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ABSTRACT 
The objective of this paper is to provide a method of 

safely estimating reliability based on small samples. First, it is 

shown that the commonly used estimators of the parameters of 

the normal distribution function are biased, and they tend to 

lead to unconservative estimates of reliability. Then, two ways 

of making this estimation conservative are proposed: (1) 

adding constraints when a distribution is fitted to the data to 

bias it to be conservative, and (2) using the bootstrap method 

to estimate the bias needed for a given level of 

conservativeness. The relationship between the accuracy and 

the conservativeness of the estimates is explored for a normal 

distribution. In particular, detailed results are presented for the 

case when the goal is to achieve a 95% likelihood to be 

conservative. The bootstrap approach is found to be more 

accurate for this level of conservativeness. It is then applied to 

the reliability analysis of a composite panel under thermal 

loading. Finally, we explore the influence of sample sizes and 

target probability of failure on estimates quality, and show that 

for a constant level of conservativeness, small samples and 

low probabilities can lead to a high risk of large 

overestimation while this risk is limited to a very reasonable 

value for samples above. 

 

Keywords: Reliability-based design, Probability of failure, 

Conservative estimation 

 

1. INTRODUCTION 
In analyzing mechanical systems, uncertainties in input 

parameters—such as material properties, geometric 

dimensions, or operating conditions—prevent engineers from 

taking the analysis results at face value. Quantification of the 

influence of these uncertainties on reliability is crucial. 

Engineering systems need to be designed so that the risk of 

failure should not exceed an acceptable value. 

 In the literature (e.g., Ref. [1]), many methods have been 

proposed to estimate the reliability of a system for design 

under uncertainties. When sampling-based methods are used 

for this purpose, randomness in reliability estimates is 

inevitable especially when a small sample is used. It has been 

shown that the errors in probability distributions due to 

insufficient information can have a large effect on probability 

calculation (e.g., Refs. [2] and [3]). 

 Accurate estimation of the reliability of a system requires 

a large number of samples. When the number of samples is 

limited due to computational or manufacturing costs, the 

available information is insufficient to accurately estimate the 

reliability of the system. However, it is possible to compensate 

for the lack of information by using reliability estimations that 

are biased to be safe [4]. In this paper, this is called 

conservative estimation. As the conservative estimations tend 

to overestimate (or underestimate) the target values, each 

conservative estimator needs a trade-off analysis between 

accuracy and the level of conservativeness. 

 In this paper, we focus on the case that the probability of 

failure, fP , of a system is estimated from a small number of 

samples. The objective is to find its conservative estimation, 

f̂P , that is likely to be no lower than the true fP . To provide 

such estimation, two alternatives are considered: the first 

method is based on biasing the distribution fitting used to 

compute the estimator of fP ; we also explore the possibility of 

using the bootstrap method [5] [6] for probability of failure 

estimations, and defining conservative estimators based on 

bootstrapping. Finally, the relation between accuracy and the 

level of conservativeness is studied with the help of numerical 

examples. 

 In the next section, we discuss how we use the sampling 

techniques to estimate the probability of failure. Section 3 

shows how to use constraints to obtain conservative 

estimators. Section 4 describes the bootstrap method and how 

to use it to define conservative estimator. The accuracy of 

such estimators is analyzed using a simple numerical example 

in Section 5, and the conservative estimators are applied to an 

engineering problem in Section 6. Finally, in Section 7 we 

analyze the effects of sample sizes and target probability of 

failure on estimates quality, followed by concluding remarks 

in Section 8. 
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2. PROBABILITY OF FALURE CALCULATION FROM 
SAMPLES 
2.1. Limit-State Function and Probability of Failure 

Failure of a system can usually be determined through a 

criterion, called a limit-state function; the value of it 

determines if failure occurs or not. For instance, the limit-state 

function of a structure can often be defined as the difference 

between its response,R , (e.g., maximum stress or strain) and 

its capacity,C , (e.g., maximum allowable stress or strain): 

 

( ) ( ) ( )G X R X C X= −    (1) 

 

Both response and capacity can be considered as a 

function of random variables,X . 

 When probability distributions of the random variables 

are given, Monte Carlo Simulations (MCS) can be used to 

generate samples of the limit-state [11]. The standard use of 

MCS is to calculate the number of time failure occurs. The 

ratio between the numbers of failures over the total number of 

samples defines the probability of failure of the system. 

However, the accuracy of MCS strongly depends on the 

number of samples used. When very safe systems are 

considered, a limited number of samples cannot evaluate the 

probability of failure accurately enough. A popular solution is 

to evaluate low probabilities by fitting a distribution to the 

samples.  

 Given a set of samples of system response 1 2, , , ng g g… , 

estimating the probability of failure is equivalent to estimating 

the Cumulative Distribution Function (CDF) ( )GF g  of the 

limit-state at 0g = : 

 

( 0) 1 (0)f GP P g F= ≥ = −       (2) 

 

In the following part, we discuss several alternatives of 

estimating CDF from a set of samples.  

 

2.2. Various Estimates of CDF 
When estimating a CDF from a set of samples, the first 

step is to choose the distribution type that fits the data best. 

Other alternatives are possible, such as using monotonic 

splines or composite distributions, which will not be discussed 

in this paper. Tail distributions may not apply here since we 

consider only small sample sizes. In this paper, we consider 

only normally distributed data because it is the most common 

distribution and needs only two parameters to be defined. 

However, the approach presented here can be applied to 

different kinds of distributions. 

 

a. Classical estimator: Assuming a certain 

distribution type, an analytical model of CDF can be fitted to 

the samples by adjusting its parameters. In the case of normal 

distribution, for example, we want to estimate the mean µ  

and the standard deviationσ . The classical estimations of the 

mean and the standard deviation from a sample of size n  

are, respectively: 

Classical estimator:  
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where the estimator σ  of the standard deviation is 

normalized by ( 1)n −  to make 2σ  the best unbiased 

estimator of the variance [12].  

 However, while 2σ  is an unbiased estimator of 2σ , σ  
is a biased estimation of σ  [6]. The expected value of σ  
can be approximated by: 
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As a consequence, the standard deviation is likely to be 

underestimated; so the tail of the estimated CDF will be 

biased. 

 

b. Estimators based on fitting the empirical CDF: 
Consider n  samples are arranged in increasing order: 

1 2( )nx x x≤ ≤ ≤� . Then, the empirical CDF is defined as: 

 

1

1

0 for

( ) for

1 for

X k k

n

x x

k
F x x x x

n

x x

+

≤= ≤ ≤ ≤

       (5) 

 

It is then possible to estimate the mean and standard 

deviation of the CDF that approximates the empirical CDF 

best. Two different ways of approximation are studied here: 

(1) minimizing the root-mean-square (RMS) error between the 

estimated CDF and the empirical CDF, and (2) minimizing the 

Kolmogorov-Smirnov distance [9]. 

 To minimize the RMS error between the empirical and 

the estimated CDF, errors are calculated at sample points. In 

order to have an unbiased estimation, the values of the 

empirical CDF are chosen at the middle of the two discrete 

data, as (see Figure 2): 
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The parameters ( , )µ σ  will then be calculated by 

solving the following optimization problem: 
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where ,Fµ σ  is the value of the CDF of a normal distribution 

with parameters ( , )µ σ : 
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 The Kolmogorov-Smirnov (K-S) distance is the classical 

way to test if a set of samples are representative of a 

distribution. The K-S distance is equal to the maximum 

distance between two CDFs (see Figure 2). The maximum 

distance occurs at one data point. The optimization problem 

for the K-S distance becomes: 

 

( ), ,
, 1

1
Minimize max ( ) , ( )k k

k n

k k
F x F x

n n
µ σ µ σ

µ σ ≤ ≤

− − − 
 

 (9) 

 

3. CONSERVATIVE ESTIMATES USING BIASED 
FITTING 

As shown in the previous section, fitting a distribution to 

a set of samples can be seen as an optimization problem. The 

key idea of this section is adding various constraints to this 

fitting problem so that the resulting estimate becomes more 

conservative. We will also present the relationship between 

conservativeness and accuracy. 

 A conservative estimation of the probability of failure 

should be equal or higher than the actual one. Such estimation 

can be obtained by constraining the estimated CDF to be less 

or equal than the true CDF when the parameters are found 

through the optimization problem in Eq. 7. Besides, failure 

occurs when the critical variable happens to be far from its 

mean value in one direction. Therefore, these constraints will 

be applied to half of the data. Here, we choose to apply the 

constraints on the right half. 

 One conservative estimate of the CDF can be obtained 

by constraining the estimate to pass below the data points. A 

second can be obtained by constraining it to pass below the 

entire empirical CDF. They will be called, respectively, CSP 

(Conservative at Sample Points) and CEC (Conservative to 

Experimental CDF). The latter has a stronger conservativeness 

than the former. Obviously, both methods are biased fitting, 

and the choice between the two constraints is a matter of 

balance between accuracy and conservativeness. 

CSP constraints: 

 

, ( ) 0 for
2i

i n
F x i n
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µ σ − ≤ ≤ ≤       (10) 

 

CEC constraints: 
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Example 
To illustrate conservative estimators, a random variable X  

with 10 sample points generated from (0,1)N  is used. The 

probability of failure is defined as the probability that X  is 

larger than limit 2.33x = ; i.e., 

 

limit 0G X x= − ≥            (12) 

 

The exact probability of failure is 1 %. Figure 3 shows 

the empirical CDF along with the three estimates based on 

minimum RMS error: (1) with no constraint, (2) with CSP 

constraints, and (3) with CEC constraints. Table 1 shows the 

parameters of the three estimated distributions and the 

corresponding probabilities of failure.  
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Figure 3: Example of CDF estimators based on RMS error 
for a sample of size 10 generated from N(0,1) 

 

Xlim 

Figure 2 (a): Example of points (circles) chosen to fit an 
empirical CDF (line) obtained by sampling 10 points from 

N(0,1).  

Figure 2 (b): Example of a K-S distance between an 
empirical CDF (staircase) and a normal CDF (continuous 

line). 

D 
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Table 1: Comparison of the mean, standard deviation, and 
probability of failure of the three different CDF estimators 

for N(0,1). Exact values are µ = 0 , σ = 1 , fP = 1.0%  

(Failure if X > 2.33). 

 No constraint CSP CEC 

µ  −0.22 -0.29 −0.19 

σ  0.85 0.94 1.31 

f̂P  0.14% 0.27% 2.74% 

 

 We can see on the graph the effect of the constraints: the 

CSP estimator is shifted down to be under the eighth data 

point; resulting the CDF at the tail is decreased. The CEC 

estimator is shifted even more by the combined effects of the 

eighth and the tenth points. Since the conservative estimators 

are unconstrained on the left half of the distribution, their CDF 

curves cross the empirical curve on this side. 

 In this example, the minimum RMS error with no 

constraint is strongly unconservative even if an unbiased 

estimation is used. The CSP estimate is unconservative, but 

substantially less than the unbiased estimate. The CEC 

estimate is conservative. In order to generalize these results 

and produce reliable conclusions, statistical experiments based 

on large number of simulations will be performed in Section 5. 

 

4. CONSERVATIVE ESTIMATES USING THE 
BOOTSTRAP METHOD 
4.1. Bootstrap Method 

When only a small number of samples are available, the 

bootstrap method can provide an efficient way of estimating 

the distribution of a statistical parameter θ  (for example, the 

mean of a population) using the re-sampling technique (Ref. 

[5] [6]). The idea is to create many sets of bootstrap samples 

by re-sampling with replacement from the original data. Then, 

the distribution of θ  can be approximated by the empirical 

distribution of the parameter θ̂ , estimate of θ computed from 

each set of the bootstrap samples. This method only requires 

the initial set of samples. Figure 4 illustrates the procedure of 

the bootstrap method. The size of the initial samples isn , 

while the number of bootstrap re-samplings is p . Each 

re-sampling can be performed by randomly selecting n data 

out of the n  initial samples. Since the re-sampling procedure 

allows selecting data with replacement, the statistical 

properties of the re-sampled data are different from that of the 

original data. This approach allows us to estimate the 

distribution of any statistical parameter without requiring 

additional data. 

 The standard error or confidence intervals of the 

statistical parameter can be estimated from the bootstrap 

distribution. However, the bootstrap method provides only an 

approximation of the distribution because it depends on the 

values of the initial samples. In order to obtain reliable results, 

it is suggested that the size of the samples must be larger than 

100 [5]. A typical number of bootstrap re-samplings is 

typically from 500 to 5,000. 

 

4.2. Estimation of Probability of Failure using the 
Bootstrap Method 

For illustrating the process, we present the approach for 

100n =  and 5, 000p = . That is, 100 samples of a random 

variable X  are generated from the standard normal 

distribution (0,1)N . The limit-state function is defined such 

that failure occurs when 2.33 0G X= − ≥ (the actual 

probability of failure is 1.0%). Pretending that the statistical 

parameters (meanµ , standard deviationσ , or probability of 

failure fP ) are unknown, these parameters can be estimated 

from the samples. However, the confidence interval of the 

estimated parameters is unknown with one set of samples. 

 Using the given set of the initial samples, 5,000 bootstrap 

re-samplings are performed. From the estimated mean and the 

standard deviation of each set of bootstrap re-samples, the 

probability of failure estimate f̂P  is computed. The 5,000 f̂P  

values define the empirical bootstrap distribution of the 

estimator f̂P . 

 The empirical bootstrap distribution can be used to 

minimize the risk of yielding unconservative estimate f̂P . In 

other words, we want to find a procedure that maximizes the 

quantity: 

 

Initial sample, size n 

(Unknown distribution) 

Resampling with replacement, 

size n 
p bootstraps 

. . . . 

Estimate 
bootθ̂  from bootstrap sample 

p estimates of θ 

Empirical distribution of θ̂  estimator 

Resampling with replacement, 

size n 

Estimate 
bootθ̂  from bootstrap sample 

Figure 4: Schematic representation of bootstrapping. Bootstrap distribution of θ is obtained by multiple resampling (here p 
times) from a single set of data. 
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ˆ( )f fP P Pα = ≥      (13) 

 

A procedure that satisfies Eq. (13) is called an α-conservative 

estimator of fP . For example, if α = 0.95 is desired, then f̂P  

is selected at the 95th percentile of the bootstrap distribution 

of the probability of failure. Because of the finite sample, 

however, Eq. (13) will be satisfied only approximately.  

 Besides the α-percentile, we also use as conservative 

estimate the mean of the γ highest bootstrap values (CVaR, 

[9]). Here we use 10%γ = . These estimators are called, 

respectively, Bootstrap p95 and Bootstrap CVaR 90 (see 

Figure 5). Note that any bootstrap quantile higher than 50% is 

a conservative estimator. A very high α  or low γ will 

increase the value of f̂P  and will yield over-conservative 

estimation. 
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Figure 5: Conservative estimators of Pf from bootstrap 
distribution: 95th percentile (p95) and mean of the 10% 
highest values (CVaR). 

  

5. STATISTICAL BEHAVIORS OF CONSERVATIVE 
ESTIMATES 

The goal of this section is to evaluate the accuracy and 

the conservativeness of the estimators presented in Sections 3 

and 4, using a simple numerical example, where the actual 

distribution and fP are known. In addition, the statistical 

measures of the estimators are evaluated by estimating fP  a 

large number of times. 

We also introduce here the reliability index, which is denoted 

by β and related to the probability of failure as: 

 

( )1

fPβ −
= −Φ  (14) 

 

WhereΦ  is the CDF of the standard normal distribution. 

The reliability index is often used instead of Pf in 

reliability based design because the range of β values 

(typically between one and five) is more convenient and the 

variability lower than Pf’s. It is important to notice that 

since 1−−Φ is a monotonically decreasing function, a low 

probability corresponds to a high reliability index. Thus, a 

conservative estimation β̂  ofβ  should not overestimate the 

true β  (while inversely a conservative estimation ˆfP  of fP  

should not underestimate the true fP ). In the following, we 

present the results for both probability of failure and reliability 

index. 

 First, 100 samples of X  are randomly generated from 

the standard normal distribution (0,1)N . The failure is defined 

for 2.33X ≥ , which corresponds to an actual probability of 

failure of 1.0%. For a given set of samples, different 

estimators are employed to estimate fP . Five different 

estimators are compared: the classical, CSP, CEC, Bootstrap 

p95, and Bootstrap CVaR90 estimators. This procedure is 

repeated 5,000 times in order to evaluate the accuracy and 

conservativeness of each estimator. For the CSP and CEC 

estimators, we tested both RMS and Kolmogorov-Smirnov 

distance criterions and found that performances are 

comparable but using K-S distance slightly increases 

variability. So, results are presented for RMS criterion only.  

 Most of the estimated values will exceed the actual 

probability of failure, but it is desired to maintain a certain 

level of accuracy. Thus, the objective is to compare each 

estimator in terms of accuracy and conservativeness. Table 2 

presents the results in the form of the mean value and the 90% 

symmetric confidence interval [5% ; 95%]. For the probability 

of failure estimates, the lower bound of the confidence interval 

shows the conservativeness of the estimator; the mean and the 

upper bound show the accuracy and the variability of the 

estimator. A high lower bound means a high level of 

conservativeness, but a high mean and upper bound mean poor 

accuracy and high variability. For the reliability index 

estimates, the upper bound shows the conservativeness and the 

mean and lower bound the accuracy. 

 

 As shown in Eq. 4, the standard deviation of the classical 

estimator is biased. As a result, more than 50% of the f̂P  

calculated from the classical estimator are less than the actual 

one. Moreover, the lower bound of the confidence interval is 

0.37%, which means there is a five per cent chance to 

underestimate Pf by a factor of at least 2.7. This result 

provides an incentive for finding a way to improve the 

conservativeness of the probability estimate. 

 The CSP and CEC estimators are biased on the 

conservative side. As expected, the CEC is more conservative 

than the CSP. As a consequence, CEC is more biased and the 

risk of large overestimate is increased. The CEC confidence 

interval shows that there is a five per cent chance to 

overestimate Pf by at least a factor of 5.5, while this value is 

3.6 for the CSP estimator; on the other hand it leads to 94 

percent conservative results, while the CSP estimator leads to 

only 88 percent conservative results. The choice between the 

CSP and CEC estimators will be a choice between accuracy 

and conservativeness. 

 The Bootstrap p95 estimator achieves 92 percent 

conservativeness and the Bootstrap CVaR90 93 percent 

conservativeness. From the upper bounds of both estimations, 

we see that the risk of overestimating Pf by at least a factor of 

3.7 is five percent. 

10% 
highest 
values 

Bootstrap p95 

 Bootstrap CVaR 90 
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The amplitude of error in the reliability index β is much 

lower than the amplitude in the probability of failure. For the 

CEC estimator, the lower bound of the confidence interval 

corresponds to 31% error. For the bootstrap estimators, this 

error is reduced to 23%. The mean errors are respectively 16% 

and 11%. 

Bootstrap methods appear to be more efficient than the 

biased fitting (CSP and CEC) in terms of accuracy and 

conservativeness. For an equivalent level of conservativeness 

(92-94 percent), the level of bias is reduced and the risk of 

overestimations is lower. However, as mentioned earlier, the 

bootstrap method needs a minimum sample size to be used. It 

has been observed that when very small samples are available 

(10 to 50 data), the accuracy of the bootstrap method drops 

dramatically. In such a case, the optimization based methods 

should be used instead. 

 

6. APPLICATION TO A COMPOSITE PANEL UNDER 
THERMAL LAODING 

In this section, the conservative estimates are applied to 

evaluate the probability of failure of a composite laminates 

panel under mechanical and thermal loadings. The panel is 

used for a hydrogen tank in aerospace structures. The 

cryogenic operating temperatures are responsible for large 

residual strains due to the different coefficients of thermal 

expansion of the fiber and the matrix, which is challenging in 

design. 

 Qu et al. (2003) [7] performed the deterministic and 

probabilistic design optimizations of composite laminates 

under cryogenic temperatures, using response surface 

approximations for probability of failure calculations. Acar 

and Haftka (2005) [8] found that using CDF estimations for 

strains improves the accuracy of probability of failure 

calculation. In this paper, the optimization problem that is 

addressed by Qu et al. (2003) [7] is considered. The geometry, 

material parameters and the loading conditions are taken from 

that paper. The objective is to explore the possibilities to 

improve the estimation of the probability of failure 

calculations in a conservative way. 

 

6.1. Problem Definition 
 The composite panel is subject to resultant stress caused 

by mechanical loading (Nx is 33 MPa and Ny is 16 MPa) and 

thermal loading due to the operating temperature 20K – 300K 

(Figure 6). The objective is to minimize the weight of the 

composite panel that is a symmetric balanced laminate with 

two ply angles (that means an eight-layer composite). The 

design variables are the ply angles [ ]1 2,θ θ± ±  and the ply 

thicknesses [ ]1 2,t t . The geometry and loading condition are 

shown in Figure 6. 

 The material used in the laminates composite is 

IM600/133 graphite-epoxy, defined by the mechanical 

properties listed in Table 3. 

 
Table 3: Mechanical properties of the laminate composite 

Elastic properties 1 2 12 12, ,  and E E G ν  

Coefficients of thermal expansion 1 2 and α α  

Stress-free temperature zeroT  

Failure strains 1 1 2 2 12, , ,  and L U L U Uε ε ε ε γ  

Safety factor FS  

  

The minimum thickness of each layer is taken as 

0.127mm, which is based on the manufacturing constraints as 

well as for preventing hydrogen leakage. The failure is defined 

when the strain values of the first ply exceed failure strains. 

The deterministic optimization problem is formulated as: 

1 2

3
1 2

1 1 1

2 2 2

12 12

4( )

. . , 0.5 10

L U
F

L U
F

U
F

Minimize h t t

s t t t

S

S

S

ε ε ε

ε ε ε

γ γ

−

= +

≥ ×

≤ ≤

≤ ≤

≤

     (15) 

where FS  is chosen at 1.4. 

 

 The solutions for the deterministic optimization problem 

found by Qu et al. (2003)[7] are summarized in Table 3. Three 

optima are found with equal total thickness but different ply 

angles and ply thicknesses. 

 
 Table 4: Deterministic optima found by Qu et al. (2003)[7] 

θ1 (deg) θ2 (deg) t1 (mm) t2 (mm) h (mm) 

27.04 27.04 0.254 0.381 2.540 

0 28.16 0.127 0.508 2.540 

25.16 27.31 0.127 0.508 2.540 

 

 

Statistics obtained over 5000 simulations 

Pf Beta Estimators 

90% C.I. Mean 90% C.I. Mean 
% of cons. results 

Classical [ 0.37  ;  2.1 ] 1.05 [ 2.0 ; 2.7 ] 2.34 48 

CSP [ 0.63  ;  3.6 ] 1.86 [ 1.8 ; 2.5 ] 2.12 82 

CEC [ 0.95  ;  5.5 ] 2.97 [ 1.6 ; 2.3 ] 1.96 94 

Boot. p95 [ 0.83  ;  3.7 ] 2.06 [ 1.8 ; 2.4 ] 2.07 92 

Boot. CVaR90 [ 0.88  ;  3.8 ] 2.15 [ 1.8 ; 2.4 ] 2.05 93 

Actual 1.00 2.33  

Table 2: Means and confidence intervals of different estimates f̂P  of 2.33X ≥  and corresponding β values whereX  is the 

standard normal random variable 
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6.2. Calculation of the Probability of Failure 
Given the material properties and the design variables at 

the optimum design, the ply strains can be calculated using 

Classical Lamination Theory. Due to the manufacturing 

variability, the material properties and failure strains are 

considered as random variables. All random variables are 

assumed to follow uncorrelated normal distributions. The 

coefficients of variation are given in Table 5. 

2 12 1 2, , , andE G α α are a function of the temperature. Since 

the design must be feasible for the entire range of temperature, 

strain constraints are applied at 21 different temperatures, 

which are uniformly distributed from 20K to 250K. First, the 

mean values of the random variables are calculated for a given 

temperature, and then, a set of random samples are generated 

according to their distributions. The mean of the other 

parameters are given in Table 6. 

 
Table 5: Coefficients of variation of the random variables 

1 2 12 12, , ,E E G ν  1 2,α α  
zeroT  1 1,

L Uε ε  2 2 12, ,L U Uε ε γ  

0.035 0.035 0.03 0.06 0.09 

 
Table 6: Mean of random parameters 

1E  12ν  zeroT  1
Lε  

21.5x10
6
 0.359 300 -0.0109 

1
Uε  2

Lε  2
Uε  12

Uγ  

0.0103 -0.013 0.0154 0.0138 

 

 The critical strain is the transverse strain on the first ply 

(direction 2 in Figure 6). The limit-state is defined as the 

difference between the critical strain and the failure strain: 

 

2 2
UG ε ε= −      (16) 

 

Then, the probability of failure is given as: 

 

1 (0)f GP F= − ,      (17) 

 

where GF  is the CDF of the limit-state. 

 The probabilistic distribution of the limit-state function is 

in general unknown. In this paper, we generate 1,000 samples 

at the first optimum design 1 2( 27.04)θ θ= =  to determine 

which distribution type fits the best the critical strain data. 

First, we standardize the data by subtracting the mean of the 

sample and divide by the standard deviation of the sample; 

then, we perform a Kolmogorov-Smirnov test to determine 

whether or not the standardized sample belongs to a standard 

normal distribution.  

The null hypothesis H0 tested is that the data has a 

standard normal distribution. The test statistic is the maximum 

distance KS between the sample empirical distribution and 

standard normal distribution. We reject the null hypothesis if 

KS is greater than a certain value. 

Here we found for 1,000 samples: 

KS = 0.0163 

Rejection region: reject H0 if: 0.0428KS ≥  

We cannot reject the null hypothesis and conclude that the 

data is not normal. The power of the test is 0.9519. 

Since both critical strain and failure strain are normally 

distributed, the limit-state is also normally distributed. Thus, 

the probability of failure can be estimated by using the 

methods described in previous sections. 

 

6.3 Results 

At the first optimum design 1 2( 27.04)θ θ= = , 100 

samples of critical strain are generated using the distributions 

of the input random variables and MCS. Using five different 

estimators, the mean and the standard deviation are estimated, 

from which the probability of failure f̂P  is calculated. This 

procedure is repeated 5,000 times in order to evaluate the 

statistical properties of the estimates. Since the exact 

probability of failure is unavailable, a large sample size (10
7
) 

is used to compute Pf compare with the five different 

estimates. 

NX 

θ2 

X 

Y 
1 

2 

θ1 

NY 

Figure 6: Geometry and loading of the cryogenic laminate 
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 Table 7 summarizes the results of five different 

estimators for the probability of failure and reliability index of 

the composite panel. The use of classical estimators of µ  

and σ  leads to a five percent chance of underestimating fP  

by at least a factor of 6, which is strongly unconservative, 

whereas the CEC estimator is 95% conservative (the 5% 

percentile is equal to the actual fP ). However, the right tail of 

its distribution and the bias are very large. The CSP estimator 

is less conservative but both variability and bias are 

substantially reduced. 

 Bootstrap p95 is 92% conservative and Bootstrap 

CVaR90 is 93% conservative. The upper bounds of their 

confidence interval are almost two times lower than the CEC 

estimator, for an equivalent level of conservativeness. We can 

conclude that bootstrap estimators outperform the estimators 

based on biased fitting. 

 We see here that the error in Pf estimation can be very 

large. However, this error is reasonable in terms of reliability 

index: for the Bootstrap p95, the confidence interval shows 

that there is 95% chance that the error remains less than 22%. 

For the unbiased reliability index, this value is equal to 10%. 

Thus, we can consider in first approximation that a 95% 

conservativeness level doubles the error in the reliability index 

estimate compared to the unbiased estimate. 

 The overall performance of the conservative estimators is 

not as good as the numerical example in Section 4. Indeed, the 

actual probability of failure is of the order of 10
−4
 instead of 

10
−2
 previously. Since we estimate the value of the CDF at a 

farther point in the tail, the variability is logically increased. 

 
7. EFFECT OF SAMPLE SIZES AND TARGET 
PROBABILITY OF FAILURE ON ESTIMATES 
QUALITY 

In Section 5, it is shown that the upper bound of the 

confidence interval using the Bootstrap estimators is 3.7 times 

the actual probability of failure (that means, there is five per 

cent chance to overestimate the true probability of failure by a 

factor of minimum 3.7). In Section 6, however, this ratio rises 

to the value of 10. Such a large difference is due to the values 

of the target probability: of the order of 10
−2
 and 10

−4
 for 

Tables 2 and 7, respectively. Indeed, in order to estimate a 

lower value of the probability of failure, we need to use the 

tail part of the CDF, which increase the variability of the 

estimation. Another critical factor in the accuracy of the 

estimation is the sample size. Increasing the sample size will 

reduce the variability of CDF fitting and, as a consequence, 

the upper bound of the confidence interval.  

 Controlling the level of uncertainty is crucial in 

optimization in order to avoid over-design. We want to 

quantify a measure of the uncertainty in f̂P  as a function of 

the sample size and the value of the actual fP . Such a measure 

can help deciding on the appropriate sample size to compute 

the estimate. 

 It turns out that Bootstrap p95 performs well based on 

the previous two examples. Thus, in this section we consider 

only this estimator. Since the estimator achieved a 92% 

conservativeness level with 100 samples on both cases, it will 

be more conservative with higher sample sizes. Thus, the 

focus in this section is on the risk of large overestimation; i.e., 

the 95% unilateral confidence interval of the conservative 

estimate. 

 To obtain a measure of the uncertainty in f̂P as a 

function of the sample size and the actual fP , three different 

sample sizes are used: 100, 200 and 500. In addition, seven 

different probabilities of failure are estimated: (1×10
−5
, 

3×10
−5
, 1×10

−4
, 3×10

−4
, 1×10

−3
, 3×10

−3
 and 1×10

−2
). Since the 

samples are generated from standard normal distribution, the 

seven failures are defined for X greater, respectively, than 

4.26, 4.01, 3.72, 3.43, 3.09, 2.75 and 2.33.   For a given 

sample size and fP , the upper bound of the confidence interval 

of the p95 estimator is calculated using 5000 repetitions. 

Results are presented in Figure  for probability of failure, and 

in Figure 7 for reliability index. The error is measured in terms 

of ratios for probabilities of failure, and in terms of relative 

error for reliability index. 

 As expected, the variability of f̂P  increases when the 

sample size and actual fP  decrease. Here, the most 

unfavorable case is when the sample size is equal to 100 and 

the actual fP  is equal to 10
−5
. In such a case, there is a five 

percent chance to overestimate fP  by more than 30 times it 

actual value! On the other hand, the case with 500 samples 

leads to a very reasonable variability. 

 The relative error in β appears to be almost independent 

of the actual probability of failure. For a sample size of 100, 

there is 95% chance that the error remains below 25%. For a 

Statistics obtained over 5000 simulations 

Pf (x10
-4
) Beta Estimators 

90% C.I. Mean 90% C.I. Mean 
% of cons. results 

Classical [ 0.7 ; 15.4 ] 5.7 [ 3.0 ; 3.8 ] 3.36 48 

CSP [ 2.1 ; 47.5 ] 17.3 [ 2.6 ; 3.5 ] 3.03 85 

CEC [ 4.3 ; 78.5 ] 29.6 [ 2.4 ; 3.3 ] 2.85 95 

Boot. p95 [ 3.2 ; 43.9 ] 17.6 [ 2.6 ; 3.4 ] 2.99 92 

Boot. CVaR90 [ 3.5 ; 45.2 ] 18.5 [ 2.6 ; 3.4 ] 2.98 93 

Actual 4.4 3.33  

Table 7: Means and confidence intervals of different estimates ˆfP (××××10−−−−4
) of composite panel. The actual fP  is 

approximated using 10
7
 samples.  
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sample size of 500, the upper bound of the confidence interval 

is 11%. 

 For any given reliability analysis problem, careful 

attention needs to be given to the level of accuracy that is 

reached by probability of failure estimates. The graph in 

Figure 7 can address this issue by providing the adequate 

sample size to compute reliable estimates. In 

cost-effectiveness approach, it may also help deciding on 

allocating greater number of simulations to low probability 

designs than to high probability design in order to get constant 

level of accuracy. 

 

8. CONCLUDING REMARKS 
The estimation of the probability of failure of a system is 

crucial in reliability analysis and design. In the context of 

expensive numerical experiments, or when a limited number 

of data samples are available, the direct use of Monte-Carlo 

Simulation is not practical, and an estimation of continuous 

distributions is necessary. However, it is shown that the 

classical ways to estimate a CDF may lead to dangerous 

underestimations of the probability of failure. 

 In this paper, several methods of estimating the 

probability of failure based on finite samples are tested. The 

first method constrains distribution fitting in order to bias the 

probability of failure estimate. Then, it is also shown how to 

use the bootstrap method to obtain distributions of probability 

of failure estimators, and how to use this bootstrap distribution 

to define conservative estimators.  

 In the case of samples generated from standard normal 

distribution, the numerical test case shows that both methods 

improve the chance of the estimation to be conservative. 

Bootstrap based estimators appear to provide much better 

results than optimization based methods. However, 

optimization based methods can be used when the sample size 

is very small, where the bootstrap method cannot be used. 

Figure 8: Evolution of the unilateral confidence interval of the reliability index Bootstrap β95 with respect to the actual 
probability of failure for sample with N(0,1) distributions. The relative error of Bootstrap β 95 depends only on sample size 
and do not exceeds 25% with 100 samples. 
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Figure 7: Evolution of the unilateral confidence interval of Bootstrap p95 with respect to the actual probability of failure 

for sample with N(0,1) distributions. Variability of Bootstrap p95 is greater for small sample sizes and low Pf. 
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 We have also applied these procedures to estimate the 

probability of failure of composite laminates at cryogenic 

temperatures. We found that estimating the probability of 

failure from the mean and standard deviation of a sample lead 

to a five percent chance of underestimating the probability of 

failure by a factor of four. Using conservative estimations 

allows us to provide safe estimations with confidence levels, 

but at a price of accuracy. 

 For both the analytical example and the composite 

laminates, it is found that the conservative estimates based on 

the bootstrap approach outperform one-sided fits to the 

experimental CDF. That is, for the same confidence in the 

conservativeness of the probability estimate, the penalty in the 

accuracy of the estimate is substantially smaller. 

 Controlling the uncertainty of the conservative 

estimation is crucial to limit the risks of over-design. To 

address this issue, we explored the influence of sample sizes 

and target probability of failure on estimates quality. We 

showed that extremely unfavorable cases can lead to high 

overestimations that may not be used for the design process. 

However, the error is reasonable when using reliability index 

instead of probability of failure. Therefore, a 

cost-effectiveness approach might be used to determine where 

to allocate computational resources (i.e., sample sizes) in order 

to get acceptable levels of accuracy. Such approach will be 

explored in a future work. 
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