
Inverse measure-based tail modeling approaches for 

structural reliability estimation  

Palaniappan Ramu
1
, Nam H. Kim

2
 and Raphael T. Haftka

3
 

Dept. of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611 

Sampling-based reliability estimation with expensive computer models may be 

computationally prohibitive. One way to alleviate the computational expense in high 

reliability designs is to extrapolate reliability estimates from observed levels to 

unobserved levels. Classical tail modeling approaches provide a class of models to 

enable this extrapolation using asymptotic theory by approximating the tail region 

of the cumulative distribution function (CDF). This paper proposes an alternate tail 

extrapolation based on inverse measure, which can complement classical tail 

modeling. The proposed approach applies a nonlinear transformation to the CDF of 

the inverse measure and approximates the transformed CDF by a quadratic 

polynomial. Accuracy and the computational efficiency are competing factors in 

selecting sample size. Yet, as our numerical studies reveal, the accuracy lost to the 

reduction of computational power is very small in the proposed method. The 

method is demonstrated on two engineering examples and on true statistical 

distributions. 

1. Introduction 

Aerospace and space applications typically demand high reliability. In a probabilistic perspective, high 

reliability translates to small probability content in the tails of the statistical distributions. Safety analysis 

such as reliability analysis, especially when dealing with high reliability (or low failure probability) designs 

is mostly dependent on how the tails of the random variables are modeled.  In few cases, the safety levels 

can vary by an order of magnitude with slight modifications in the tails of the basic variables.  

Limitations in computational power prevent us in employing direct simulation methods to model 

the tails. Hence, estimating high reliability involves the challenging task of accurately modeling the tails of 

the statistical distribution with limited data.  

Powerful theories and results developed based on extreme value theory are useful to model tails of the 

statistical distributions efficiently. The distinguished feature of extreme value analysis is the objective to 

quantify the stochastic behavior of a process at unusually large or small levels (Coles 2001).  

In structural engineering, reliability is measured by quantities like probability of failure or 

reliability index. Recently, alternate safety measures like the inverse measures have cornered enough 

interest because of their multifaceted advantages (Ramu et al, 2006).  Among the several advantages they 

exhibit, inverse measures like probabilistic sufficiency factor (PSF) are capable of providing information 

about additional cost required achieving a safe design, stable and accelerated convergence in optimization, 

better response surface approximations compared to surfaces fit to other reliability measures.  

Reliability measures can be estimated using several techniques like First–Order Reliability 

Method (FORM- Enevoldsen and Sorensen, 1994), Monte Carlo simulation (Qu et al., 2003), stochastic 

response surface (Kim et al., 2004), and worst–case analysis (Sundaresan et al., 1993). Monte Carlo 

methods are computationally expensive. Moment based methods like FORM are limited to address single 

failure modes. Stochastic response surface represents central model and it is reported that using central 

models to estimate large percentiles such as those required in reliability constraint calculations can lead to 

significant inaccuracies (Maes and Huyse, 1995).  

This paper presents an approach for reliability estimation using inverse measures and general tail–
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models available from extreme value theory in statistics In tail-models, the conditional cumulative 

distribution function (CDF) above a certain threshold is approximated using the generalized Pareto 

distribution (GPD) (Castillo, 1988).   Here, we explore the usefulness of inverse measure for tail modeling 

and use it in conjunction with classical approaches. The approach applies a nonlinear transformation to the 

CDF of the inverse measure and approximates the relationship by a quadratic polynomial.  The proposed 

method does not approximate the functional expression of the model output; rather approximates the tail of 

the cumulative distribution.  Thus, it has an advantage of the system reliability analysis and design in which 

no single form of functional expression is available. 

The paper is structured as follows. Section 2 discusses reliability estimation using inverse 

measures. Tail modeling concepts and how it can be applied to estimate the inverse measure is discussed in 

Section 3. Section 4 discusses the extrapolation technique to estimate inverse measures corresponding to 

lower failure probability followed by a demonstration on a cantilever beam and tests on true statistical 

distribution. Conclusions are presented in Section 5. 

 

2. Reliability Estimation Using Probabilistic Sufficiency Factor 

The inverse measure used here is the probabilistic sufficiency factor (PSF) introduced by Qu and Haftka 

(2001, 2003).  PSF is a safety factor with respect to the target probability of failure and hence combines the 

concepts of safety factor and the probability of failure. 

Let the capacity of the system be 
c

g  (e.g., allowable strength) and the response be
r

g .  For the given vector 

x  of input variables, the traditional safety factor is defined as the ratio of the capacity to the response, as 

 
( )

( )
( )

c

r

g
S

g
=

x
x

x
 (1) 

The system is considered to be failed when 1S ≤  and safe when 1S > .  

 In probabilistic approaches, it is customary to use a performance function or a limit state function 

instead of the safety factor to define failure (or success) of a system.  For example, the limit state function 

can be expressed as 

 ( ) ( ) 1G S= −x x . (2) 

The failure of the system is defined as ( ) 0G ≤x , while the system is considered to be safe when ( ) 0G >x .  

A performance function is often defined as the difference between capacity and response.  However, the 

role of safety factor is clear in the definition in Eq. (2). 

When the vector x  of input variables is random, ( )
c

g x  and ( )
r

g x  are random in nature, resulting in 

the safety factor being a random function.  In such instances, the safety of the system can be enforced by 

using the following reliability constraint: 

 ( ) ( ) target
: Pr ( ) 0 Pr ( ) 1

f f
P G S P= ≤ = ≤ ≤x x , (3) 

where 
f

P  is the failure probability of the system and 
targetf

P  is the target failure probability, which is the 

design requirement. 

 Reliability analysis calculates 
f

P  with given random inputx , and reliability–based design 

optimization (RBDO) imposes Eq. (3) as a constraint.  Since the magnitude of the probabilities in Eq. (3) 

tends to be small, the notion of reliability index is often employed.  From the observation that the 

cumulative distribution is monotonic, the inverse transformation of the probability constraint in Eq. (3) is 

taken in the standard normal random space, to obtain  

 
1 1

target target: ( ) ( ) :f fP Pβ β− −  = −Φ ≥ −Φ =    , (4) 

where ( )Φ i  is the cumulative distribution function (CDF) of the standard normal random variable, β  the 

reliability index, and 
target
β  the target reliability index.  The reliability index is the value of standard normal 
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Figure 1: Probabilistic distribution of safety factor S .  PSF is 

the value of the safety factor whose CDF corresponds to the 

target probability of failure. 

random variable that has the same probability with fP .  The RBDO using Eq. (4) is called the Reliability 

Index Approach (RIA) (Enevoldsen, 1994; Tu et al., 1999) 

 The last inequality in Eq. (3) can be converted into equality, if the upper bound of the safety factor 

is relaxed (in this case it is one).  Let the relaxed upper bound be *s .  Then, the last part of the reliability 

constraint in Eq. (3) can be rewritten, as 

 
*

target
Pr( ( ) )

f
S s P≤ =x . (5) 

The relaxed upper bound *s  is called the Probabilistic Sufficient Factor (PSF).  Using PSF, the goal is to 

find the value of PSF that makes the CDF of the safety factor equals to the target failure probability.  

Finding 
*s  requires inverse mapping of CDF, from which the terminology of inverse measure comes.  

 The concept of PSF is illustrated in Figure 1.  The shaded region represents the target failure 

probability.  Since the region to the left of 1S =  denotes failure, *s  should be larger than one in order to 

satisfy the basic design condition that the failure probability should be less than target failure probability.  

This can be achieved by either increasing the capacity 
c

g  or decreasing the response
r

g , which is similar to 

the conventional notion of safety factor, but now it is extended to probabilistic problems using PSF. 

 PSF gives a notion of how far the current design is from the safe design, in the performance space.  

This is analogical to reliability index being a measure of distance in the input variable space. The major 

difference is the measurement of distance in different spaces, the performance function (or output) space 

and the input space. A unique advantage of PSF is that design engineers, who are familiar to the 

deterministic design using the safety factor, can apply the similar notion to the probabilistic design. 

 The PSF 
*s  is the factor that has to be multiplied by the response or divided by the capacity so 

that the safety factor be raised to one.  For example, a PSF of 0.8 means that 
r

g  has to be multiplied by 0.8 

or 
c

g  be divided by 0.8 so that the safety factor increases to one.  In other words, it means that 
r

g  has to 

be decreased by 20% or 
c

g  has to be increased by 25% in order to achieve the target failure probability. 

The PSF can be computed using either Monte Carlo Simulation (MCS) or moment–based methods.  If  

MCS with N  samples is used to calculate PSF, the location n  is first determines as the smallest integer 

larger than 
targetf

N P× .  Then, the PSF is the n -th smallest safety factor, which is mathematically 

expressed as: 

 *

1
min( ( ))
N

th

i
i

s n S x
=

= . (6) 

The calculation of PSF requires sorting the safety factors from the MCS samples and choosing the n -th 

smallest one.  

 



3. Tail modeling and Inverse measures 

Low failure probability problems (extreme value) require one to have sufficient data in the tails of the 

distribution which represent the extremes. But this is seldom possible and instead researchers use extreme 

value theory based tail modeling to predict the probability of extreme events. The theory comprises a 

principle for model extrapolation based on the implementation of mathematical limits as finite level 

approximations. This section discusses the tail modeling technique and how to apply it to find inverse 

measures. 

In engineering applications, rather than maxima, the interest is to address the excesses over 

threshold. In these situations, the generalized pareto distribution (GPD) arises as the limiting distribution. 

The concept of GPD is presented in Figure 2. Let y be a model output which is random and  u be a large 

threshold of y. The observations of y that exceed u are called exceedance. The conditional distribution  

 

 

 

 

 

 
 

 

 

 

 

Figure 2: Tail modeling of F(u) using the threshold u. The region of y>0 is failure. 

 

( )
u

F z of the exceedance given that the data y is greater than the threshold u, is modeled fairly well by the 

GPD. Here, z y u= − . Let approximation by GPD be denoted by
,

ˆ ( )F zξ σ .  and ξ σ are the shape and scale 

parameters respectively. For a large enough u, the distribution function of (y-u), conditional on y > u, is 

approximately (Coles, 2001): 
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In Eq (7), max(0, )A A
+
= and 0z > .ξ  plays a key role in assessing the weight of the tail. Eq (7) can be 

justified as a limiting distribution as u increases (Coles, 2001, pp:75-76). Tails can be classified based on ξ  
as: 

 
0,  heavy tail (pareto type tail)

0,  medium tail (exponential type tail)

0,  light tail (Beta-type tails)

ξ
ξ
ξ

>

=

<

 

            
It is to be noted that conditional excess CDF ( )

u
F z is related to the CDF of interest ( )F y  through the 

following expression: 
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From Eq (8), the CDF of y can be expressed as: 

 ( ) (1 ( )) ( ) ( )
u

F y F u F z F u= − +  (9) 

When Eq (7) is substituted for ( )
u

F z in the above expression, Eq (9) becomes: 

 ( )
1

( ) 1 1 ( ) 1 ( )F y F u y u
ξξ

σ

−

+

= − − + −  (10) 

For simplicity of presentation, only the case of 0ξ ≠  is considered here. Once we obtain estimates of the 

parameters as ξ̂ and σ̂  using some parameter estimation method like maximum likelihood estimation 

method, least square regression that are discussed later in the chapter,  it is possible to estimate the p
th
 

quantile by inverting Eq.(10) : 

 � �
�

ɵ

ɵ

1 1 ( )
( ) 1

1 ( )
p

F p
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ξ
σ

ξ

−

−
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If 
ftarget

P refers to the target failure probability that we wish to design the structure, then the interest is to 

estimate the corresponding PSF in inverse reliability analysis. The PSF can be directly obtained from Eq 

(11) as: 

 
�

ɵ

ɵ

PSF 1
(1 ( )

ftargetP
u

F u

ξ
σ

ξ

−   = + − −   

 (12) 

Extending the idea of tail modeling to structural applications one can use it effectively to estimate the 

failure probability. The failure probability of a structure is governed by the value the limit state function 

takes at the sample points. Considering the probability distribution of a limit state function, failure 

probability is essentially the probability content to the left (or right) of the limit state function value of zero. 

This can be estimated in the tail modeling context by substituting y = 0 in Eq. (10) as: 

 ( )
1

1 (0) 1 ( ) 1fP F F u u
ξξ

σ

−

+

= − = − −  (13) 

Performance of this approach is based on the choice of the threshold value u In theory, the threshold should 

be selected where the actual upper tail starts. Selection of threshold is a tradeoff between bias and variance. 

If the threshold selected is low, then some data points belong to the central part of the distribution and do 

not provide a good approximation to the tails. On the other hand, if the threshold selected is too high, the 

number of data available for the tail approximation is much less and this might lead to excessive scatter in 

the final estimate. The proper selection of threshold is very important because it has important 

repercussions on the estimated value of the shape factor (Caers and Maes, 1998, McNeil and Saladin, 1997) 

and hence on the final estimates such as the quantile, extreme values etc. There are many exploratory 

techniques like the mean excess plot which help in selecting the threshold. But in a simulation study, it is 

impractical to perform interactive data analysis required by the exploratory techniques to choose the 

threshold. Boos (1984) suggests that the ratio of  Nex  (number of tail data) over N (total number data) 

should be 0.02 (50<N<500) and the ratio should be 0.1 for 500<N<1000. Hasofer (1996) suggests 

using 1.5Nex N= . Caers and Maes (1998) propose to use a finite sample mean square error (MSE) as a 

criterion for estimating the threshold. They use the threshold value that minimizes the MSE. In a similar 



fashion Beirlant et al (1996) find an optimal threshold by minimizing an approximate expression for 

asymptotic mean square error. The other methods include plotting the quantile, shape or scale factor or any 

quantity of interest with respect to different thresholds and look for a stability in the curve (Bassi et al, 

Coles pp:84-86). 

There are several parameter estimation methods like the maximum likelihood (MLE) method and 

regression approach to estimate the parameters  and ξ σ .  MLE is a popular statistical method that is used 

to make inferences about the parameters of the underlying probability distribution of a given data set. The 

likelihood of a set of data is the probability of obtaining that particular set of data, given the chosen 

probability distribution model. ML estimation starts with writing the likelihood function which contains the 

unknown distribution parameters. The values of these parameters that maximize the likelihood function are 

called the maximum likelihood estimators.  

The method of least squares assumes that the best-fit curve of a given type is the curve that has the minimal 

sum of the deviations squared (least square error) from a given set of data. The parameters are obtained by 

solving the following minimization problem 

 ( )2,
,

1

ˆ ( )
N

i

Min F z EmpCDFξ σξ σ
=

−∑  (14) 

The GPD CDF can be obtained by using Eq. (7). The empirical CDF are plotting positions which are 

computed as:  

     ,i=1...
1

i

i
P N

N
=

+
 (15) 

  

where N is the total number of samples and P is the plotting position. Least square regression requires no or 

minimal distributional assumptions. Unlike MLE, there is no basis for testing hypotheses or constructing 

confidence intervals.  

 

4. Extrapolation schemes and simultaneous application of tail models to estimate inverse 

measure for highly safe designs 

In this section, an extrapolation scheme is proposed to estimate the PSF for low target failure probability 

using MCS which is sufficient only to estimate the PSF for substantially higher failure probability (lower 

target reliability index). This is based on approximating the relationship between the PSF and the reliability 

index by a quadratic polynomial. It is to be noted that when dealing with normal distribution, this 

relationship is linear. The PSF for each reliability index in a range of small reliability indices is obtainable 

using smaller sample size MCS. A quadratic polynomial is fit to the PSF in terms of the natural logarithm 

of the reliability index in this range. Once the polynomial is obtained, the PSF corresponding to any higher 

reliability index can be estimated using it. Hence, once the PSF for each reliability index in a range of low 

reliability indices is obtained, the problem reduces to a data fitting problem.  

The PSF extrapolation method and the tail modeling approach are conceptually similar. The major 

difference in perceiving the two methods is that the tail modeling techniques model the CDF of PSF 

whereas the extrapolation scheme approximates the trend of PSF in terms of reliability index. Tail 

modeling approaches enable us to address the problem of finding the probability of failure at unobserved 

level corresponding to a particular level of safety. Whereas, the extrapolation scheme allows us to estimate 

the PSF that corresponds to an unobserved level of failure probability. Since several advantages are 

reported by working with inverse measures, it is logical to justify an attempt to perform tail modeling in the 

performance space along with inverse measures to estimate quantities at unobserved levels.  

The extrapolation scheme and the tail modeling methods are demonstrated on a cantilever beam 

example. Next, a simultaneous application of the methods is proposed. Finally the method is tested on true 

statistical distributions.  

 

 



Cantilever beam example 

Consider the cantilevered beam design problem, shown in Figure 3 (Wu et al., 2001).  The objective is to 

minimize the weight or equivalently the cross sectional area, A w t= ⋅  subject to two reliability constraints, 

which require the reliability indices for strength and deflection constraints to be larger than three.  The 

expressions of two performance functions are given as 

 

Strength:  
2 2

600 600
s X Y
y R S R F F

w t wt

 = − = − + 
 

 (16) 

 

Tip Displacement:  

2 23

2 2

4
Y X

d O O

F FL
y D D D

Ewt t w

   = − = − +   
   

 (17) 

where R  is the yield strength, 
X

F  and 
Y
F  are the horizontal and vertical loads and w  and t  are the design 

parameters.  L  is the length and E  is the elastic modulus.  , , , and
X Y

R F F E  are random in nature and are 

defined in Table 1. 

  
 

 Table 1: Random variables for the cantilevered beam problem 

Random 

Variable 
FX FY R E 

Distribution 
Normal 

(500,100)lb 

Normal  

(1000,100)lb 

Normal  

(40000,2000) psi 

Normal  

(29E6,1.45E6) psi 

 

Here we consider a system failure case. That is, both the failure modes are considered 

simultaneously. The approximated tail of the CDF for the cantilever beam system reliability example is 

presented in Figure 3. The number of samples used is 1E5 and the quantile selected is 0.9. The threshold is 

selected in terms of CDF of the safety factor. This 0.9th quantile value is 0.85. The fit based on GPD 

approximation is superimposed on the empirical data. The ordinate can be viewed as the failure probability 

levels. Hence, if an inverse normal transformation is performed on the ordinate and the axes swapped, 

Figure 3 takes the form of the plot in Figure 4. The idea of the extrapolation technique is to approximate the 

relationship depicted in Figure 4 by a quadratic polynomial. 1e5 samples are used here for demonstration 

purpose. This is seldom possible in real time with computationally intensive models. In order to consider a 

reasonable real situation, we consider the same example with 500 samples.  

The objective is to the estimate PSF corresponding to low failure probabilities by simultaneously 

applying the extrapolation method and classical tail modeling techniques. Though the methods are 

conceptually same, they burgeon from different theories or assumptions and exhibit their own limitations. 

Since neither of the methods can be applied to all the problems, we propose to use both the methods 

simultaneously to model the tail data. With respect to parameter estimation in the tail modeling approach, 

the ML method might work well sometimes and the regression approach might work better (Hasking and 

Wallis, 1987). Both ML and regression techniques are used for parameter estimation in classical tail 

modeling approach. In the extrapolation technique, one can use the exceedance data alone or use the entire 

data. Because of the symmetry of reliability index, it suffices to use only half of the data (else, we’ll have to 

L=100" FY 

t FX 

w 

Figure 3: Cantilever beam subjected to horizontal and vertical random loads 



 

 

 

 

 

 

 

 

 
Figure 3: GPD fit to the tail of critical safety factor data 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Extrapolation approach. Relationship between reliability index and PSF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Simultaneous application of tail models. Cantilever beam system reliability case.  500 samples 
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deal with logarithms of negative data). A plot for the system reliability case of the cantilever beam that uses 

the 4 different fits is presented in Figure 5. 

The fits presented in Figure 5 are for one repetition. In order to understand the uncertainty in the 

fit, a thousand replications were performed and the mean and standard deviation of the estimates were 

recorded for all the four fits. A pictorial representation of the spread of data can be obtained using a box 

plot. The box plots are presented for two reliability index values, 4 and 4.2 in Figure 6. The minimum of 

the sample is the bottom of the lower whisker. By default, an outlier is a value that is more than 1.5 times 

the interquartile range away from the top or bottom of the box. Based on Figures 5 and 6 and it can be 

concluded that the fit to half of the data performs better than other methods. The fit based on regression 

parameters seems to skew after a certain set of data points. This is mainly influenced by the extreme points 

that are volatile. 

 

Figure 6: Box plot representation for the 4 data fit techniques. Cantilever beam system reliability case. 500 

samples. 1000 repetitions.  

The lower and upper lines of the box are the 25th and 75th percentiles of the sample. The distance between 

the top and bottom of the box is the interquartile range. The line in the middle of the box is the sample 

median. The whiskers are lines extending above and below the box. They show the extent of the rest of the 

sample (unless there are outliers). 

 

The results presented and the consequent conclusions belong to the cantilever beam system 

reliability case alone. They cannot be generalized for any other example. In order to understand the 

performance of these methods individually with different distributions, the simultaneous application 

technique is tested on true statistical distributions. The different distributions that were tested are presented 

in Table 2. For a fixed mean and COV of the data, the objective is to estimate the inverse measure for fixed 

probability content. Once this is obtained, one can normalize the initial mean and use it to estimate inverse 

measures for different plotting positions that are used in the construction of empirical CDF. The steps 

followed in using the simultaneous application of tail models to true distribution is presented in Appendix 

1. The measures of error in the estimated values in comparison to the exact values are the relative error and 

incremental relative errors. The expressions are: 

Relative Error :  

   Rel Index(3.2 : 0.2 : 4.2)i i

i

Exact Method
i

Exact

−
→  (18) 

Incremental relative Error:     

 3 3

3

( ) ( )
  Rel Index(3.2:0.2:4.2)

( )

i i

i

Exact Exact Method Method
i

Exact Exact

− − −
→

−
 (19) 
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Table 2: Statistical distributions used to test the simultaneous application of tail models 

 

Distribution Parameters 

 a  b  

Normal µ  σ  

LogNormal ( ) ( )2ln 0.5 bµ −  2

ln 1
σ
µ

  
+  
   

 

Uniform 12

2
µ σ−  

12

2
µ σ+  

Extreme 

Type 1 
0.577

b
µ −  

6

π
σ

 

Gamma 2µ
σ
 
 
 

 
a

σ
 

Single parameter distributions 

Exponential µ σ−  µ  

Rayleigh 
( )

2
b

π
µ −  

2
2

σ
π

−

 

 

 
Table 3: Error metrics for different tail models. Lognormal distribution 

ξ(ML): -0.07 ξ (Reg): -0.05 Capacity: 23.11 Threshold: 0.9 

Extrapolated PSF values      

Rel Index 3 3.2 3.4 3.6 3.8 4 4.2 

Exact 1.0000 1.0605 1.1246 1.1926 1.2647 1.3412 1.4223 

MLE 0.9797 1.0286 1.0777 1.1268 1.1755 1.2236 1.2709 

Reg 1.0013 1.0561 1.1120 1.1687 1.2260 1.2836 1.3413 

Quad-Half 1.0199 1.0804 1.1435 1.2091 1.2773 1.3481 1.4214 

Quad-Tail 1.0324 1.0904 1.1483 1.2058 1.2629 1.3194 1.3754 

Lin-Tail 0.9947 1.0415 1.0883 1.1350 1.1818 1.2286 1.2754 

% Rel Error       

MLE 2.03 3.00 4.17 5.52 7.06 8.77 10.64 

Reg -0.13 0.41 1.12 2.00 3.06 4.30 5.69 

Quad-Half -1.98 -1.88 -1.68 -1.39 -1.00 -0.51 0.06 

Quad-Tail -3.24 -2.82 -2.10 -1.11 0.15 1.62 3.30 

Lin-Tail 0.53 1.79 3.23 4.83 6.55 8.39 10.33 

%Inc Rel Error       

MLE  19.03 21.28 23.62 26.03 28.51 31.03 

Reg  9.31 11.14 13.08 15.12 17.26 19.47 

Quad-Half  -0.12 0.77 1.72 2.73 3.79 4.91 

Quad-Tail  4.06 7.00 9.97 12.93 15.88 18.79 

Lin-Tail  22.62 24.89 27.11 29.29 31.43 33.52 

 

 



The error metrics for the lognormal distribution using different tail models are presented in Table 3. It is 

observed that the quadratic fit to the half data and exceedance data performed better compared to other 

techniques. A similar exercise was performed for all the tabulated distribution. 2 different parameters and 

two different thresholds for each set of parameters are considered.  The outcome based on best performance 

is presented in Table 4 and Table 5. A detailed table of the performance is presented in Appendix 2. 

 
Table 4: Number of cases in which each technique performed as one of the best two fits. µ=10, σ=3  

Table 5: Number of cases in which each technique performed as one of the best two fits. µ=10, σ=8  

From the above tables it is clear that no particular distribution can be considered best for all distributions. 

Even for a particular distribution the performance of different technique varies based on the parameters. 

Therefore, it is more reasonable to use all the methods simultaneously. One can attempt to estimate an error 

metric in the tail model similar to PRESS errors (Predicted REsidual Error Sum of Squares) in response 

surface techniques and use this measure to estimate the accuracy of different methods and choose the best 

one.  

5. Conclusions  

This paper discussed about using classical tail modeling techniques to estimate reliability measures in the 

context of structural reliability. These methods are based on the idea of approximating the tail of the CDF 

by a GPD. Maximum likelihood and regression methods were used to estimate the parameters of GPD. A 

PSF based tail extrapolation technique is proposed that can complement the classical tail modeling. The 

methods are demonstrated on a cantilever beam example and true statistical distributions. It is observed that 

no single method can be universally used for all distributions. The performance of each technique varies 

depending on the distribution and parameters. A simultaneous application of tail models is proposed. Error 

metrics similar to PRESS can be used to estimate the accuracy of each method and choose the best fit. 

 

 

 

 

Pft=0.00135, 500 samples   

Threshold Techniques 

 Quad-Tail Lin-Tail Quad-Half Reg MLE 

Incremental Error     

0.9 7 3 4 3 1 

0.95 4 3 4 6 1 

Relative Incremental Error    

0.9 6 2 3 2 1 

0.95 2 3 5 2 1 

 

 Pft=0.00135, 500 samples   

Threshold Techniques 

 Quad-Tail Lin-Tail Quad-Half Reg MLE 

Incremental Error     

0.9 5 2 3 4 2 

0.95 1 2 4 7 2 

Relative Incremental Error    

0.9 3 2 2 4 2 

0.95 1 2 4 6 2 
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Appendix 1 

 

Simultaneous application of tail models to true statistical distribution 

Fixed µ ; COV ;
ftarget

P  

 

1. Find the initial parameter values(
0

a and 
0
b ) for each distribution. These parameters can be used to 

generate random numbers of response. 

2. Find capacity C (
th
 quantile

ftarget
P ).In the case of single parameter distributions, add shift factor to 

the C.  

3. Find normalized mean using ˆ
C

µ
µ = . The normalized mean is the mean of the inverse mesure 

4. Use µ̂ and COV to find new parameters ( a  and b ) for all the distributions. 

5. Generate y = 500 LHS on (0, 1) [allows to generate equally distributed samples in the y axis] 

6. Find S using a,b and inverse CDF functions 

7. Estimate plotting positions �
1

i
P

N
=

+
 

8. Plotting S vs P provides the empirical CDF. 

9. The tail of the CDF can be approximated by GPD. ML and regression approaches are used for 

parameter estimation 

10. Apply the inverse standard normal cumulative distribution function to the plotting positions to get 

reliability indices and approximate the relationship between reliability indices and PSF using a 

quadratic fit to the data. 



Appendix 2 

Table A2.1: Best fits based on error metrics for various distributions  

 Case 1: µ=10, σ=3 ; Case 2: µ=10, σ=8 
    Relative Error Inc Relative Error 

 Cases 1 2 1 2 

Distribution Threshold Method Behaviour Method Behaviour Method Behaviour Method Behaviour 

LT Over Est LT Over Est LT Over Est, LT Constant 

0.9 QT Over Est QT Over Est QT Over Est QT OverEst 

Reg Changes Reg changes QH Over Est QH OverEst 

LT Over Est LT Over Est LT Over Est LT Constant 

Normal 

0.95 QT Over Est QH Over Est     

QH Changes MLE UnderEst QH Changes MLE UnderEst 

0.9 QT Changes Reg Over Est QT Constant Reg Over Est 

QH Changes MLE UnderEst QH Changes MLE UnderEst 

QT Over Est   QT OverEst QT Over Est 

LogNormal 

0.95   Reg Over Est   Reg Over Est 

QH Over Est Reg Changes QH Over Est Reg UnderEst 

QT Over Est QH OverEst QT Changes QH OverEst 

0.9 LT Changes QT Changes     

QH Over Est Reg OverEst QH OverEst Reg OverEst 

Reg Changes QH OverEst   QH OverEst 

Gamma 

0.95 LT Changes   LT Constant   

Reg OverEst MLE UnderEst Reg Constant MLE UnderEst 

MLE Constant Reg OverEst ML Constant Reg UnderEst 

0.9 QT Constant       

Reg OverEst MLE UnderEst Reg Constant MLE UnderEst 

MLE Constant Reg OverEst ML Constant Reg UnderEst 

Uniform 

0.95 QT Constant QT UnderEst     

Reg Over Est Reg OverEst Reg OverEst Reg OverEst 

QH Over Est QH OverEst QH OverEst QH OverEst 

0.9 QT Changes QT Changes QT Constant   

Reg Over Est Reg OverEst QH OverEst Reg OverEst 

QH Over Est QH OverEst QT OverEst QH OverEst 

Exponential 

0.95 QT Over Est       

QH Changes QH UnderEst     

0.9 QT Over Est QT OverEst QT Over Est QT OverEst 

Reg Change Reg Change Reg Constant  underEst 
EV 

0.95 QH Change QH UnderEst QH Constant  underest 

QT OverEst QT overEst QT Over Est Reg OverEst 

0.9 LT OverEst LT OverEst LT Changes QH changes 

Reg Changes Reg Changes   Reg UnderEst 
Rayleigh 

0.95 LT OverEst LT OverEst LT Over Est LT OverEst 

LT – Linear  fit to tail data, QT- Quadratic fit to tail data, QH – Quadratic fit to half data, MLE- Maximum 

likelihood estimate, Reg- Regression 

OverEst – Over estimated, UnderEst – Under Estimated, Changes – Sign changes 


