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[Abstract] Conservative prediction refersto calculations or approximations that tend to
estimate safely the response of a system. The aim of this study isto explore and comparethe
alternatives to produce conservative predictions when using surrogate models. We propose
four different approaches. empirical approaches (Safety factors and margins), biased fitting
approaches, that constrain the surrogate to be on one side of the training points, statistic-
based approachesthat use the prediction errors of the surrogates, and indicator kriging, that
provides probabilities to exceed some cut-off values. Since the mor e conservative estimators
tend to overestimate the true values, the problem can be considered as a multi-objective
optimization, and results are presented in the form of Pareto fronts: accuracy vs.
conservativeness. The best approach is the one that provide the best chance to be on the
conservative side with the least impact on accuracy. Two surrogate models, polynomial
response surface and universal kriging, are evaluated through two test problems: a simple
analytical function and a structural analysis that usesfinite e ements modeling. Results show
that using safety factorsisthe least efficient method, while the other methods ar e equivalent.
Using safety margins results with the least variability, but statistical-based methods prevent
better from large unconservative errors. Therelative equivalence of safety margin and error
distribution allows us to use the error distribution to accurately choose the margin
corresponding to a certain level of conservativeness.

Nomenclature
y(X) = Actual response (1), (6)
¥(x) = Unbiased surrogate predictor (3), (7)
V.s(X) = Conservative surrogate predictor
PRS = Polynomial Response Surface (1)-(5)
IK = Indicator Kriging (21)-(25)
CSF = Constant Safety Factor (11)
CSM = Constant Safety Margin (12)
BF = Biased fitting (15)
ED = Error Distribution(19), (20)
RMSE = Root Mean Square Error (27)
MaxUE = Maximum Unconservative Error (29)

I. Introduction

ONSERVATIVE modeling refers to calculations or agpgmations that tend to safely estimate the resparfis
a system. In many engineering problems, there is@mntive to obtain approximations that are expeétb be
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as close as possible but on the safe side of thelaesponse. In structural analysis, such respa@as be a
maximum stress or strain value that must not beergstimated in order to avoid failure. In this papee call
conservative estimates that are higher than thergsponse. Hence, conservative estimations tendei@stimate
target values; so, each conservative estimatotreda-off between accuracy and conservativeness.

Surrogate modeling has been widely used to modaptax engineering systems [1]. It consists of catsing an
approximation to system response based on its vafuselected designs. Most surrogates are desitmndu
unbiased, that is, there is a 50% chance that tbdigtion will be higher than the real value. Instipaper, we
consider the alternatives to push this percentagieet conservative side with the least impact aueacy.

Several conservative strategies have been devemmadhe years. FAA defines conservative matgriaperty (A-

basis and B-basis) as the value of a material prppmxceeded by 99% (for A-basis, 90% for B-basithe

population with 95% confidence. FAA recommendsuke of A-basis for material properties and a sdtstjor of

1.5 on the loads. Acar et al. [2] studied the ¢ffexf safety measures on the design of airplanear At al. [3] and
Picheny et al. [4] used biased fitting of distribatfunctions and bootstrap methods to obtain cwasiwe estimates
of probabilities of failure. Starnes and Haftka {ffined a convex linearization method (CONLIN)ttpaovides

first order, conservative approximations to thesghbjye function and to the constraints.

The most widely used method is to bias the preafictesponse by a multiplicative or additive const&uch
approaches are called empirical because the clubitiee constant is somehow arbitrary and basedrexiqus
knowledge of the engineering problem considerea flitst alternative we consider is to modify thtiffig of the
surrogate in order to bias the predictions to baseovative. The second alternative is to use thésstal
knowledge from the surrogate fitting (predictiorigace) to build one-sided confidence intervalgtaprediction.

In this paper, we consider two types of surrogatedefs: polynomial response surfaces (PRS) andnkrig
Classical regression provides confidence intervatsPRS. Two types of kriging methods are used:versal
Kriging (UK) and Indicator Kriging (IK). The methsddiffer in a sense that one assumes a particyter of
distribution (UK), while the other does not rely enpre-specified distribution model. UK providesdiction
variance that can be used to compute confideneevais, while IK returns directly probabilities éxceed a certain
threshold.

In the first part, we describe the different suatymodels and methods to obtain conservative astins. The
second part describes the test functions, erroriceetnd numerical procedure. Finally, the resailftspresented and
the different approaches compared.

1. Conservative Predictors
A. Surrogates
Polynomial Response Surface

The polynomial response surface model defines éipanse as the sum of a linear component plus mezasnot
error:

p
y(X) =D B¢ (x) +£(x) (1)
=0

Where:
- X is the design vector

- Y(X) the system response
-§;(X) are the polynomial basis functions
- b are the weights

J

- £(X) is an error measure
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Given a set of design point{:xl,xz,...,xn}, the polynomial response surface model, in matikation, is
defined as follow:

Y=Xp+e @)
where:
,:Zl é(xl) :Bo &
2 &
L) 0by0] Y= || x50 B e

Y )] AL =

Given an estimat?p of B, the estimate of at an unsampled locatioky,q, is:

9 (Xnew) = & (Xnew) B 3)
ﬁ is chosen to minimize the mean square error (M®Byden the estimates and the actual function values
1& . 2
MSE:;Z[V(Xi)‘V(Xi)] (4)
i=1
The value ofi that minimizes the MSE is given by:
B=(X"X)"X"Y (5)

Under the classical assumptions of linear regresgie residuals are independent and follow theesdistribution),
this estimator is BLUE (Best Linear Unbiased Estonpunder the normal error distribution assumption

Kriging (Universal Kriging)

Kriging is an interpolating technique named aftee pioneering work of D.G. Krige (a South Africarining
engineer) and formally developed by Matheron in3L9bhis method has been widely developed in gdettat
([5], [6]) and has recently become popular in mangineering fields [1].

In kriging, the response is modeled as a linear pmomant + systematic departure + measurement error.
Mathematically, this is expressed as:

p
y() =2 Bi& () + Z(x) +&(x) (6)
j=0
The kriging estimate is a weighted sum of the olestvalues:
n
9(Xnew) = ZVVI (Xnevv) y(xi) (7)
i=1

Where Y(X,q,) is the kriging prediction at the desigg,,, W the weightsx; the DOE locations ancy(xi) the
corresponding observed values.

Given the data and a correlation model (structur@ garameters) the estimate can be shown to b& giyehe
following expressions:

9% naw) =& (Xen) B+ VIV (Y = XB) )
Where:

B=(XTv ) xvty
v :[COV(yi Y ):|i=1,,n,j=1.n

Vi =[V (Y Y)Y (YY) ]
&(x),Y andX are as defined in (2).
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Note that an explicit specification of the weiglissnot necessary. They can be obtained though dhrdhbe

following expression:
WTY :|:§T (X ) VT:| 0 XT -1 0 (9)
new /"X X V Y

Computation of the correlation model involves atiojzation problem that is not described here. Masging
packages provide correlation structure estimasaigh estimation is the main source of error innttoglel.
Kriging provides an estimate of the prediction exariance:

MSE (§(0¢e)) = 02 = [&7 () V1 JL‘; f}_l[é(’\‘a&w)] (10)

B. Conservative strategies
Empirical estimators
Empirical conservative estimators are obtained bitiplying or adding a constant to the unbiasedesbr:
Jcs, (Xnew) = V(Xnew)* Sy (safety factor) (12)
Vs, (Xnaw) = I (Xnew) +Sn  (safety margin) (12)
We call these estimators Constant Safety FactoF@8d Constant Safety Margin (CSM) estimatorgeetvely.
Biased-fitting estimators

The second strategy is to include a bias durindittieg process; the coefficieri!c@Ons are still found by minimizing

the MSE, but we constrain the predicted respondeton one side of the DOE responses (that igrioe between
prediction and actual response is positive at DOIGtp). Since kriging is an interpolation approxtioa, the error
is null at data points, so it is only possible told a biased fitting for polynomial response soga

The vectorﬁconsis the solution of the following constrained optraiion model:

Min MSE :%2[9(&)— y(x)]

(13)
st.  for i=1..n, 9(x)-y(x)=C
In matrix notation, the problem model stated in)(d@&n be written as:
. 1 T
Min ME==(XB-Y)(XB-Y
i ~(XB=Y)(xB-Y) )
st. Xp-Y=0
Then, the biased fitting conservative estimatenisrgby:
9BF (XnaN) = ‘:(Xnew)ﬂcons (15)

Note that unlike the empirical estimates, it is possible to control the level of bias. To do se, pvopose two
alternatives: the first is constraint relaxatioattallows a given amount of constraint violatiomoked as;:

Min MSE:%iZ:[f/(Xi)—y(Xi)]Z
st.  for i=1..n, y(x)-y(x)+o=C

A positive g will reduce the bias in the fitting; can also be chosen negative in order to be morseceative than
with no constraint relaxation.

(16)
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The second alternative is to reduce the numbeow$teaints, that is, to constrain the errors t@bsitive only at a
selected number of points (constraint selectiohg @onstraints selected are thag®iori easier to be satisfied, that
is, where the error from the unbiased fit is mirinfde procedure to select these points is asviollo

1- Compute the unbiased estimates using classigedssion

2- Compute the errors and sort them by ascendishgy or

3- Select the points corresponding to kimmallest errors

4- Solve the following optimization problem:

. 1S 2
Min MSE== )= y(x
lin F 2LI0x)=y(x)] an
st.  for i=1..k, 9(x)-y(x)=C
Where thex; are sorted as described above aak <n.

In the following, the two above-referenced biasiétihf) alternatives are entitled constraint rel@m@tand constraint
selection, respectively.

Estimator based on error distribution

Conservative estimates can also be obtained asguimnerror distribution is known as provided bg surrogate
analysis.

Classical regression provides a confidence inteforathe predicted model. A unilateral confidenoteival of level
a for the responsg.e, Whenx = X,y is given by:

Cl = o0, &(Xna) B+t 5t (1) S | (18)
Where:

Soow = OYL+E (Xna) " (X' X) & (Xpe)

0 =—2 > (v -5

n-p-17

t,_p-1is the Student’s law with-p-1 degrees of freedom.

We define the conservative estimator of levelo(las the upper bound of the confidence interval:

Yep (Xnew) :g(xnew)ﬁ"'tr:}p—l (1-0) Swen (19)

Note that this conservative estimator has the fofra margin added to the unbiased prediction. Hanethe
margin is not constant but depends on the predidtication and the design of experiment.

Kriging assumes that the prediction is normallytriisited, with mean equals to the expected preafictind
variance equals to the MSE. Then, we define thasewmative estimator of level (@-as the (1z) percentile of the
prediction distribution:

~ - ~ ~ 1/2
yED (Xnew) =F 1(1-0’; y(xnaN),MSE(y(XnaN)) ) (20)
Where F'l( p; K, 0’) is the inverse normal cumulative distribution ftiow of mearu and standard deviatien

In the following, these estimators are called EBdjedistribution) estimator.

C. Indicator Kriging

Instead of estimating the response at an unsanhpbadion, Indicator Kriging (IK) estimates at ansampled
location the probability that the response exceedien value (cut-off). In other words, IK providan estimate of
the conditional cumulative distribution function@OF) at a particular cut-off.
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The key idea of IK is to code the observed respoitde probabilities of exceeding the cut-off. Qirthe responses
are deterministic, these probabilities are 0 oftie indicator coding at a sampled locatignis written:
L= 1(ex Y Yaryi) = Hy & E0)
1 if X )>cC
_ yb)> 21)
0 otherwise

At an unsampled locatiog,,, , the probability is estimated by the kriging pititin based on the indicator data:
ls(y(xnam) s C) = 9IK (Xnew) (22)
Wherey, is the kriging estimate based{dn, | ,,...,|,} instead of{ 1, V5,....¥} -

For a given set of cut-of{sl,cz,...,cm} and prediction locationx,e, We obtain a corresponding set of

probabilited R, P,,....P,} . We use these discrete probabilities to fit aicomtus approximation of the CCDF of the

response at,e, and build confidence intervals. IK is often quielif as a ‘non-parametric’ approach since it dogs no
rely on a pre-specified distribution model. Notatth is an expensive procedure since it may reqailarge number
of kriging models.

Post-processing is necessary to transform the tKoke&alues into a usable discrete CDF. Indeedsethe no
constraint during the procedure to have values mdligle [0, 1] or that CDF estimates vary monotatycwith cut-
offs. We use here one of the methods proposeciiGBLIB user’s guide [8]. First, values out of theerval [0, 1]
are replaced by 0 or 1. Then, the original IK-dedivpercentiles are perturbed by running an optitizahat
minimizes the perturbation while ensuring all ordslations.

Finally, we fit a continuous model to the discrdtga. Here, we choose to fit a first order logistigression model.
The model is defined as followed:

eﬂo*ﬁlu
f (U) = m (23)
Then, the probability of the response exceeditgeshold c is given by:
epo+,81c
P(y(xp)ZC): f(c):m (24)

The (1-a)%conservative estimator is thé.—a')th percentile, given by the inverse of the logistigression
function:

~ - 1 1-a
Ik (Xnew) = 1 1(1“’):E{|”(Tj—ﬁo} (25)
D. Table of conservative estimator s
Acronym M eaning Principle Surrogate
Constant Safety | The surrogate response is multiplied by -
CSF Factor a constant PRS and kriging
Constant Safety A constant is added to the surrogate _
CSM Margin response PRS and kriging
. - The surrogate is constrained to be
BF Biased fitting above the training points PRS only
ED Error distribution Error dlstrl_bunon IS used to build PRS and kriging
confidence intervals
IK Indicator Kriging The estimate is a percentile Nplt kriging
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1. Case Studies
A. Comparison Metricsand Numerical Procedure

As discussed in introduction, conservative estimate biased, and a higher level of conservatiwgeoas only be
obtained at a price in accuracy. Thus, the qualitya method can only be measured as a trade-offclest
conservativeness and accuracy.

In order to assess a global performance of the odsthwe propose to define an accuracy index and a
conservativeness index.

We define the indexes as follow:
Let y(x) be the actual response at x afjg,.(X) its conservative estimate.
Given a set o test point%xm_l,xm_z, v X et _m} :

- the conservativeness index is equal to the prapodf conservative estimates that are greaterttie@an
actual response:

M=

!
[y

| |:9oons(xtest_i ) 2 y(xtaﬂ_i )J

P(Jeons ) = — (26)

Where,I[y] is the indicator function, which equals Yiis true and O i is false.

- the accuracy index is taken as the root mean soeloe (RMSE) between the actual response and
conservative estimate:

RMSE ( Jcons ) :\/%Zm:[ycons(xteﬂ_i)_y(xtest_i)]z (27)

i=1

In order to reduce the variability due to differ&®Es, we normalize this index by the index of teresponding
unbiased surrogate (respectively unbiased respsungace (5) and kriging (8)). Ify(x) is the unbiased surrogate

corresponding t§,,s(x) , the normalized accuracy indexigf,(x) :

3 RMSE (J0ns ) ~ RMSE (
RMSEnorm (yCOHS) = ()é:':/rl]i ( 9) (y) Xloo (28)

Where:

)= [E8 ) Y]

i=1

The normalized accuracy index represents the peinerease of the root mean square error of thesewative
estimator compared to the BLUE estimator. In otherds, it represents the ‘price’ to pay to be nmeservative.

The conservativeness index gives the probabilityea@onservative. However, it does not inform bwhouch we
are unconservative when predictions are unconseevathus, an alternate measure of conservativeisesise
maximum unconservative erfdviaxUE:

MEXUE = |min S (X 1) =¥ e 1) (29)

®> One would want to use the mean or the median efuticonservative errors instead of the maximunmfore
stability. However, the maximum error decreases gtmrically when conservativeness is increased, emmean
and median can increase when we increase consenvesis, for instance when we have initially veryakrand
very large errors.
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This index can also be normalized by the indexhefunbiased estimator:

N MaxUE ( Yons ) — MaxUE( §
MaXUEnorm ( ycons) = (MZ;SLJ)E(y) ( ) x100 (30)
A value of MaxUE,,,, of 50% means that the maximum unconservative ésroeduced by 50% compared to the
BLUE estimator.

These indices require a reasonably large numbézsbfpoints to be accurate. In the absence ofpt@sts, if the
DOE is large, one can use the cross-validatiomstitzt (PRESS error) instead.

For each method, we can modify the level of biaslBnging:

- the value of the safety factor and margin

- the relaxation value or the number of selected tcaimés for BF

- the level of the confidence interval (@)
Then, for a given method, we take different lew@idias, and for each level, we compute the indibescribed
above. Hence, we can draw trade-off curves (ortBdrent) between two indices. This allows us tanpare the
different methods by looking at partial or globanuinations. A detailed example of trade-off cuneneration is
proposed in Appendix 1.

Finally, a crucial performance of the statisticasbd predictors is their adequacy to the expected| lof
conservativeness. To analyze this performance, nae the QQ-plot of the target conservativenesa)(s. the

actual conservativeneBy Y., ) -

In the test problems we consider, the DOEs arergést randomly. Thus, the procedure is repeatadge Inumber
of times. We present the results as the averagetbgse repetitions. In addition, we use error banepresent the
95% confidence interval on the accuracy index fgivan level of the conservativeness index.

The unbiased polynomial response surfaces are dechpusing MatLab functiorregress; the biased fitting
optimization is done using MatLab functidmincon. The universal kriging and indicator kriging estit@s are
computed using the GPML toolbox for MatLab.
B. Test Problems
The Branin-Hoo function

The first test function we consider is a deterstini 2D function, which is often used to test tHebgl

optimization methods (Dixon-Szegd, 1978):
x L [-5, 10], yU [0, 15]

2
2
f(x,y):[y—i:(z +%—6] +1({1—£rj cosk » 1 (18)
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Figure 1. The Branin-Hoo function

The range of the function is between zero and Baffje values are located on the bounds of the domai
The Torgue Arm Analysis

This second example was originally presented bynB#rand Botkin [9]. It consists of the design opaticular
piece from automotive industry called a torque afime model, pictured in Figure 2, is under a hariaband
vertical load, k= -2789 N and = 5066 N respectively, transmitted from a shathatright hole, while the left hole
is fixed. The torque-arm consists of a materiahwibung’s modulus, E= 206.8 GPa; Poisson’s rati®,29.

_ 32 _ .
Fixed 2789 N
10 6.8
A BC ( x ) 'y
. 12 . 5066 N
42 cm

Figure2: Initial design of the Torque Arm
The objective of the analysis is to minimize theighé with a constraint on the maximum stress. Sedesign
variables are defined to modify the initial shapigure 3 and Table 1 show the design variablestlagid lower and
upper bounds, respectively.

Table 1. Range of the design variables (cm)

Design variable Lower bound Upper bound
1 -2.0 3.5
2 -0.2 2.5
3 -2.0 6.0
4 -0.2 0.5
5 -0.1 2.0
6 -1.5 2.0
7 -0.1 2.0
9
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Figure 3: Design variables used to modify the shape.

The stress analysis is done by Finite Element Amsl{FEA) using the software ANSYS. In order toiach a
reasonable accuracy, a particular attention wasngte the meshing technique. The model is divided three
regions, and the mesh is refined only around tle@sawhich require it due to stress concentratidre model is
built so that the mesh density can be defined albadines, as depicted in Figure 4.

— mesh density x 2

mesh density x 4

mesh density x 1 B
meszh density = 1

mesh density x 2 mesh density x 1

mesh density x 1

mesh density x 4

Figure 4: Non-uniform meshing process. the density of elementsis defined along thelines.
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14318
Figure5: Typical Von Mises stress profile given by FEA (Color bar indicatesvaluesin 10* Pa).

Figure 5 shows a typical stress profile returned=BA. The contour lines represent the Von Misessstr For this
design, the Von Mises stress range is between 10084 MPa.

The FEA is computationally expensive; thus, a sgate model is used to approximate the maximumsstvashe
design domain. Here, we do not focus on the opttiun but on the quality of the surrogate predittio

V. Resultsand Discussion
A. The Branin-Hoo function

The results are presented for the following configjon:

The design of experiment consists of the four amré the design region plus 13 points generatédgulsatin
Hypercube Sampling (LHS) with maximum minimum diste criterion, for a total of 17 DOE points. Thette
points are generated using a 32x32 uniform grite(tb024 points). The RMSE is weighted such that pibints
inside the domain have a weight 1, the points eneifiges a weight %2 and the points on the corneflh&size of
the DOE is chosen because it provides equivalemaation of the RMSE for the unbiased responsiaciand
kriging models.

The response surface is a cubic polynomial. Forktiggng estimators, the covariance function usea irational
quadratic covariance function with Automatic Relese Determination (ARD) distance meaSu@s provided by
the GPML Toolbox. Indicator Kriging is not implented for this function since the method requiresilasgntially
higher number of training points to be accurate.

Since the DOE is generated randomly, the procedurepeated 1000 times. We present the resultseaaverage
over these 1000 repetitions. In addition, we userdrars to represent the 95% confidence intermathe accuracy
index for a given level of conservativeness.

Comparing empirical estimates
First, we want to determine the best strategy har émpirical estimators, that is, between using additive
constant (CSM) or a multiplicative constant (CSIR).order to draw the Pareto fronts, we choose ttieving

ranges:S; O[1 2];S,0[0 15 . Results are shown in Figure 6.

® Automatic Relevance Determination (ARD) (MacKa@92; Neal, 1996) is a hierarchical Bayesian approac
where there are hyperparameters which explicifyesent the relevance of different input featufd®D optimizes
these hyperparameters to discover which inputsedegant.
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Figure 6: Pareto fronts of empirical conservative estimates for RS and Kriging. Using safety factors
substantially increases the RMSE and its varighilitmpared to using safety margins.

For both Kriging and PRS, using a safety margimisch more efficient than a safety factor. To rethehsame level
of conservativeness, the RMSE is much higher whsimgusafety factors. The variability is also mudgher. The

reason to such difference is simply that safetyof@csubstantially increase the bias where theigiestiresponse is
high and only a little where it is low, while ther@ does not depend on the response value. Ocotfiteary, safety
margins increase the bias constantly among thguesgion.

Comparing biased fitting estimates
Now, we compare the two strategies for biasedftiéstimates. The range of the constraint relanai@hosen as
[-3; 15]; the proportion of selected constraintshesen between 0 and 1.

Constraint selection
Constraint relaxation

a0

G0

Constraint selection T
80 Constraint relaxation A

a0

0F ok T q

B0t
ot i .

8
o
@
=
= i
@ E
= 2
B 3
S 80t i =
£ @) 1
E 401 b £ Lt
A Z oanl ]
Z af 1 £ 2l
g ot // i
g 20 B =
ot - e .
2
0 . 2 0f ] i
P 0 Sl Bl
a0 55 B0 65 70 75 80 85 a0 95 100 50 55 B0 65 70 75 a0 85 on 95 100
Conservativeness (% of conserative results) % of conservative results

Figure 7: Biased fitting estimates with constraint relaxation (blue) and constraint selection (red). The left
figure represents the trade-off between consemmadgs and accuracy, the right figure shows théaeship
between percentage of conservativeness and maximaonservative error reduction.
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Both methods seem to provide similar results; tifferénce for high percentiles on the left figusehere due to
numerical noise. Using constraint selection doesatiow obtaining very conservative estimates: eleusing all
the 17 constraints leads to a 85% conservativef@sshe other hand, with constraint relaxationngsa negative
shift allows to be more conservative. On the rigtdph, we see that a high proportion of consergatistimates
does not prevent for having large unconservativergr for instance, for a 90% conservativeness,ntgimum
unconservative error is reduced by 40% only.

Comparing CSM and ED estimators

Now, we compare, for each metamodel, the empieodl the statistical-based approaches. We showethdts of
the best empirical estimator only, which is the CHigure 8 shows the results corresponding to mespasurface,
Figure 9 to kriging. For both graphs, the rangehaf safety margin is chosen in the interval [0;; 16§ target
conservativeness is chosen between 50% and 97%.

150 T

100 F

s0F

Accuracy (% increase of RMSE)
% reduction of the maximurm unconservative error

S e 1 1 L L L 1 1
a0 55 B0 65 70 75 80 85 a0 95 100
Conservativeness (% of conserative results) % of conservative results

Figure 8: CSM (blue) and ED estimators (red) for RS.

For the response surface, we see on the left fithaethe two methods are equivalent in terms cligcy and
variability. 95% conservativeness is obtained forRMSE twice as big as the RMSE of the unbiasedorese
surface. However, there is a substantial differdocéhe maximum unconservative error: for the sgmugortion of
conservative results, this error is more reducet ®D than with CSM.
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20p . . . . . . . . . 1
0 L L L
a0 56 =] 65 70 75 a0 g5 0 95 100 50 55 =] 65 70 76 a0 ) a0 95 100
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Figure 9: CSM (blue) and ED estimators (red) for Kriging.

For the kriging, the CSM estimator is clearly bettean the ED estimator in terms of accuracy veseovativeness
(left figure). The same level of conservativeneasglitained with less effect on the RMS error, esfigdor the 70-

90% range. Moreover, the variability is much larfygrthe statistical estimator.

A remarkable result is the flat portion of the aifer the low conservative levels of the empiriestimator: up to
70% conservativeness can be achieved with vehy éffect on the RMS error. This behavior can bpitad to the
nature of the kriging model: since it is an intdgbion, errors are very small at the vicinity ottraining points;

thus, adding a small constant is sufficient to tieservative but has a little effect on the accuracy
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On the other hand, ED estimator appears to be rhatter to reduce the maximum unconservative egorthe
right figure, the blue curve is always higher th#e red one, which means, for a equivalent proporof
conservative results, the maximum unconservatik@ & more reduced with ED than with CSM.

When comparing response surface and kriging, wetlsstethe mean values are equivalent, except ferflt
portion. However, the variability is much bigger kriging than for response surface. Indeed, fer Bnanin-Hoo
function, kriging appears to be much more sensitivehe DOE values than response surface. Thusyame to see
if the observed behavior is consistent when weease significantly the DOE size. Figure 10 shdvesresults for
a 34-point DOE.
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Figure 10: CSM and ED kriging estimatorsfor 34-point DOEs.

The behavior observed for 17-point DOEs is muchrelefor 34-point DOEs. The CSM estimator curve hagry
flat portion up to 75% conservativeness, while Ei2 estimator curve increases rapidly. A longer fattion is
logical since the region where errors are smalthatvicinity of the DOE points, is larger sincesth are more
points. The variability is much higher for the EBtimator.

On the other hand, the CSM estimator does not pteateall from large unconservative errors: the imasn error
remains almost the same even for large proportbesnservative results. The ED estimator perfoarst better.

A detailed analysis of error distribution is propdsn Appendix 2.

ED estimators. QQ-plots

The Pareto fronts showed the relation between ceateeness and accuracy. Another central measuithe

fidelity to the target conservativeness. Figurerddresents the QQ-plots for both polynomial respasgface and
kriging. The x-axis represents the target consammaess, the y-axis the actual conservativeness. éffor bars
show the 95% confidence interval on the actual eoradiveness for a given target conservativeness.
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In average, kriging shows a very good fidelity girtbe trend is almost equal to the straight lina:. the higher
levels, the actual conservativeness is a lessttimtarget. This is due to the fact that kriginguese normality of
errors, while for the Branin-Hoo function this asgtion may be at a certain degree violated. Theomrese surface
results are biased: actual conservativeness iavi@gnage) always more than the target. Again, teeragtions of
regression may be violated with the Branin-Hoo fiowg for the unbiased response surface, the actual
conservativeness is 52% where 50% is expected.

When looking at the variability, the difference Wwetn response surface and kriging is very significendeed, the
confidence interval is about plus and minus 10%Herresponse surface, which can be considerednable, but it

is plus or minus 20% for kriging. In particular, @h97% conservativeness is expected, the actuabomtiveness
can be as low as 70% only.

Comparing biased fitting and CSM response surface estimates
Finally, we compare empirical strategies with biaéiting for the response surface. Figure 12 shtivesPareto
fronts for the CSM estimator and the biased fit@stjmator with constraint relaxation.
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Figure 12: Biased fitting and CSM estimators.
The two estimators have similar trends, but bidggdg results with higher variability. Indeed,ishmethod is a lot
more sensitive to the DOE, since a single condtezin have a large influence on the shape of torese.

B. The Torque Arm Analysis

In this part, we consider the analysis of the Tergum. The analysis is set up as follow:
- the DOE consists of 300 points generated from LH8 maximum minimum distance criterion
- 1000 test points are generated using LHS
- For each point, the ANSYS code is run and retulnesdverall maximum stress. The values are in MPa,;
their range is of the order of40

The stress values strongly violate the hypothesisoomality of residuals of the regression analy3ikus, we
performed the analysis on the natural logarithnthefstress instead of the stress itself. Using satsformation,
the hypothesis of normality is verified. From argieeering point of view, looking at the logarithrithe stress
might not seem relevant; indeed, we focus herehenquality of the surrogate prediction rather thtanthe
mechanical problem. However, it is to be noticeat #dding a margin to the logarithm is equivalentultiplying

the stress by a safety factor.

The response surface used is a second order polghdiar the kriging estimators, the covariancection used is
the sum of a rational quadratic covariance functiotih ARD and white noise. For the IK, a rationalagratic
function with ARD is used; the parameters of thecfion are re-estimated for each cut-off. A totall®0 cutoffs
are used for the distribution estimation.

For the Branin-Hoo function, we chose the DOE siz@rder to have comparable RMS errors for the asul
estimators. Table 2 shows the performances ofrtheased surrogates for the Torque Arm analysisitti¢ased 1K
corresponds to the B@ercentile given by this method). Kriging perforbetter than polynomial response surface;
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indicator kriging performs poorly compare to théet methods. However, IK has the lowest ratio betweMSE
and maximum unbiased error, which means that tiseless risk of having an outlier in the unconstweaside.
Distribution of errors are given in Appendix 3.

Table 2: Performances of unbiased surrogates for the Torque Arm.

Surrogate RM SE MaxUE MaxUE / RM SE
PRS 0.0589 0.4956 8.41
Kriging 0.0415 0.2835 6.83
IK 0.1413 0.6049 4.28

Since the finite element analysis computationalyemsive, it is not possible to generate a largaber of DOEs
for variability analysis, as we did for the Brarioo function. In order to obtain confidence intésyave randomly
choose 300 points out of the 1300 points gener@@d training + 1000 test points), and use the neimg 1000 as
test points. This procedure is repeated 500 times.

Comparing CSM and ED estimators
Figure 13 shows the results of the CSM and ED estirs for the polynomial response surface.
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Figure 13: CSM and ED PRS estimator performancesfor the Torque Arm analysis.

For the torque arm analysis, using safety margntsearor distribution lead to almost identical désdior all our
three indices. One reason to explain such equigalenthat the width of the confidence intervalsloet vary a lot.
Figure 14 shows the histogram of all the confideiderval widths at the 1000 test points for a 80fget
conservativeness. We see that the range of the@kthe confidence interval is [0.042, 0.051], whioeans that the
confidence interval range vary by less than 11%umdoits mean value. For a 95% target conservatdgribis

value increase to 14% only.
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Figure 14: Histogram of the confidence interval widths at the 1000 test pointsfor a 80% tar get
conser vativeness with PRS.
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Figure 14 shows the results of the CSM and ED egtims for kriging.
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Figure 15: CSM and ED kriging estimator performancesfor the Torque Arm analysis.

Here, the CSM and ED estimators are equivalenthi®ipercentage of conservativeness and RMSE. EdBrignin-
Hoo function, we found that CSM performed a lottéethan ED, particularly when the DOE size wagdaHere,
the DOE size is 300, which is not large since tteeeseven dimensions. Thus, the flat behaviohe@fareto front
due to small local errors is here negligible.

Results are different for the reduction of maximuntonservative error: here, like for the Branin-Ho@ample, the
ED estimator reduces a lot more the unconservatings. Since the results are equivalent in terfrescouracy and
variability, we can conclude that the kriging ERimstor outperforms the CSM estimator for this epén

Figure 16 shows the histogram of all the confidemterval widths at the 1000 test points for a 8€&fget
conservativeness. The range is a lot larger thaPRS. There are a few very large values that naag la large
impact on the RMSE.
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Figure 16: Histogram of the confidence interval widths at the 1000 test pointsfor a 80% target
conservativeness with kriging.

Comparing biased fitting and CSM response surface estimates

Figure 17 shows the results for the biased fitind CSM estimators.
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Figure17: CSM and BF estimator performancesfor the Torque Arm analysis.

On the left figure, we see that constraint selectives equivalent results to CSM, but constradexation is less
efficient. Indeed, its RMSE is increased for thevdgt levels of conservativeness: that means withouteffect on
the conservativeness, the constraints change Hymeshf the response surface. With constraint sefedhe error
increase only for high levels of conservativen@$gmt means, only a few constraints are respon&iblarge errors
in the model fit. These few constraints may coroespto outliers. Hence, constraint selection ificient way to
get rid of outliers by being conservative wheris ihot expensive to be, while on the contrary, trairst relaxation
increases error without significant effect on tbaservativeness.

When looking at the reduction of unconservativeorsr we see that biased fitting with constrainxation
outperforms by far the other methods, while comstreelection is not as good as CSM. This is ldggiace by
construction constraint relaxation tries to corralttthe unconservative errors, while constraifec#®n tries to
correct the smallest unconservative errors first.

Comparing all statistical-based estimators

Here, we want to compare the performances of tfferdint surrogates. We saw that for PRS, CSM andai&b
equivalent, and for kriging, ED performs betteru$hwe use for comparison only the ED estimatard,iadicator
kriging (IK).

First, we compare the absolute performances oflififerent surrogates, so we do not normalize odicies and use
RMSE and MaxUE as defined in (27) and (29). Resartésshown in F|gure 18.
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Figure 18: ED and IK estimator (not normalized) performancesfor the Torque Arm analysis.

On the left graph, we see that the conservativetegiies do not change the order of the surrogaferpences:
kriging performs better than the others, and IKf@ens poorly. However, when looking at the maximum
unconservative error, we see that IK reduces mtoe the error than the other methods, and fohitjeest levels of
conservativeness, it is almost equivalent to PRS.
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Figure 19 shows the normalized results for thedlsterogates.
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Figure 19: ED and IK estimator performancesfor the Torque Arm analysis.

On the left graph, Indicator kriging is accuratdilun5% conservativeness; for the highest percesitithe error
increases rapidly. Indeed, indicator kriging fadsaccurately predict high percentiles [10]. Krigiand PRS show
very comparable results; for both, a 95% consereatiss is at a price of an 80% increase of the RM&. A
change of curvature on the Pareto front occurs mto80% conservativeness; that means, low levels of
conservativeness are relatively cheap to obtaiflewore than 90% increase a lot the error.

On the right graph, we see that IK performs beatian the others. Kriging performs better than PRISch is not
unexpected since the kriging prediction variancenawe accurate than the PRS one. For all thre@gates, we
notice that the maximum unconservative error isenefully compensated, even for the highest levels o
conservativeness. That means, even with a highep&rge of conservative results, unconservativeremamain
large.

Additional details, including distribution of ersfor a 95% target conservativeness, are giverppeAdix 3.

ED estimators. QQ-plots

Finally, Figure 20 shows the graph of target covereness vs. actual conservativeness for théestitat-based
estimators. Both parametric (ED RS and kriging) aond-parametric (IK) estimators show a very goatklfty,

even for high percentiles. The poor accuracy oflkhér the high percentiles does not affect thera fidelity to

the target level of conservativeness. For the pamamestimators, it means that the hypotheseowohality are not
violated.
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Figure 20: QQ-plots of the ED estimators
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Figure 21 show the QQ-plots when the surrogateditaed to the stresses directly and not the nafogarithm of
the stresses. The violation of normality hypothedfscts a lot the fidelity of the PRS. Kriging uéts are not as
good as in the previous case but remain acceptablexpected, IK is the least sensitive to violatid normality.
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Figure 21: QQ-plots of the ED estimatorswhen hypothesis of normality of residuals are violated.

V. Conclusion

In this report, we explored the alternatives toaobtonservative predictions using surrogate madelrirst, we
showed that conservativeness could be obtainednpjrieal methods, such as constant safety factorsasgin, by
adding constraints during the fitting to obtainiased model, or by taking advantage of error digtron measures
given by the model. Then, a Pareto front methodplags introduced to measure the quality of theedéiit
methods. Finally, the methods are implemented \iar tests problem: one analytical and one based initeF
Element Analysis. Results showed that:

- safety margins are much more efficient that saffletyors, in particular when the range of the respois
large

- the use of safety margins and error distributiaulto very comparable results when looking at auacy
and conservativeness trade-off

- although, ED estimators, for an equivalent levet@iservativeness and accuracy, prevent betterG5dh
from the risk of large unconservative errors

- for biased fitting, constraint selection is bettban constraint relaxation, in particular in preserof
outliers

- Indicator kriging is reliable in terms of level obnservativeness but shows poor accuracy, in péatiéor
high percentiles

- ED estimators are based on assumptions that magenuiolated in order to obtain acceptable fidetify
conservativeness level.

More generally, it has been shown that measuriagctinservativeness of a method is not easy anteaery
problem-dependant. Indeed, the chance of beingeceaitive and the risk of large unconservative arrane two
measures of conservativeness that do not behamtidally. One may choose a conservative strateggdha@n the
trade-off between these two quantities and theajloteasure of accuracy.

The results for the ED estimators were overallgigénting, since they provide local estimates obemwhile safety
margin uses a single constant an perform as wethfotorque arm problem, and better for the Bratdo function
in terms of accuracy. However, MSE estimates dodepend on the response values but only on the B@E
prediction location. Since we used equally maxinmamimum distance criterion for the DOE, results may be as
interesting as for clustered DOE. Besides, thellooeasure of error seems to actually detect théomsgof
unconservativeness (hence a better reduction ofattye unconservative errors), but this is coursiarced by
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assessing large uncertainties to regions whereigbiead is accurate, which leads to large overediona that
penalize the global measure of accuracy.

The equivalence of safety margin and error distiilouis interesting since the challenge with enggiriestimators is
to choose the appropriate margin. Thus, one canthesetatistical information to accurately chooke targin
corresponding to a certain level of conservativenes

Appendix 1: Trade-off curve of a single kriging modeling of the Branin-Hoo function

We show here the results of a typical kriging mawfehe Branin-Hoo function. DOE and test points ahosen
as described in section 1ll-1. The DOE and unbidseging prediction are represented in Figure 2&. this model,
the RMSE is 8.1 and the percentage of conservptigdictions is 49.1%.
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Figure 22: Branin-Hoo function (left) , DOE and unbiased kriging prediction (right).

We choose five values for the CSM: [0, 1.5, 4,8,dnd five levels for the confidence intervalsa)1{0.5, 0.6, 0.7,
0.8, 0.9]. For each, we compute the different iaegias described in section II-1. The results grerted in Table 3
and Table 4. In Figure 23, we represent for the astimators the curves of the percentage of coateev
predictions vs. the percentage increase of RMSH tla@ percentage of conservative predictions \&p#rcentage
reduction of MaxUE.

Table 3: Resultsfor the CSM estimator.

% cons.

CsMm predictions RM SE MaxUE RM SE,oim maxUE o m
0 49.1 8.1 15.5 0 0
15 63.5 8.4 14.0 3.2 9.7
4 76.6 9.3 115 15.0 25.9
6 82.2 10.5 9.5 29.1 38.8
12 95.8 15.0 3.5 85.3 7.7

Table 4: Resultsfor the ED estimator.
1-0) % cons. RM SE M axUE RMSE maxUE
predictions norm norm
0.5 49.1 8.1 15.5 0 0
0.6 62.3 9.1 12.0 12.7 22.1
0.7 72.8 111 8.5 37.1 45.1
0.8 82.1 141 4.5 73.7 70.6
0.9 95.8 18.7 1.7 131.3 88.9
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Figure 23: Resultsfor CSM and ED estimators.

Here, we see that for an equivalent proportionasfservative results, the RMSE is more increasechwiséng the
ED estimator than with the CSM estimator. On theeohand, the maximum unconservative error is betgtuced
with the ED estimator.

Appendix 2: Error analysisof a single kriging modeling of the Branin-Hoo function

Here, we analyze the spatial error distributiothef kriging conservative predictors for the Brakioe function.
We compare the errors for three models: the undiisging, CSM kriging with a margin of 5.97 and Eriging
with a confidence of 80%. For these two conserea#istimators, the percentage of conservative predics the
same, equal to 82.1%. Their indices are reportddible 5.

Table5: Resultsfor unbiased, CSM and ED kriging estimators.

0,
prgd?c(:)tri];s RM SE M axUE RM SE, g M axUE o
Unbiased 49.1 8.1 155 0 0
CSM =597 82.1 10.4 9.5 28.9 38.6
(1-a)=08 82.1 14.1 4.5 73.7 70.6

We see that, for an equivalent level of consereaidss, the RMSE is higher for the ED estimator theireduction
of maximum unconservative error is higher. In ortdeexplain this in detail, we draw the error camgplots over
the design region and the histograms of the 10@tsat data points.
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Figure 24: Error contour plotsand histograms of errorsat data pointsfor unbiased, CSM and ED kriging
estimators.

On the top left figure, we see that, since krigi@n interpolation, it leads to regions of smatbes (pale blue) that
are around the training points, and large erraréréen the training points (yellow, at the bottoeit] and dark blue,
center left and top right). Thus, the histogranp (tght figure) shows a pick around zero, and la@ks on both
sides.

When using a CSM (middle figures), all the erroms switched up by the constant; hence, the histodras the
exact same shape but is moved toward the righteShe pick of small errors is not large, a smalfgin is enough
to move it to the positive values, and increasat éhle percentage of conservative predictions wiimall effect on
the RMSE. However, if the maximum unconservativereis large compared to the margin, it will not teeluced
substantially.

The ED estimator increases the prediction valuglemegions of high uncertainty: center left, tiht, bottom left.
The two first correspond to the region of high umsrvativeness. Thus, the unconservative errorseaheced.
When comparing the CSM and ED histograms, we saethie distribution of the unconservative errohe (part of
the histogram on the left of the red line) is vdifferent: both correspond to 18% of the total esydut most errors
are close to zero for ED while the tail is heaf@rCSM. However, although the ED estimator capuhe region
of unconservativeness, it also leads to very larggestimations, in particular in the bottom Iéf. a consequence,
the distribution of errors has a very long riglik tisat affects the RMSE value.

In section II-1, we saw that this behavior is arfigdi when the number of points is increased. Inld&band Figure
25, we present the results for a 34-point DOE.

Table 6: Resultsfor unbiased, CSM and ED kriging estimator s based on a 34-point DOE.

% cons.
preodiCtions RM SE MaxUE R'vISEnOI’m MaXUEnorm
Unbiased 57.1 0.0502 0.296 0 0
23
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CSM =0.0135 76.4 0.0518 0.282 3.2 4.6

(1-a)=0.8 76.2 0.0737 0.1713 46.8 42.0
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Figure 25: Error contour plotsand histograms of errorsat data points for unbiased, CSM and ED kriging
estimators based on a 34-point DOE.

For the unbiased estimator, most of the errorsrang small, but the errors are locally large inioeg where there
are not training points. Hence, the histogram hasform of a thin pick centered on zero, with apewf large
values on both sides.

On the second histogram, we see that a very snatjimis sufficient to move the entire pick to thasitive side.
As a consequence, the proportion of conservatitienasons is increased to 76.4% with almost no affen the
RMSE. On the other hand, the maximum unconservatirgg remains almost the same.

On the third histogram, the pick is also movedh®right, but the maximum unconservative erroiss aeduced by
42%. On the other hand, large positive errors lgpaeared that affect the RMSE: on the right edgetem right of
the contour graph.

Appendix 3: Error analysis of the statistical-based estimatorsfor the Torque Arm analysis

Here, we report the histograms of the residualkfiging, PRS and IK estimators. The DOE is thejioal DOE
generated; the residuals are computed at the 1&@0paints. Table 7 and Table 8 show the resuttthfounbiased
estimators and the conservative estimators widrget conservativeness level of 95%, respectively.

Table 7: Statistics for unbiased estimators.

Surrogate Pcons RM SE MaxUE
PRS 49.7 0.0589 0.4956
Kriging 47.8 0.0415 0.3106
IK 49.8 0.1411 0.6049
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Table 8: Statisticsfor a 90% target conser vativeness estimators.

Surrogate Pcons RM SE MaxUE
PRS 82.7 0.1059 0.4011
Kriging 95.1 0.0732 0.2272
IK 90.9 0.2908 0.3434
Kriging (unhiased) Kriging (95%)
1
100 100 :
50 50 i
0
03 02 01 o 01 03 02 01 o o1
FRS (unbiased) FRS [@5%)

100 100 i
]
50 50 i
I:l e ra—
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100 ] 100 i
]
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Figure 26: Histograms of residualsfor the statistical-based estimators, unbiased and 95% target
conser vativeness.

For the unbiased estimators, kriging and PRS slmenptesence of a few outliers (5-6), while IK does. These
large unconservative values are not significandgrdased for the 95%. Comparatively, IK reducest anbre the
MaxUE. However, we see on the bottom right histogthat there are a few large overestimations.
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