
moves with a constant velocity.  The velocity increases 
exponentially when the initial velocity is above the critical 
value. 

 
Table 2. Results from parameter identification.  The shape 
parameter is reduced from its ideal value, while the equivalent 
thrust parameter is increased. 

Parameters Initial value Optimum value 
α  1 0.7295 
β  3 3.9298 
( , )f α β  1.5622 0.0427 

 
In order to evaluate the performance of the contact 

condition and the effect of drag force, the two–DOF model is 
tested with the initial velocity 0 15.5m/ secv = .  The initial 
velocity is chosen to be less than the critical velocity so that the 
cradle touches the track as the velocity is reduced.  Figure 7(a) 
shows the vertical position and velocity of the cradle.  The 
vertical velocity shows a small oscillatory behavior, while the 
vertical position shows a stable behavior.  The cradle touches 
the track at time = 1.19 seconds and slides on the track.  Since 
the penalty function in Eq. (25) is applied when the vertical 
position is negative, the vertical position shows a small 
penetration of 0.01 mm when the cradle stays on the track.  The 
amount of penetration will be reduced as the penalty parameter 
is increased. 

Figure 7(b) shows the traveling distance and velocity of the 
cradle.  Since the initial velocity is less than the critical velocity, 
the velocity is reduced monotonically until the cradle stops.  At 
time = 2 seconds, the cradle is still moving on the track, even if 
it slows down.  The cradle eventually stops at time = 3 seconds. 

Figure 7(c) shows the drag, lift, and thrust forces.  As 
explained in the one–DOF model, the lift force remains almost 
constant during the lifting region.  The drag force is about three 
times larger than the lift force in the most lifting region, and it is 
slightly increased even if the velocity is reduced.  This is 
different from Figure 2, where the lift force is larger than the 
drag force.  This is due to the effect of side arrays that 
compensate the lift force.  Once the cradle touches the track, the 
drag and lift forces are reduced quickly.  The drive force shows 
a similar trend with that of the velocity. 

In general, the two–DOF model shows a stable behavior.  
When the velocity is above the critical velocity, the vehicle is 
continuously lifted and the velocity is increased.  In practice, the 
velocity can be controlled by changing the impulsive current in 
the drive coils.  When the velocity is reduced, the vehicle lands 
on the track and eventually stops. 

3.4. 4–DOF Model 
In one– and two–DOF models, the cradle is assumed to be a 
lumped mass structure.  The purpose of four–DOF model is to 
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Figure 6. Travel distance for the first two seconds 
with respect to the initial velocity.  The velocity 
increases after the critical velocity 18.5 m/sec. 
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evaluate the rigid body behavior of the system.  The cradle can 
move in z–direction (thrust), y–direction (lift), x–direction (slip), 
and rotate in z–direction (roll).  Figure 8 shows the 
computational model with coordinate systems.  The global 
coordinate X–Y is fixed on the track, while the local coordinate 
X'–Y' is fixed on the cradle.  Both local and global coordinates 
have the same origin when the three magnets have the same gap 
(1.0 cm) with respect to the track.  In order to simplify contact 
calculation, the geometry of the magnets is represented by a 

point.  In addition, it is assumed that the direction of the lift 
force is always normal to the track, not to the magnets.  The 
effect of this assumption is not significant because the roll angle 
θ  is supposed to be small. 

The magnetic force depends on the gap between the 
magnets and induced coils.  The location of magnets is 
calculated based on the local–to–global coordinate 
transformation.  When the local coordinate of magnets array i  
is given as i′r , the global coordinate can be obtained from 

0 ( ) , 1,2, 3i i iθ ′= + ⋅ =r r A r , (29) 

where 0 ( , )x y=r  is the position of the origin of the local 
coordinate, and ( )θA  is the rotational transformation matrix 
defined as 

cos sin
( )

sin cos

θ θ
θ

θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

A . (30) 

First, the locations of three magnets are calculated from the 
geometry of the cradle in the local coordinate, and then, their 
global coordinates are calculated from Eq. (29). 

 
Figure 8.  Four–DOF Inductrack dynamic model.  X–Y 
coordinate is fixed on the track, while X'–Y' coordinate is fixed 
on the cradle. 

 
Figure 9. Contact condition between magnets and track. The 
magnets are considered as a point.  The gap ig  must be non-
negative. 

After calculating the global coordinate of the magnets, the 
gap between the magnets and the track can be calculated from 
the geometric relation.  In order to make the procedure general, 
the concept from solid mechanic is adopted.  Let ir  be the 
location of the magnets array i , and 1

ia  and 2
ia  be the 

coordinates of two end points of the track (see Figure 9).  The 
segment of the track below the magnets is straight line.  The two 
end points are ordered such that the magnets should be on the 
left side when we walk from 1

ia  to 2
ia .  If the magnets are on 
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the right side, it is considered that the magnets penetrate the 
track and the penalty function is applied to push the magnets 
out.  First, the unit tangent and normal vector to the track can be 
obtained by 

2 1

32 1 ,
i i

i i i
i i

−
= = ×

−
a a

t n e t
a a

, (31) 

where 3e  is the unit vector in the z–coordinate; i.e., (0, 0, 1).  
Then, the gap between magnets and track can be calculated 
from 

1( ) 0i i i ig = − ⋅ ≥r a n . (32) 
When these three magnets move along the track, they 

induce the flux in the coils.  In the four–DOF model, the peak 
flux can be obtained by 

3
0

0
1

ikg
i

i

B
w e

k
α

φ −

=
= ∑ . (33) 

As with the two–DOF model, the shape parameter α  is 
included.  Then, the repulsive force at each magnet arrays can 
be written as 

0 0
2

2
, 1,2, 3

2 1 ( / )
i ckg

i i i
B N

F w e g i
L R L
φ

ε
ω

−
−= − =

+
, (34) 

where igε −  is the contribution from the penalty function, 
similar to the one in Eq. (25).  When a magnet array i  
penetrates the track, a large penalty force igε −−  is applied so 
that the impenetrability constraint can be maintained.  These 
three repulsive forces, as illustrated in Figure 8, contribute to 
the lift and slip force to the cradle.  Since it is assumed that 
these forces are applied in the direction normal to the track, the 
lift and slip forces can be obtained as 
lift 1 2 3

slip 3 2

( )cos(45 )

( )sin(45 )

F F F F

F F F

= − + °

= − °
. (35) 

Different from the lift and slip forces in Eq. (35), the drag 
force is obtained by adding the contribution from the three 
magnet arrays, as 

3
0 0

drag 2
1

/
2

2 1 ( / )
ikg

i c
i

R LB
F w e N

L R L
ωφ
ω

−

=
= ×

+∑ . (36) 

In order to overcome this drag force, the thrust force is 
applied to the cradle by providing impulsive current to the 
driving coils.  Similar to the two–DOF model, the thrust force 
can be obtained as 

3

drive 0
1

2
2 i zkg

i D
i

v
F w e I B

τ
β

λ π
−

=
= ∑ , (37) 

where the parameter β  is obtained using the optimization 
technique in Eq. (28). 

The dynamic model of four–DOF model includes lift, slip, 
thrust, and roll motions: 

slip

lift

drive drag

x

y

z

zz z z

ma F

ma F mg

ma F F

I Mω

=

= −

= −

=�

, (38) 

where zzI  is the mass moment of inertia with respect to the z–
coordinate and zω�  is the angular acceleration in the roll motion.  
Note that the penalty functions are included in the repulsive 
force in Eq. (34). 

The above ordinary differential equation is solved with the 
following initial conditions: 

0 0

0 0

0 0

0 0

(0) , (0)

(0) , (0)

(0) , (0)

(0) , (0)

x x

y y

z z

z z

x x v v

y y v v

z z v v

θ θ ω ω

= =

= =

= =

= =

. (39) 

The second–order differential equation can now be converted to 
the system of first–order differential equations, as 

slip

lift

drive drag
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/

( )/

/
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, (40) 

The four–DOF model is tested using the same initial 
conditions with those of the two–DOF model.  Initial conditions 
in the slip and roll motions are set to be zero so that the same 
results with the two–DOF model can be obtained.  The dynamic 
analysis results turn out to be identical to those of two–DOF 
model up to the numerical precision. 

In order to test the response of the system under the slip 
and roll motion, dynamic analysis is performed.  The initial 
conditions are given such that the vehicle is perturbed in the 
lateral direction by 0 04mm, 0.1m/s,xx v= = − .  All other 
initial conditions are the same with two–DOF model. 

Figure 10 shows the slip and angular motions of the 
vehicle.  The lifting and traveling motion of the vehicle are 
similar to the two–DOF model.  The initial slip motion 
generates the lateral force slipF  and rolling moment zM  (Figure 
10(a)).  The vehicle contacts with the track at time 2.5 seconds, 
at which the slip velocity suddenly changes (Figure 10(b)).  The 
initial slip motion induces rolling motion as shown in Figure 
10(c).  However, the magnitudes of rolling angle and angular 
velocity are small. 

4.  Conclusions and Future Plans 
The dynamic characteristics of electromagnetic suspension 
system are evaluated using 1–DOF, 2–DOF, and 4–DOF 
numerical models.  The dynamic model includes contact 
constraints between the vehicle and the track.  The unknown 
numerical parameters are identified using the optimization 
technique.  Using 1–DOF model, it is shown that the suspension 
system does not have any inherent damping in the lifting 
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direction.  However, a stable behavior is observed in the 
traveling direction; the vehicle is lifted when the velocity is 
above the threshold and landed on the track when the velocity is 
below the threshold.  The 4–DOF model shows that the system 
has a strong concentric force that stabilizes the vehicle in the 
slip motion as well as in the rolling motion.  Even if the 
levitation of the system can be achieved in the passive way, the 
system requires thrust force in order to reach large enough 
initial speed and maintain it against the drag force. 

In the practical application of the electro-magnetic 
suspension system, the vehicle has its own damping behavior 
due to the flexibility of the structure.  This may explain the 
difference between the model test and full–scale test.  In order 
to model the damping characteristics from the structure, it is 
necessary to use the flexible–body dynamics model. 
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Figure 10. Slip and angular motion of four–DOF 
Inductrack model. (a) Moment (Nm) and slip force (N). (b) 
Lateral displacement (m) and velocity (m/sec).  The second 
magnet array contacts with the track at time = 2.5 sec. (c) 
Roll angle (radian) and angular velocity (radian/sec). 


