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Abstract. We address the issue of fitting a surrogate tta dgenerated from numerical
simulators that have tunable fidelity. In particulave focus on problems where data is
generated using Monte-Carlo simulations. We shoat this problem is similar to optimal
design of experiments (DOE) but includes additiormalables: the accuracy of the response at
each point, and a computational time constraimcé&ifull optimization is often infeasible, we
propose two alternatives to obtain nearly optinegigns: fixing a spatial DoE and optimizing
only with respect to the fidelities, or construgtisequentially the design for both training point
locations and fidelities. Finally, we apply the twechniques to the fitting of polynomial
models, and show substantial improvement in acguraing optimal allocation of resource.

1. Introduction

In most engineering fields, numerical simulators ased to model complex phenomena and obtain
high-fidelity analysis. Despite the growth of cortgrucapabilities, such simulators are limited bgitth
computational cost, since it can take up to daysafeingle simulation. Surrogate modeling is a
popular method to limit the computational experseonsists of replacing the expensive model by a
simpler model (surrogate) fitted to a few chosanuations at a set of points called a design of
experiments (DoE).

In many applications, the fidelity of numerical sil@tions depends on tunable factors that control
the complexity of the model. For instance, the igien of the response of a finite element analysis
(FEA) can be controlled by the meshing density lement order. Another example is when the
response is obtained using Monte-Carlo methodsat¢haracy (measured by the standard deviation or
confidence intervals) is inversely proportionathe square root of the number of samples.

In the field of surrogate modeling, it is commonwork with two or three models of different
fidelity. In this work, we propose to expand thosttinable fidelity at each sampling point. Indeleyl,
allocating different computational time for eactmgiation, we can improve the quality of the
surrogate without additional cost compared to &oumi fidelity situation. Such formulation belongs t
the field of optimal DoE, which consists initialbf selecting the points to maximize a criterion of
quality for a metamodel construction [1] [2] [3]ek¢ we can, in addition, tune the model fidelities
improve further the criterion. We seek to optimaillpcate computational resources to the points.

Elfving [4] pioneered work in the area of optimalocation. For a linear model he proposed to
repeat experiments at some training points, amdaté a different number of repetitions to eacimoi
according to an optimality criterion. Kiefer and Wéwvitz [1] generalized this idea of proportioning
experiments in order to obtain the most accuratgession coefficients. Fedorov [5] proposed a
continuous version of the same problem, and deeéldprative strategies to find optimal designs.



The objective of this paper is to propose a metlogyoto achieve optimal designs for numerical
simulators with tunable accuracies, in particulaewthe simulator is based on Monte-Carlo methods.
A general formulation of the optimal allocation plem is developed, and practical solutions are
given to solve numerically the problem. We also ainfinding similarities with the work of Fedorov
for some particular configurations.

The paper is organized as follow: first, we presemypical reliability-based design optimization
(RBDO) problem and show how to define an optimaatproblem for allocation of computational
resource; since such problem is very challenging,pnopose alternatives to obtain nearly-optimal
solutions with reasonable expense. Finally, weyappt strategy to polynomial regression examples.

2. Allocation of resource and design optimality

2.1. Using metamodeling for reliability based d@soptimization

To introduce the reader to the problem of resoattmation, we present the example of a classical
RBDO problem. LefF be a cost function to minimize (e.g., weight) &a reliability measure (e.g.,
probability of failure). The typical RBDO problemssociated with them is:

Min F(x)
St G ()( 7ILI® )S G\arget
x are the design variable ang, are the distributions of some random parame®erg/e assume here

that F is independent of the random parameters. The iimG(x, 44,) is deterministic, but it is,

generally, not known analytically. Hence, we estaniausing Monte-Carlo simulations (MCS). For a
given desigrx, we write:

(1)

G(x,0, . )=G(x; 0,,0,,...8,) )
Where G is the estimator of and 0,.0,,....0, are realizations 0®.

Gis a random response which variability dependshensample sizk. In order to use directly
to solve the optimization problerkmust be chosen very large so that the varialidlitgs not prevent
the convergence of the optimizer. Such procedurg become very expensive, especially if the
constraint is evaluated numerous times during fiteénization. Thus, we replace the costly estimate

é(x,eiﬂ”k) by a deterministic metamodel(x) based on a few selected estimations:

{é(xl’eizl..k ). é(x219i:1.k ) ""'é(xn 9i- 1k )} 3
Then, the optimization is performed with the coaist: M (x) < G-

In (3), the same numbé&rof MCS is allocated for each for a total number of simulatioMé=n k
The idea of optimal allocation of resources isrtoréase the accuracy of M by allocating a different
number of samples for eagh such that the total numbBrremains the same. By extension, one can
also think of choosing a smaller number of poimtand have a greater precision at these points, or
inversely, decrease the quality of the responsembrease the number of points.

We assume thak; is proportional to the computational time. Hentiee problem consists of
allocating the computational time between the ingjirpoints. Also, we relate the accuracy of the
response with the computational time. For instatice,variance of probability of failure obtained
from MCS is:

var( P ) =k'R (1- R) (4)

Ps is the actual probability of failure akdhe sample size. If we assume that the randg isfvery
small, it is reasonable to assume that the varianamnly related tdk. Then, the variance of the
response is inversely proportional to the compoiteti time:

var( FA’f ) =% (@ is a constant) (5)



Finally, we can write a computational time consttam terms of the variances at training points:

l+i+_“+_1:Tm_aX (6)
v, V, vy, «a

If we define the informatioby; as the inverse of the variangewe get a linear constraint:
b+b+.+h =T,/ (7

Such formulation is not limited to MCS problems.r Fraost numerical simulators, the fidelity can
be represented by a variance, and this variancéeaalated to the computational time. One can also
consider a stochastic simulator with fixed varigrtben, adjustable fidelity is obtained by compgtin
several times the response for a given trainingtpthe final response at the training point istalas
the mean of the independent responses, and thenssariance is the variance of the simulator
divided by the number of repetitions.

2.2. Optimal designs of experiment and allocatibnesources
Design optimality is based on the idea that expenit® should be chosen to maximize the quality of
the statistical inference. Several criteria of gydlave been proposed over the years; the mostlaop
include D-, A-, E-, G-, |- optimality [1] [2] [3]A- and D-optimality aim at minimizing the uncertgin
in the parameters of the metamodel. In the framkwadr linear regression, D-optimal designs
minimize the volume of the ellipsoid of confidenoé the coefficients, and A-optimal designs
minimize its perimeter. Formally, the A and D criib® are respectively the trace and determinant of
Fisher’s information matrix. I-optimality minimizeke integrated mean square error (or IMSE).
The standard design problem (without resource afion) consists of choosing the training points

x; from the design spade such that the design defined by thesgoints is optimal in the sense of a
criterion Q. The problem can formalized as follow:

Max X1 Xp e Xy,

X11X2000Xp Q( 12 % ) (8)
s.t. X, OE

Many methods exist to solve the optimization problén particular, when D-optimality is used,
the designs can be constructed iteratively, usorgekample Fedorov exchange algorithms or the
Wynn-Mitchell algorithm [6].

It is obvious that for variable fidelity respons€sdepends also on the accuracy of each response.
Let {xl,xz,...,xn} be a set of training points angdthe variance at poirit Then, given an available

computational timf ., We can define an optimization problem for reseuwatftocation:

st vi+v 4y =T Ja (9)
X, OE
Note that n can be considered as an optimizaticahle too.

Fedorov [5] introduced the notion of normalizedigesdefined by a set of training points and a
proportion of experiments for each point. The sunthe proportions is equal to one; when the total
number of experiments is large, the proportiongr@aed as continuous variables.

3. Strategiesfor affordable optimizations

The optimization problem, as defined above, is riacpce very difficult to solve. Indeed, optimal
design problems are known to have many local optand the number of design variables increases
dramatically with the complexity of the surrogatedathe dimension. For instance, fitting a second
order polynomial in a two dimensional space regutypically 12 points, which makes a total of 36



design variables (24 coordinates plus 12 variandeghree dimensions, using 20 points, this number
rises to 80. Thus, we present here two alternativexbtain nearly-optimal solutions with reasonable
computational expense.

3.1. Optimal information for fixed training points
The first strategy is to perform the optimizatiomlyo for the variance. The training points

{xl,xz,...,xn} are chosen from a classical DoE (orthogonal atragn Hypercube). Then, the reduced
optimization problem becomes:

Max  Q(%,%,...\,) o)
Vi VooV 10

st DT /a

However, choosing a DoE that is known to minimize triterion for uniform information may not
be optimal in the general case.

3.2. Fedorov’s algorithm
In his book (pp. 97-114), Fedorov proposed an élyorto build D and G-optimal designs iteratively
as follows: given a current DoE, an optimizatiorp&formed to find the point where the prediction
variance is maximal. This point is added to the Dafitl the proportiop,., of experiments allowed to
the new point is uniformly transferred from the podionsp; of the previous training points:

P =a O<ac<1l

p=(1-a)n, i=1.n (1D

a can be chosen such that the criterion is maximum.

After a few iterations, a nearly-optimal DoE is @ibed that consists of a set of training points and
a proportion of computational time given to eadining point. This algorithm often leads to designs
with many points with high variance. The numbepoints can be reduced by agglomerating points
close to each other and discarding points with kigliance not close to any other point.

Fedorov’'s algorithm has some strong advantageseihdif an infinite number of iterations is
performed, the algorithm converges to an optirhuAiso, it is computationally attractive since it
requires a single optimization in order to find theint with maximum prediction variance (the
optimala can be obtained analytically). However, one ofdteavbacks is that it does not discriminate
between the training points of the current DoEirtkiariances are increased by the same quaantity
even if one point is useful and the other is not.

3.3. Simultaneous optimization of training poiat&l observations
The algorithm we propose also constructs nearlimgdtDoEs sequentially, in order to optimize both
variances and training point locations at the stime. At each iteration, we consider both optiofs o
adding a point with given variance, or decreasevtir@nces at existing data points. The algoritam i
described in Table 1; we use the following notation

e T computational time used to compute the initiaEDo

e Teurent COMputational time already used

*  Xinit, Xcurrens Initial and current DoE

*  Xpew NEW training point

* V;, Vhew Variances ak; andXnew vr‘léwis the time ‘invested’ for each iteration
*  Ninit, Neurrent INitial and current number of training points

! Theorem 2.5.3, pp. 102-104



Table 1. Algorithmic description of the iterative constriact of DoE.

Define: Tmax Tinit, Minit @Ndbrey (iNSUNNG: T < Trax)

Generate the initial DOEX; ={x1,x2, '"’Xnmn}

Optimize thev;'s for Xin: Max Q(Xinit,vliv2""1\ﬁini[ )

VI, Vg e My
-1
S.t. zvl < -ﬁnit
Set: Tcurrent = Tinit XCurrent =X init ncurrent = I’]init
Whlle Tcurrent S Tmax
1- Find the bestx, 2- Find the best reduction of variance:
{Xcurrent X he Max Q(X { V. V, })
’ ’ current? Vl’ 21"
MaX Q V1o V25 Meyrrent Rarent
Xnew {Vl7 V2 yues ,Vncurrem y \4’16\1\} ncurrent o .
S.t. Xnew E S.t. le Vi~ < Teurrent + View
1=
Vi < w_current I :1' ""rl:urrent
Vi current IS the variance & at the previous iteration
(the variances can only increase)

Choose the best option between 1 and 2.
If 1is betterxcurrent ={ X current-X ne\} I’]current = ncurrent+1

N _ -1
Upda‘te tlme'Tcurrent - Tcurrent+ Vnew

One advantage of such formulation is that the totmhber of points does not need to be decided
beforehand. Choosing a small valueTgf and alarge vy Will increase the number of iterations and
the quality of the optimum found; on the other hamdéargeT,,; and smallv,.,, will reduce the chance
of having too many training points (a small dataselften preferable for many applications).

4. Application tolinear regression analysis

4.1. The Regression model
In this study, we limit our investigation to line@gression models. Since the variances are diffete
each point, the framework considered here is linegiression under heteroskedastic conditions.

The polynomial response surface model definesabpanse as the sum of a linear component plus
measurement error. Given a set of design p({ixqsiz,...,xn}, the polynomial response surface

model, in matrix notation, is defined as follow:

Y=Xp+e (12)
Where:
Y &(Xl) Bo &
Y €.
Y = 2 X= g(XZ) p= ﬂl € = 2 g(X):I:EO(X)-El(X)v---:Ep(X)]
Yn é(Xn) pr €

yi is the simulator responsejat ¢;(X) are the polynomial basis functiong; the weights and; the
measurement errors. We denote \pythe variance of the noisg we assume tha, is inversely
proportional to the computational time used to cotaeghe response.



Since all they;, are not equal, the ordinary least square estingdfiis not appropriate. Instead, we
estimate the coefficienfby the generalized least square estimgid8]:

B =(X'V'1x)'1X'V'1Y (13)
With:V = diag[vl,v2,...,vN].

At any unsampled location,.q the prediction variance is [8]:
o1
Var[ y(X pred)] =X predl(x Y% lx) X prec (14)

For this example, we choose to minimize the IMSErdfie design space E:
-1
IMSE= [var yx) dx= [x (X V7X) "x (15)
E E

We compute the integral by numerical quadratureguSimpson’s rule.

4.2. Results for" order polynomial in a 2D space

First, we fit a second order polynomial in a squarget domain E. We assume that our computational
budget corresponds to 12 training points with aiavenre of 1000 (two times more points than
coefficients).

We consider three standard DoEs: a Full factoF&) design, a FF design without the central point
and a FF design with four additional points sitdate the center of the four subsquares. For each of
these designs, we compare the IMSE criterion fdfotm variances and optimal variances (found as
described in3-1). Since the DoE’s have different number of poirt® uniform variances take

different values in order to satisfy the same towoastraint: 667 for 8 points, 750 for 9, 1083 f&r 1
O O O

Figure 1. Three reference DoE's: Full factorial (FF) (centeF without center point (left), FF with
four additional points (right).

The optimization is performed using Covariance Mafdaptation Evolution Strategy (CMAES)
(which is known to be a competitive algorithm fdiolgal optimization with a large number of
variables [10]). A linear penalty function with séit is used for the time constraint. The IMSE
criterion is computed using a 32x32 grid. The tigeaprocedure is not evaluated here, since only a
few iterations (five) can be performed here. Rasaite reported in Table 2.

Table 2. IMSE criteria for classical DoEs with uniform angtional variances.

Type Nb of pts Variance IMSE I mprovement
FF without central 8 Uniform (667) 503.61 8.5 %
point 8 Optimal 460.58 '
9 Uniform (750) 352.16 o
FF 9 Optimal 319.63 9.2%
FF + 4 center points 13 Unlform (1083) 349.25 7.7 %
13 Optimal 322.27




For all three DoEs, optimizing variances improvighsly the IMSE criterion. For the 13-point
DoE, the optimal variances correspond to the optFRa the values at the additional four points tend
to infinity. The difference is due to computatiofialitations (the variances are bounded b§)10

The FF design with optimal variances is represeimegigure 2. The optimal design consists of

equal variances on the edges and a smaller variatice center of the domain.

“ariance at daé%ﬁ%jnts

9924 G924

15

10

8921 Figure 2. Full factorial design with optimal
variances and prediction variance contour
lines. The numbers next to the circles
represent the variances at these points; the
contour lines show the profile of the

R o ans  prediction variance.

4] 0 4 10

Let us consider the RBDO problem described in Zafd assume that the constraint is accurately
modeled with a second order polynomial. Using tktation between variance and number of
simulations described in (6), we can allocate ogliyrthe MCS to the 9 points of the orthogonal arra
to obtain the best IMSE. For instance, if a tofal@00 MCS can be afforded, the optimal allocation
would be to use 248 of them for the center poind, @4 for each of the other points.

4.3. Results for8order polynomial in a 3D space

Now, we consider a substantially more complicateobjem which is the fitting of a'8order
polynomial with interaction terms in a 3D (cubig)ase. The polynomial has 20 coefficients; our
computational budget corresponds to a 40-point @itk uniform response variances equal to 1000.

We propose to use two classical designs: an ortiagoray (OA) with 27 points, completed with
the centers of the 8 inner cubes, and an LHS desittn40 points (with maximum minimum distance
criterion). For these designs, we present the teful uniform variances (875 for OA, 1000 for LHS)
and optimal variances (found using CMAES).

We also present the results for the iterative megareviously described. The initial design is
chosen as a 21-point LHS design with maximin daterl9 iterations are performed. The variance of
each new point is chosen as 1000; the time usedrtpute the initial design corresponds to the time
needed to compute 21 points with a uniform varisemeal to 1000.

To measure the respective effects of space fiindg optimal variances, we also run a simplified
version of the iterative algorithm, where a newnpds generated at each iteration with a fixed
variance. Since all the DoE’s, except the OA, amdom, results are averaged over 10 repetitions.
Results are presented in Table 3.

Table 3. IMSE for several DoEs. Numbers in parenthesistaadard deviations over 10 repetitions

DoE Variance IMSE I mprovement
: Uniform 1755 (350)
LHS, 40 points Optimal 1456 (280) 17 %
OA 27 points + 8 centers of inner Uniform 374 12 %
cubes Optimal 330
Iterative with uniform variances Uniform 357 (10) «
Full iterative process Optimal 248 (13)




First, we see that the LHS DoE is not as good asother DOEs. Indeed, LHS is not aimed to
provide a low IMSE. Using optimal variances on st allows us to reduce the IMSE by 17%. The
orthogonal array provides much lower IMSE; and gigiptimal variances reduces the IMSE by 12%.

The iterative process provides the best IMSE coiterlt is interesting to note that it is substaltyi
better than an iterative process with uniform vaeés. This shows that the algorithm combines well
the space filling and the optimal variances effeEtem the 10 repetitions, we saw that in average,
adding a point is chosen 13 times (for a total4p8ints) and reducing variances 6 times. Compared
to a ‘good’ classical DoE for IMSE, which is the Q#&e improve the criterion by 34%.

In the present configuration, we invested more thelhof the computational time in generating the
first 21 points, and used quite large steps totlthe number of iterations to 19. It may be posstbl
obtain better results by allocation less time toggate the initial design (that is, to increase the
variances for the initial design) and use smaligpsin order to allow more iterations.

5. Conclusions

We addressed the issue of allocating optimallydhmputational time to fit a metamodel, when the
response at training points has a tunable fidalitg. showed that the problem can be formulated as an
optimal design problem, with additional variablewla constraint on the computational time. Since
the optimization is very challenging, we proposed suboptimal strategies: one is to fix the tragnin
points and optimize the response variance only;isrte use an iterative process to get a trade-off
between space filling and response precision.

We applied our procedures to the framework of linegression. We showed that for polynomial
approximations, using optimal variances allowsamtrease significantly the quality of the surrega
fitting. When higher dimension and model complexdtye considered, the iterative process seems
promising compared to classical strategies.
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