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Abstract 

In structural design, failure stresses are obtained from coupon tests and then used to 

predict failure under combined loads in structural elements. These tests are used to update 

the failure envelope of structural elements. In determining the failure stress of a single 

structural element, it is a common practice to replicate element tests and then use the 

lowest test result as a measure of conservativeness. This practice is equivalent to adding a 

knockdown factor to the stress allowable—one that is quite variable. Instead we propose 

using the average test result with an explicit knockdown factor and show that the 

variability is reduced and with it the likelihood of unconservative estimate of the failure 

stress. In addition, since failure theories are getting ever more accurate, it may not be 

reasonable to toss out analytical predictions and rely entirely on test results, which are 

subject to experimental error and variability. Instead, if the designer has some measure of 

confidence in the analytical predictions, Bayesian updating may further narrow down 

variability and decrease the chance of unconservative estimates of failure stresses. We 

demonstrate the gains associated with Bayesian updating for the case where the designer 

has only upper and lower bounds on the error in the analytical predictions.  

 

Examples with uniform and lognormal distributions of test results are used to compare 

the worst-test approach to the two alternatives with explicit knockdown factors. Both 

approaches yield large reductions in the likelihood of unconservative estimates of the 

failure stresses. The average approach reduced this likelihood by about a factor of two 

while the Bayesian approach by up to an order of magnitude (from 12.5% to 1%). We 

also examine scenarios where estimates of error and variability are substantially off. We 

show that even then there are still substantial reductions in likelihood of unconservative 

estimates of failure stresses. Remarkably, the underestimate of variability also results in 

about 2% higher average of estimated failure stresses. Thus, we are able to 

simultaneously use higher average stress allowables (leading to lower weight) and reduce 

the likelihood of unconservative estimates! 
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1. Introduction 

Aerospace structures have traditionally been designed using a deterministic approach 

based on the Federal Aviation Administration (FAA) or other regulations and guidelines. 

In deterministic approach, safety is achieved by combining safety factors with tests of 

material and structural components. On the other hand, there is growing interest in 

replacing safety factors by reliability-based design (e.g., Lincoln
1
, Wirsching

2
, SAE 

Aerospace Information Report 5080
3
 and Long and Narciso

4
). One step where 

probabilistic concepts have already taken place is in the choice of stress allowables. 

These are based on statistical analysis of coupon tests, with A-basis or B-basis allowables 

selected to be below 99% or 90% of the material populations, respectively, with 95% 

confidence.  

After stress allowables are used to design structural elements, it is customary to test 

these elements in order to reduce the errors associated with applying engineering 

principles to measure the safety of structural elements. 

Motivated by the remarkable safety level of current airliners, we analyzed the effects 

of measures that improve aircraft structural safety and compared the relative 

effectiveness of safety measures taken during aircraft structural design in our earlier 

works (Acar et al. 
5, 6

). The safety measures that we included in those works were the load 

safety factors of 1.5, conservative material properties, redundancy, certification (or proof) 

test, and error and variability reduction. The most common form of error reduction is 

conducting structural element tests, which is the main focus of the present work. 

Structural element tests are usually used conservatively, by taking the worst result of a 

batch of nominally identical tests. This constitutes an implicit knockdown factor because 

of material and test-condition variability. However, the variability leads to excessive 

volatility in the knockdown factor and the resulting stress allowables. The main objective 

of the present paper is to show that simple statistical analysis may be used to replace the 

implicit knockdown factors with explicit ones and reduce the volatility in the stress 

allowables. This may be done with a minimum of statistical analysis by using the average 

test result instead of the worst one. Further improvements may be obtained by using the 

degree of confidence in the analytical estimates of the failure stress via Bayesian 

updating. 

Nomenclature 

(σf)   failure stress (a random variable) 

(σf)calc    failure stress predicted by an engineer 

(σf)true    the true failure stress of a structure 

(σf)test    failure stress of a sample 

(σf)est     estimated failure stress for three methods discussed in the paper 

(σf)i,test    i
th

 test result. 

(σf)Bayes    failure stress calculated by Bayesian updating 

ef    error of calculated failure stress w.r.t. the average true failure stress 

be   error bounds  

vf    variability in material properties 

kavg    knockdown factor used in average approach 

kBayes   knockdown factor used in Bayesian approach 
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The present paper is organized as follows. Section 2 provides the analysis of the three 

options for using element test result to update the estimate of the failure envelope. 

Section 3 provides an illustrative example comparing the three approaches for one case of 

three element test results. Section 4 compares the three approaches for several examples, 

and Section 5 presents concluding remarks. 

 

2. Analysis 

Consider a typical situation relating to updating analytical predictions of strength based 

on a small number of nominally identical tests. We assume that the analytical prediction 

of the failure stress,  f calc
 ,applies to the average failure stress  f true

 of an infinite 

number of nominally identical structures. The error ef  of our analytical prediction is 

defined by Eq. (1). 

    1f f ftrue calc
e           (1) 

Here we assume that the designer can estimate the bounds be(possibly conservative) on 

the magnitude of the error, and we further assume that the errors have a uniform 

distribution between the bounds.   

 
1

2

0

f e

ef

if e b
bf e

otherwise




 



       (2) 

 

That is, while the error has only one value in reality, the distribution reflects the 

uncertainty associated with our lack of knowledge of what this value is (so-called 

epistemic uncertainty). For simplicity we neglect experimental implementation errors and 

variability and measurement errors and variability and assume that the test results only 

reflect variability in material properties. In that case, the variability in material properties 

is defined by Eq. (3), 

        1 1 1f f f f f ftest true calc
v v e            (3) 

 

Unlike the error, the variability does not reflect lack of knowledge but the randomness 

(so-called aleatory uncertainty) introduced into the failure stress by the manufacturing 

process for the material and the structure. This is depicted schematically in Figure 1 for a 

uniform distribution of the error and a normal distribution of the variability. 



 4 

 
Figure 1: Error and variability in failure stress. The error is centered around the computed value, and is 

assumed to be uniformly distributed here. The variability distribution, on the other hand, is lognormal with 

mean equal to the true average failure stress. 

 

This is essentially equivalent to assuming that    f ftest true
  . Here we use a lognormal 

distribution for the variability, that is  

 2( )  ( 1;0,  )   ln(1 )  f f f f ff v LN v c         (4)  

where cf is the coefficient of variation (c.o.v). of the failure stress. 

 

With an infinite number of tests, the average of test results would be  f true
 and we could 

calculate ef  exactly from Eq. (1). With a finite number of tests, we can obtain only an 

estimate of the error, and designers often opt for a conservative estimate. 

 

We now consider three ways of estimating  f true
 . 

1. Taking the lowest (worst) test result    
,

minf fest i test
  where  

,f i test
 is the result 

of the ith test. This is often the approach taken by conservative designers. 

2. Taking the average test result and adding a knockdown factor kavg in order to 

achieve the same average estimate of the failure stress obtained in the first 

approach. This may be viewed as achieving the same degree of conservatism 

associated with the first approach. That is,  

   f avg fest test
k          (5) 

3. Using the assumed initial distribution of the error in Eq. (2), we generate the 

corresponding probability distribution  ini

ff  of the failure stress. 

   
   

1
/ 1

2

0

f f ecalcini
e ff calc

if b
bf

otherwise

 



 

 



   (6) 

Given  
1,f test

 , we use Bayesian updating to update the distribution as  

 f
true

  f
calc

    f f
test true

 

fv

fe

( )ff v

( )ff e

f

Probability 
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      (7)  

 1,test ff   is a function reflecting possible variability of the first test result  
1,f test



. Note that it is not a probability distribution. Subsequent tests are handled by the 

same equations, using the updated distribution as the initial one. The advantage of 

the Bayesian updating approach is that it takes into account our confidence in the 

calculated failure stress. If our error bounds are very large, we can expect that this 

method would reduce to taking the average of the tests. If the error bounds are 

very narrow, this approach will not allow the test results to change much the 

calculated stress, as these test results may reflect variability rather than error.  

 

The average value of the last updated distribution is our Bayesian estimate of the 

average failure stress   f Bayes
 .Finally we add a knockdown factor kBayes in order 

to again achieve the same degree of conservatism associated with the first 

approach. That is,  

   f Bayes fest Bayes
k   

 

3. Illustrative example 

To illustrate this update, we will consider the simpler case where the variability is also 

uniform rather than lognormal. So consider an example where the error bounds are 10%, 

the variability is bounded by 15%, and 
 

 
,

1.05,1.1,1.15 1,2,3
f i test

f calc

i



  . Furthermore, we 

will make the simplifying assumption that this 15% is of the calculated value,  f calc
 , 

rather of the true value. 

    

 

 
1,

1,

1
0.15

0.3

0

f f test

test f f fcalc calc

if
f

otherwise

 

  

 
 

 



    (8) 

and we will further assume that we chose our units so that  f calc
 =1. In this case, the 

initial distribution of   5ini

ff    in (0.9, 1.1) and zero elsewhere. It is then very easy to 

check from Eq. (7) that the updated distribution is identical to the initial one because 

 1, 1/ 0.3test ff    is constant in (0.9, 1.1). That is the first test does not provide any new 

information (Figure 2.a). For the second test of 1.1, still  1, 1/ 0.3test ff   , but this time 

only in the interval (0.95,1.1), so that the updated distribution is zero in (0.9,0.95) (Figure 

2.b). Similarly the third test of 1.15, will exclude the interval (0.95, 1.0) (Figure 2.c) so 

that finally we will get a uniform distribution over (1,1.1). The denominator of Eq. 7 will 

normalize the area to 1, so that we will get   10upd

ff   in (1,1.1) and can use the average 

of 1.05 for our updated failure stress  f Bayes
  (Figure 2.d). Note that this is substantially 
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different from taking the mean value of the tests, which is 1.1. Indeed, if we expect that 

our calculation is correct to within 10%, three tests whose average is 1.1 should not push 

us all the way towards this limit. 

 
Figure 2: Illustratuve Example of Bayesian Updating. The initial distribution was uniform in [0.9,1.1] 

and the three tests were 1.05, 1.10, 1.15. The material variability is assumed to be governed by a uniform 

distribution with variability of 15% of the calculated value. 

 

Next we have to ask, what knockdown factor we should have. We start by selecting a 

knockdown factor that will give the same average value of the estimated failure stress as 

the worst-load approach. The average is taken over all possible triads of test results, and 

the procedure for calculating the  knockdown factors is discussed in Appendix A. For our 

uniform variability distribution, the value is 0.9250. With the criterion of same average, 

the knockdown factors are the same for the average and Bayesian approaches, that is 

Bayes avgk k  This means that if we use the average failure stress of 1.1, the updated failure 

test should be 1.1x0.925=1.0175. With the Bayesian updating, the updated failure stress 

is 1.05x.925=0.9713  

 

Note that both results are lower than the worst of our three tests (1.05). This reflects the 

fact that when the average experimental result is higher than the calculated value, there is 

substantial chance that this is due to variability in material properties rather than to error. 

The average approach provides some compensation for this fact, while the Bayesian 

correction is more drastic because it takes into consideration our confidence in the 

analytical prediction of the failure stress. 
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For a more typical variability in failure stress we use a lognormal distribution with a 

coefficient of variation of 8%. The evolution of distribution of the failure stress,  ff  , 

is seen in Figure 2. The average value of the final distribution is 1.0624, while the 

standard deviation of the final distribution is 0.02826.  For the lognormal distribution, the 

knockdown factor is 0.9333 as shown in Appendix A. So to achieve the same degree of 

conservativeness with the average stress approach we will update the stress to 1.0266, 

and with the Bayesian approach to 0.9915. 

 

 
Figure 3: Evolution of failure stress distribution,  ff  , with Bayesian updating. The initial 

distribution was uniform in [0.9,1.1] and the three tests were 1.05, 1.10, 1.15. The material variability is 

assumed to be governed by a lognormal distribution with a coefficient of variation of 8%. 

 

4. Variability in test results and its effect on conservativeness 

The most important advantage of the average and Bayesian approaches over the worst-

value approach is that they temper the variability in test results. These tests are intended 

to help us reduce the error in analytical predictions of failure stresses. However, the 

variability in material properties contaminates the test results and reduces their value for 

correcting the predictions. As a result, there is a chance that the corrected failure stress is 

unconservative. 

 

For the example with the 15% uniformly distributed variability, the standard deviation of 

the worst test result was estimated by Monte Carlo simulation to be 0.058 or 6.3% of the 

mean of the worst result. As shown in Appendix B, there is 12.5% chance that all three 
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tests will give unconservative estimate of the failure stress, so that the worst one will also 

be unconservative. On the other hand, the standard deviation of the average test result is 

0.05, which is 5% of the mean of the average test result. That is, by using the average test 

result with a knockdown factor of 0.925, we achieve the same degree of conservativeness 

on average but with 20% less volatility. The analytical prediction in Appendix B shows 

that this reduces the chance of unconservative estimate to 5.4%, less than half that of the 

worst-test approach. With the Bayesian approach, Monte Carlo simulations reduce the 

standard deviation of the estimated failure strain to 3.2%, and drastically reduce the 

chance of an unconservative estimate to about 1%. 

 

Not only is the percentage of unconservative estimates reduced, but the average error in 

the unconservative estimates is also reduced. It is also shown in Appendix B that for the 

worst-case approach the average over estimate of failure stresses for the 12.5% 

unconservative results is 3.75%.  For the 5.4% unconservative results using the mean test 

result, the average over estimate is only 1.6%, and for the 1% unconservative results in 

the Bayesian approach the average over estimate is only 0.6%. 

 

Table 1 summarizes the above results and provides the corresponding results for the 

lognormal distribution. The table also shows results (in parentheses) based on 15% 

confidence interval in the analytical predictions. We see that the results are similar for the 

lognormal distribution. For confidence intervals of +-10% the likelihood of 

unconservative estimate of the failure stress is reduced dramatically. For +-15% 

confidence interval, the results are as expected closer to the average, but still provide 

significant reduction in the chance for over estimating the failure stress. 

 

Variability Uniform (+-15% bounds) Lognormal (8% Cov) 

Worst Average Bayesian Worst Average Bayesian 

% COV 6.3 5.0 3.2 (3.6) 5.9 4.6 3.3 (3.7) 

Mean 0.925 0.925 0.925 0.9333 0.9333 0.9333 

% Unconservative 12.5 5.4 1.0 (2.5) 11.3 6.4 2.8 (4.3) 

Average  

unconservative, % 

3.75 1.6 0.6 (1.3) 2.7 2.1 1.3 (1.8) 

 
Table 1: Comparison of coefficient of variation (COV) and likelihood of unconservative estimates 

using worst-case, average, and Bayesian approaches. Nominal variability case. (The Bayesian 

approach is based on a 10% confidence in the calculated result with uniform distribution in [0.9,1.1]). The 

numbers in parenthesis are for 15% confidence intervals. 

 

5. Effect of uncertainty about uncertainty 

 

The above calculations represent an ideal case in that it is assumed that we have good 

error bounds and we know exactly the variability distribution of test results to apply with 

Bayesian updating and to set the explicit knockdown factor. In practice we may tend to 

select conservative error bounds, and conservative estimates of variability to allow for 

variability introduced by the experimental procedure. In this section we will therefore 

consider the following scenarios: 

a. Error bounds are increased from 10% to 15%. 
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b. The variance bounds are increased from 15% to 20% for the uniform 

distribution and from 8% to 10% for the lognormal distribution. Note that 

latter increase would correspond to an additional 6% variability from an 

independent source like testing variability on top of the 8% material 

variability. However, the explicit knockdown factors are left at their 

previous values of 0.925, and 0.933, respectively. 
c. Combination of both error bound and variance increases. 

 

Variability Uniform (+-20% bounds) Lognormal (10% Cov) 

Worst Average Bayesian Worst Average Bayesian 

% COV 8.6 6.66 3.6 (4.4) 7.4 5.8 3.8 (4.4) 

Mean 0.9 0.925 0.925 0.9172 0.9333 0.9333 

% Unconservative 12.5 11.8 2.2 (5.3) 11.1 6.4 4.6 (7.3) 

Average  

unconservative, % 

5.0 2.75 0.7 (1.6) 3.3 2.7 1.7 (2.1) 

 
Table 2: Comparison of coefficient of variation (COV) and likelihood of unconservative estimates 

using worst-case, average, and Bayesian approaches. Increased variability case. (The Bayesian 

approach is based on a 10% confidence in the calculated result with uniform distribution in [0.9,1.1]). The 

numbers in parenthesis are for 15% confidence intervals. 

 

Scenario (a) was discussed in the previous section, and was shown in Table 1 (in 

parenthesis). The table showed that being conservative, and overestimating the error by 

50% reduces the advantage of the Bayesian approach, but still leaves a substantial margin 

of improvement. Compared to the worst-test approach the probability of unconservative 

estimate of the failure stress is still reduced by a factor of 2.6-5. 

 

The results corresponding to (b) and (c) are summarized in Table 2. It is important to note 

that being conservative on the variability could entail using a lower knockdown factor 

which would make the Bayesian approach overly conservative if that variance was 

overestimated. Accordingly, we show results using the knockdown factors corresponding 

to the lower variability. Consequently, the mean value of the Bayesian estimated stresses 

is higher for these scenarios. For the uniform distribution the mean is 0.925 compared to 

0.9, which means that with the Bayesian approach we will also be able to use stress 

allowable that are higher by about 2.7%. This is likely to correspond to similar reduction 

in weight. For the lognormal distribution the corresponding values are 0.9333 and 0.9172, 

or 1.7% gain. 

 

For scenario (b) where only the variability is underestimated, we achieve the higher stress 

allowable with a reduction of more than a factor of five in the likelihood of having 

unconservative failure stress estimates (2.2% compared to 12.5%) for the uniform 

distribution and better than a factor of two (4.6% compared to 11.1%) for the lognormal 

distribution. Furthermore, these gains in stress allowables and reductions in likelihood of 

unconservative estimates of failure stresses are accompanied by substantial reductions in 

the magnitude of the average unconservative error: from 5% to 0.7% for the uniform 

distribution and from 3.3% to 1.7% for the lognormal distribution. 
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For scenario (c), which combines overestimate of the error with underestimate of the 

variability gains are diminished but are still substantial. For the uniform distribution, 

gains in stress allowables are still accompanied by better than a factor of two reduction in 

the likelihood of unconservative estimates (5.3% compared to 12.5%) for the uniform 

distribution and almost a factor of two for the lognormal distribution (7.3% compared to 

11.1%). 

 

6. Concluding Remarks 

 

Test results of structural elements are often used in a conservative fashion by updating 

estimates of failure stress based on the results of the worst test. This constitutes an 

implicit knockdown factor. In this paper we show that the variability implicit in this 

approach makes it inefficient compared to using less variable estimates of the failure 

stress and adding an explicit knockdown factor. We compared two alternative approaches 

to the worst-case approach: one based on average test results and one based on Bayesian 

update of an assumed error distribution.  

 

Examples with uniform and lognormal distributions of test results were used to compare 

the worst-test approach to the two alternatives with explicit knockdown factors. Both 

approaches were shown to yield large reductions in the likelihood of unconservative 

estimates of the failure stresses. The average approach reduced this likelihood by about a 

factor of two while the Bayesian approach by up to an order of magnitude (from 12.5% to 

1%). In addition, the magnitude of the average lack of conservativeness was also greatly 

reduced. 

 

We next examined scenarios where the estimates of error and variability are substantially 

in error. Specifically we considered a scenario where error estimates are inflated from 

10% to 15%. Then we considered a scenario where experimental errors are almost as 

high as material variability, increasing the combined coefficient of variation from 8% to 

10%. Finally we considered a scenario combining both inflated error estimates and 

underestimated experimental variability. We showed that even under these adverse 

conditions there are still substantial gains in reduced likelihood of unconservative 

estimates of failure stresses. Remarkably, the underestimate of variability also results in 

about 2% higher average of estimated failure stresses. Thus, we are able to 

simultaneously use higher average stress allowables and reduce the likelihood of 

unconservative estimates! 

 

Appendix A: Explicit Knockdown Factors. 

 

In the application process of average and Bayesian approach explained in this paper, an 

explicit knockdown factor is needed that corresponds to the same average estimated 

failure stress as the worst approach on structural tests.  With three nominally identical 

tests, the worst result will follow an extreme value distribution.  So, the knockdown 

factors used in this paper (kavg, kBayes) are calculated using extreme value distribution. The 

procedures are as follows: 
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1. If f(x) is a uniform PDF on [0.85, 1.15], then the corresponding CDF F(x) is a 

linear function (Eq. 9).   
1

( ) ( 0.85)
0.3

XF x x         (9) 

2. The cumulative distribution of the worst of three tests can be expressed by Eq. 10,  

3
1

3( ) 1 (1 ( ))XX
F x F x           (10) 

where subscript 1 stands for a minimum and superscript 3 means our sample size. 

3. We can calculate the mean value of worst three results from Eq. 11.  

3 3
1 1

3 3
1 1

1.15

0.85

1.15 1.15

0.850.85

( ) ( )

( ) ( )

1.15 0.225 0.9250

X X

X X

mean xf x dx xf x dx

xF x F x




 

 

  

 

      (11) 

4. If f(x) is a lognormal pdf, then FX(x) can be defined by Eq. 12, a standard form of 

lognormal distribution. 

1 ln
( ) 1 ( )

2 2
X

f

x
F x erf



 
  

  

       (12) 

5. Using the worst case distribution in Eq. 10 and mean calculation in Eq. 11, we can 

calculate the mean of worst of three results to be 0.9333 

 

Appendix B: Analytical Prediction of Variability on Worst and Average Cases  

 

1. Worst case approach 

 

If we have three test results having same types of distribution, the worst of the test result 

will follow an extreme distribution given in Eq. 10.  Exact numerical evaluations for the 

worst-case approach in table 1 are presented here. 

 

1.1. Uniformly distributed samples 

 

For test results with +-15% variability uniformly distributed, the CDF is given in Eq. 9. 

The measure of unconservative ratio, average unconservative ratio, and coefficient of 

variation (c.o.v.) can be calculated using Eq. 13. 

3
1

3
1

3
1

2 2

( )

( )

( )
. . .

true

true

Xx

trueXx

X

unconservative f x dx

Average unconservative xf x dx x

x f x dx mean
c o v

mean











 










      (13) 

The PDF 3
1

( )
X

f x  can be obtained by differentiating Eq. 10 with respect to x. 

The unconservativeness of applying worst case approach is 12.5%, average 

unconservativeness is 3.75%, and the c.o.v. is 6.28%. 

 

1.2. Lognormally distributed samples  
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Using Eq. 9 and applying 
XF  defined as the CDF of a lognormal distribution function 

given by Eq 12, we can derive 3
1

( )
X

F x  and 3
1

( )
X

f x .  By Eq. 13, we can also calculate the 

unconservativeness is 11.34%, average unconservativeness is 2.72%, and the c.o.v. of the 

distribution is 5.92%. 

 

2. Average approach 

 

The probability distribution of mean of the three test results can be calculated by using 

sum distribution on three identical probability distribution functions. 

 

2.1. Uniformly distributed samples 

 

Uniform sum distribution
7
 is a well known distribution function to represent a sum of 

more than two uniform random variables.  Figure 4 and Eq. 14 shows the analytical 

distribution of the mean value of three tests having uniform variability.  

 

Figure 4. Uniform sum distribution (n= 3) 
 

2 2

4 4 3 33

2 2

2 2 1 1

1
( ) [ ( ) sgn( ) 3( ) sgn( )

4

3( ) sgn( ) ( ) sgn( )]

f x b x b x b x b x
d

b x b x b x b x

          

         

    (13) 

where bi(i =1, 2, 3, 4) are 0.85, 0.95, 1.05, 1.15, respectively and d = 0.1. 

The final failure stress estimate is determined after adding kavg to this distribution.  We 

have unconservative region as in figure 4.  From Eq 13, we can obtain 5.45% 

unconservativeness, 1.59% average unconservativeness, and the c.o.v. is exactly 5%.  

 
References 

1. Lincoln, J.W., “Method for Computation of Structural Failure Probability for an Aircraft,” ASD-TR-

80-5035, July 1980. 

2. Wirsching, P.H., “Literature Review on Mechanical Reliability and Probabilistic Design,” Probabilistic 

Structural Analysis Methods for Select Space Propulsion System Components (PSAM), NASA 

Contractor Report 189159, Vol. III, 1992. 

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

1

2

3

4

5

6

7

8

 

 

Uniform mean

Unconservative 
Region



 13 

3. “Integration of Probabilistic Methods into the Design Process,” Society of Automotive Engineers, 

Aerospace Information Report 5080, 1997. 

4. Long, M.W., and Narciso. J.D., “Probabilistic Design Methodology for Composite Aircraft 

Structures,” FAA Final Report, DOD/FAA/AR-99/2, June 1999.  

5. Acar, E., Kale, A., Haftka, R.T., and Stroud, W.J., "Structural Safety Measures for Airplanes," Journal 

of Aircraft, Vol. 43, No. 1, 2006, pp. 30-38. 

6. Acar, E., Kale, A., and Haftka, R.T., "Comparing Effectiveness of Measures that Improve Aircraft 

Structural Safety," submitted, ASCE Journal of Aerospace Engineering, 2006. 

7. Weisstein, Eric W. "Uniform Sum Distribution," MathWorld--A Wolfram Web Resource. 

http://mathworld.wolfram.com/UniformSumDistribution.html 

 

http://mathworld.wolfram.com/UniformSumDistribution.html

