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 [Abstract] Conservative prediction refers to calculations or approximations that tend to 
estimate safely the response of a system. The aim of this study is to explore and compare the 
alternatives to produce conservative predictions when using surrogate models. We propose 
four different approaches: empirical approaches (Safety factors and margins), biased fitting 
approaches, that constrain the surrogate to be on one side of the training points, statistic-
based approaches that use the prediction errors of the surrogates, and indicator kriging, that 
provides probabilities to exceed some cut-off values. Since the more conservative estimators 
tend to overestimate the true values, the problem can be considered as a multi-objective 
optimization, and results are presented in the form of Pareto fronts: accuracy vs. 
conservativeness. The best approach is the one that provide the best chance to be on the 
conservative side with the least impact on accuracy. Two surrogate models, polynomial 
response surface and universal kriging, are evaluated through two test problems: a simple 
analytical function and a structural analysis that uses finite elements modeling. Results show 
that using safety factors is the least efficient method, while the other methods are equivalent. 
Using safety margins results with the least variability, but statistical-based methods prevent 
better from large unconservative errors. The relative equivalence of safety margin and error 
distribution allows us to use the error distribution to accurately choose the margin 
corresponding to a certain level of conservativeness. 

Nomenclature 
( )y x   = Actual response (1), (6) 

ˆ( )y x   = Unbiased surrogate predictor (3), (7) 

ˆ ( )consy x  = Conservative surrogate predictor  

PRS  = Polynomial Response Surface (1)-(5) 
IK   = Indicator Kriging (21)-(25) 
CSF  = Constant Safety Factor (11) 
CSM  = Constant Safety Margin (12) 
BF   = Biased fitting (15) 
ED   = Error Distribution(19), (20) 
RMSE  = Root Mean Square Error (27) 
MaxUE = Maximum Unconservative Error (29) 

I. Introduction 
ONSERVATIVE modeling refers to calculations or approximations that tend to safely estimate the response of 
a system. In many engineering problems, there is an incentive to obtain approximations that are expected to be 
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as close as possible but on the safe side of the actual response. In structural analysis, such response can be a 
maximum stress or strain value that must not be underestimated in order to avoid failure. In this paper, we call 
conservative estimates that are higher than the true response. Hence, conservative estimations tend to overestimate 
target values; so, each conservative estimator is a trade-off between accuracy and conservativeness. 
 
Surrogate modeling has been widely used to model complex engineering systems [1]. It consists of constructing an 
approximation to system response based on its value at selected designs. Most surrogates are designed to be 
unbiased, that is, there is a 50% chance that the prediction will be higher than the real value. In this paper, we 
consider the alternatives to push this percentage to the conservative side with the least impact on accuracy. 
 
Several conservative strategies have been developed over the years. FAA defines conservative material property (A-
basis and B-basis) as the value of a material property exceeded by 99% (for A-basis, 90% for B-basis) of the 
population with 95% confidence. FAA recommends the use of A-basis for material properties and a safety factor of 
1.5 on the loads. Acar et al. [2] studied the effects of safety measures on the design of airplanes. Acar et al. [3] and 
Picheny et al. [4] used biased fitting of distribution functions and bootstrap methods to obtain conservative estimates 
of probabilities of failure. Starnes and Haftka [5] defined a convex linearization method (CONLIN) that provides 
first order, conservative approximations to the objective function and to the constraints. 
 
The most widely used method is to bias the prediction response by a multiplicative or additive constant. Such 
approaches are called empirical because the choice of the constant is somehow arbitrary and based on previous 
knowledge of the engineering problem considered. The first alternative we consider is to modify the fitting of the 
surrogate in order to bias the predictions to be conservative. The second alternative is to use the statistical 
knowledge from the surrogate fitting (prediction variance) to build one-sided confidence intervals on the prediction. 
 
In this paper, we consider two types of surrogate models:  polynomial response surfaces (PRS) and kriging. 
Classical regression provides confidence intervals for PRS. Two types of kriging methods are used: Universal 
Kriging (UK) and Indicator Kriging (IK). The methods differ in a sense that one assumes a particular type of 
distribution (UK), while the other does not rely on a pre-specified distribution model. UK provides prediction 
variance that can be used to compute confidence intervals, while IK returns directly probabilities to exceed a certain 
threshold. 
 
In the first part, we describe the different surrogate models and methods to obtain conservative estimations. The 
second part describes the test functions, error metrics and numerical procedure. Finally, the results are presented and 
the different approaches compared. 

II. Conservative Predictors 

A. Surrogates 
 

Polynomial Response Surface 
 
The polynomial response surface model defines the response as the sum of a linear component plus measurement 
error: 

 
0

( ) ( ) ( )
p

j j
j

y β ξ ε
=

= +∑x x x  (1) 

Where: 
- x is the design vector 
- ( )y x the system response 

- ( )jξ x are the polynomial basis functions 

- jβ are the weights 

- ( )ε x is an error measure 
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Given a set of design points: { }1 2, ,..., nx x x , the polynomial response surface model, in matrix notation, is 

defined as follow: 
 Y = Xβ + ε  (2) 

where: 
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Given an estimatêβ  ofβ , the estimate of y at an unsampled location newx is: 

 ( ) ( ) ˆˆ new newy =x ξ x β  (3) 

β̂ is chosen to minimize the mean square error (MSE) between the estimates and the actual function values: 

 ( ) ( ) 2

1

1
ˆ

n

i i
i

MSE y y
n =

 = − ∑ x x  (4) 

The value of̂β that minimizes the MSE is given by:  

 ( )-1ˆ ' '=β X X X Y  (5) 

Under the classical assumptions of linear regression (the residuals are independent and follow the same distribution), 
this estimator is BLUE (Best Linear Unbiased Estimator) under the normal error distribution assumption. 
 
Kriging (Universal Kriging) 
 
Kriging is an interpolating technique named after the pioneering work of D.G. Krige (a South African mining 
engineer) and formally developed by Matheron in 1963. This method has been widely developed in geostatistics 
([5], [6]) and has recently become popular in many engineering fields [1]. 
In kriging, the response is modeled as a linear component + systematic departure + measurement error. 
Mathematically, this is expressed as: 
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( ) ( ) ( ) ( )
p

j j
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y Zβ ξ ε
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= + +∑x x x x  (6) 

The kriging estimate is a weighted sum of the observed values: 

 
1

ˆ( ) ( ) ( )
n

new i new i
i

y w y
=

=∑x x x  (7) 

Where ˆ( )newy x is the kriging prediction at the designnewx , iw the weights, xi the DOE locations and ( )iy x  the 

corresponding observed values. 
 
Given the data and a correlation model (structure and parameters) the estimate can be shown to be given by the 
following expressions: 

 ( ) ( )1ˆ ˆˆ( ) T T
new new xy −= + −x ξ x β v V Y Xβ  (8) 

Where: 

( ) 11 1ˆ T −− −=β X V X XV Y   

( )
1.. , 1..

cov ,i j
i n j n

V y y
= =

 =  
 

( ) ( )1, ( ) , , , ( )T
x nV y y V y y =  v x x…  

( )ξ x , Y and X are as defined in (2). 
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Note that an explicit specification of the weights is not necessary. They can be obtained though through the 
following expression: 

 ( )
1

00
,

T
T T T

new x

−
   

 =     
  

X
w Y ξ x v

YX V
 (9) 

Computation of the correlation model involves an optimization problem that is not described here. Most kriging 
packages provide correlation structure estimation; such estimation is the main source of error in the model. 
Kriging provides an estimate of the prediction error variance: 

 ( ) ( ) ( )1
2ˆ( ) ,

T
T T new

new z new x
x

MSE y σ
−

   
 = −    

  

ξ x0 X
x ξ x v

vX V
 (10) 

B. Conservative strategies 
 

Empirical estimators 
 
Empirical conservative estimators are obtained by multiplying or adding a constant to the unbiased estimator: 

 ( ) ( )ˆ ˆ *
fCS new new fy y S=x x     (safety factor) (11) 

 ( ) ( )ˆ ˆ
mCS new new my y S= +x x      (safety margin) (12) 

We call these estimators Constant Safety Factor (CSF) and Constant Safety Margin (CSM) estimators, respectively. 
 
Biased-fitting estimators 
 

The second strategy is to include a bias during the fitting process; the coefficientsˆ consβ are still found by minimizing 

the MSE, but we constrain the predicted response to be on one side of the DOE responses (that is, the error between 
prediction and actual response is positive at DOE points). Since kriging is an interpolation approximation, the error 
is null at data points, so it is only possible to build a biased fitting for polynomial response surface. 

The vector ̂ consβ is the solution of the following constrained optimization model: 
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 (13) 

 
In matrix notation, the problem model stated in (13) can be written as: 
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s t
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 (14) 

 
Then, the biased fitting conservative estimate is given by: 

 ( ) ( ) ˆˆBF new new consy =x ξ x β  (15) 

 
Note that unlike the empirical estimates, it is not possible to control the level of bias. To do so, we propose two 
alternatives: the first is constraint relaxation that allows a given amount of constraint violation denoted as δ: 

 
( ) ( )

( ) ( )

2

1

1
ˆ

ˆ. . 1,..., , 0

n

i i
i

i i

Min MSE y y
n

s t for i n y y δ
=
 = − 

= − + ≥

∑
β

x x

x x

 (16) 

A positive δ will reduce the bias in the fitting; δ can also be chosen negative in order to be more conservative than 

with no constraint relaxation. 
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The second alternative is to reduce the number of constraints, that is, to constrain the errors to be positive only at a 
selected number of points (constraint selection). The constraints selected are those a priori easier to be satisfied, that 
is, where the error from the unbiased fit is minimal. The procedure to select these points is as follow: 
1- Compute the unbiased estimates using classical regression 
2- Compute the errors and sort them by ascending order 
3- Select the points corresponding to the k smallest errors 
4- Solve the following optimization problem: 

 
( ) ( )

( ) ( )
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ˆ

ˆ. . 1,..., , 0

n

i i
i

i i

Min MSE y y
n

s t for i k y y
=
 = − 

= − ≥

∑
β

x x

x x

 (17) 

Where the ix are sorted as described above and 1 k n≤ ≤ . 

 
In the following, the two above-referenced biased-fitting alternatives are entitled constraint relaxation and constraint 
selection, respectively. 
 
Estimator based on error distribution 
 
Conservative estimates can also be obtained assuming the error distribution is known as provided by the surrogate 
analysis. 
 
Classical regression provides a confidence interval for the predicted model. A unilateral confidence interval of level 
α for the response ynew when x = xnew is given by: 

 ( ) ( )1
1

ˆ, 1new n p newCI t sα−
− − = −∞ + − ξ x β  (18) 

Where: 

( ) ( ) ( )1ˆ 1 '
T

new new news σ −= + ξ x X X ξ x   

( )22
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ˆ ˆ

1

n

i i
i
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n p

σ
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1n pt − − is the Student’s law with n-p-1 degrees of freedom. 

 
We define the conservative estimator of level (1- α) as the upper bound of the confidence interval: 

 ( ) ( ) ( )1
1

ˆˆ 1ED new new n p newy t sα−
− −= + −x ξ x β  (19) 

 
Note that this conservative estimator has the form of a margin added to the unbiased prediction. However, the 
margin is not constant but depends on the prediction location and the design of experiment. 
 
Kriging assumes that the prediction is normally distributed, with mean equals to the expected prediction and 
variance equals to the MSE. Then, we define the conservative estimator of level (1-α) as the (1-α) percentile of the 
prediction distribution: 

 ( ) ( ) ( )( )( )1/ 21ˆ ˆ ˆ1 ; ,ED new new newy F y MSE yα−= −x x x  (20) 

Where ( )1 ; ,F p µ σ−  is the inverse normal cumulative distribution function of mean µ and standard deviation σ. 

 
In the following, these estimators are called ED (error distribution) estimator. 

C. Indicator Kriging 
 

Instead of estimating the response at an unsampled location, Indicator Kriging (IK) estimates at an unsampled 
location the probability that the response exceeds a given value (cut-off). In other words, IK provides an estimate of 
the conditional cumulative distribution function (CCDF) at a particular cut-off c.  
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The key idea of IK is to code the observed responses into probabilities of exceeding the cut-off. Since the responses 
are deterministic, these probabilities are 0 or 1. The indicator coding at a sampled location ix  is written: 

 

{ }( ) ( )1 2; | , ,..., P ( )

1 ( )

0

i i n i

i

I I c y y y y c

if y c

otherwise

= = ≤

>
= 


x x

x
 (21) 

At an unsampled locationnewx , the probability is estimated by the kriging prediction based on the indicator data: 

 ( )( ) ( )ˆ ˆP new IK newy c y≤ =x x   (22) 

WhereˆIKy is the kriging estimate based on{ }1 2, ,..., nI I I  instead of { }1 2, ,..., ny y y . 

 
For a given set of cut-offs{ }1 2, ,..., mc c c  and prediction location xnew, we obtain a corresponding set of 

probabilities{ }1 2, ,..., mP P P . We use these discrete probabilities to fit a continuous approximation of the CCDF of the 

response at xnew and build confidence intervals. IK is often qualified as a ‘non-parametric’ approach since it does not 
rely on a pre-specified distribution model. Note that it is an expensive procedure since it may require a large number 
of kriging models. 
 
Post-processing is necessary to transform the IK set of values into a usable discrete CDF. Indeed, there is no 
constraint during the procedure to have values only inside [0, 1] or that CDF estimates vary monotonically with cut-
offs. We use here one of the methods proposed in the GSLIB user’s guide [8]. First, values out of the interval [0, 1] 
are replaced by 0 or 1. Then, the original IK-derived percentiles are perturbed by running an optimization that 
minimizes the perturbation while ensuring all order relations. 
 
Finally, we fit a continuous model to the discrete data. Here, we choose to fit a first order logistic regression model. 
The model is defined as followed: 

 ( )
0 1

0 11
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e
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e
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 (23) 

Then, the probability of the response exceeding a threshold c is given by: 

 ( )( ) ( )
0 1

0 11

c

p c

e
P y x c f c
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β β

+

+≥ = =
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 (24) 

The ( )1 %α− conservative estimator is the ( )1 thα− percentile, given by the inverse of the logistic regression 

function: 

 ( ) ( )1
0

1

1 1
ˆ 1 lnIK newy f

αα β
β α

−  −  = − = −  
  

x  (25) 

D. Table of conservative estimators 
 

Acronym Meaning Principle Surrogate 

CSF 
Constant Safety 

Factor 
The surrogate response is multiplied by 

a constant 
PRS and kriging 

CSM 
Constant Safety 

Margin 
A constant is added to the surrogate 

response 
PRS and kriging 

BF Biased fitting 
The surrogate is constrained to be 

above the training points PRS only 

ED Error distribution 
Error distribution is used to build 

confidence intervals 
PRS and kriging 

IK Indicator Kriging The estimate is a percentile Multiple kriging 
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III. Case Studies 

A. Comparison Metrics and Numerical Procedure 
 

As discussed in introduction, conservative estimates are biased, and a higher level of conservativeness can only be 
obtained at a price in accuracy. Thus, the quality of a method can only be measured as a trade-off between 
conservativeness and accuracy.  
 
In order to assess a global performance of the methods, we propose to define an accuracy index and a 
conservativeness index.  
 
We define the indexes as follow: 
Let ( )y x be the actual response at x and ˆ ( )consy x its conservative estimate. 

Given a set of m test points{ }_1 _ 2 _, ,...,test test test mx x x : 

- the conservativeness index is equal to the proportion of conservative estimates that are greater than the 
actual response: 

 ( )
( ) ( )_ _

1

ˆ

ˆ

m

cons test i test i
i

cons

I y y

P y
m

=

 ≥ 
=
∑ x x

 (26) 

Where, I[γ] is the indicator function, which equals 1 if γ is true and 0 if γ is false.  
 

- the accuracy index is taken as the root mean square error (RMSE) between the actual response and 
conservative estimate: 

 ( ) ( ) ( ) 2

_ _
1

1
ˆ ˆ

m

cons cons test i test i
i

RMSE y y y
m =

 = − ∑ x x  (27) 

 
In order to reduce the variability due to different DOEs, we normalize this index by the index of the corresponding 
unbiased surrogate (respectively unbiased response surface (5) and kriging (8)). If ̂( )y x is the unbiased surrogate 

corresponding tô ( )consy x , the normalized accuracy index ofˆ ( )consy x : 

 ( ) ( ) ( )
( )

ˆ ˆ
ˆ 100

ˆ
cons

norm cons

RMSE y RMSE y
RMSE y

RMSE y

−
= ×  (28) 

Where: 

( ) ( ) ( ) 2

_ _
1

1
ˆ ˆ

m

test i test i
i

RMSE y y y
m =

 = − ∑ x x  

 
The normalized accuracy index represents the percent increase of the root mean square error of the conservative 
estimator compared to the BLUE estimator. In other words, it represents the ‘price’ to pay to be more conservative. 
 
The conservativeness index gives the probability to be conservative. However, it does not inform by how much we 
are unconservative when predictions are unconservative. Thus, an alternate measure of conservativeness is the 
maximum unconservative error5 MaxUE: 

 ( ) ( )( )_ _ˆmin cons test i test i
i

MaxUE y y= −x x  (29) 

 

                                                           
5 One would want to use the mean or the median of the unconservative errors instead of the maximum for more 
stability. However, the maximum error decreases monotonically when conservativeness is increased, while mean 
and median can increase when we increase conservativeness, for instance when we have initially very small and 
very large errors.  
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This index can also be normalized by the index of the unbiased estimator: 
 

 ( ) ( ) ( )
( )

ˆ ˆ
ˆ 100

ˆ
cons

norm cons

MaxUE y MaxUE y
MaxUE y

MaxUE y

−
= ×  (30) 

A value of normMaxUE  of 50% means that the maximum unconservative error is reduced by 50% compared to the 

BLUE estimator. 
 
These indices require a reasonably large number of test points to be accurate. In the absence of test points, if the 
DOE is large, one can use the cross-validation statistics (PRESS error) instead. 
 
For each method, we can modify the level of bias by changing: 

- the value of the safety factor and margin 
- the relaxation value or the number of selected constraints for BF 
- the level of the confidence interval (1- α). 

Then, for a given method, we take different levels of bias, and for each level, we compute the indices described 
above. Hence, we can draw trade-off curves (or Pareto front) between two indices. This allows us to compare the 
different methods by looking at partial or global dominations. A detailed example of trade-off curve generation is 
proposed in Appendix 1. 
 
Finally, a crucial performance of the statistical-based predictors is their adequacy to the expected level of 
conservativeness. To analyze this performance, we draw the QQ-plot of the target conservativeness (1-α) vs. the 
actual conservativeness( )ˆconsP y .  

 
In the test problems we consider, the DOEs are generated randomly. Thus, the procedure is repeated a large number 
of times. We present the results as the average over these repetitions. In addition, we use error bars to represent the 
95% confidence interval on the accuracy index for a given level of the conservativeness index. 
 
The unbiased polynomial response surfaces are computed using MatLab function regress; the biased fitting 
optimization is done using MatLab function fmincon. The universal kriging and indicator kriging estimates are 
computed using the GPML toolbox for MatLab. 

B. Test Problems 
 

The Branin-Hoo function 
 
 The first test function we consider is a deterministic 2D function, which is often used to test the global 
optimization methods (Dixon-Szegö, 1978): 
 x ∈  [-5, 10], y ∈  [0, 15] 

  
225.1 5 1

( , ) 6 10 1 cos( ) 10
2 84

x x
f x y y x

π ππ

   
 = − + − + − +     

           (18) 
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Figure 1: The Branin-Hoo function 
 
The range of the function is between zero and 300. Large values are located on the bounds of the domain. 
 
The Torque Arm Analysis 
 
This second example was originally presented by Bennett and Botkin [9]. It consists of the design of a particular 
piece from automotive industry called a torque arm. The model, pictured in Figure 2, is under a horizontal and 
vertical load, Fx= -2789 N and Fy= 5066 N respectively, transmitted from a shaft at the right hole, while the left hole 
is fixed. The torque-arm consists of a material with Young’s modulus, E= 206.8 GPa; Poisson’s ratio, ν=0.29.  
 

 
Figure 2: Initial design of the Torque Arm 

 
The objective of the analysis is to minimize the weight with a constraint on the maximum stress. Seven design 
variables are defined to modify the initial shape. Figure 3 and Table 1 show the design variables and their lower and 
upper bounds, respectively. 
 
Table 1: Range of the design variables (cm) 

Design variable Lower bound Upper bound 

1 -2.0 3.5 

2 -0.2 2.5 

3 -2.0 6.0 

4 -0.2 0.5 

5 -0.1 2.0 

6 -1.5 2.0 

7 -0.1 2.0 
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Figure 3: Design variables used to modify the shape. 

 
The stress analysis is done by Finite Element Analysis (FEA) using the software ANSYS. In order to achieve a 
reasonable accuracy, a particular attention was given to the meshing technique. The model is divided into three 
regions, and the mesh is refined only around the areas which require it due to stress concentration. The model is 
built so that the mesh density can be defined along the lines, as depicted in Figure 4. 
 

 
Figure 4: Non-uniform meshing process: the density of elements is defined along the lines. 
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Figure 5: Typical Von Mises stress profile given by FEA (Color bar indicates values in 104 Pa). 

 
Figure 5 shows a typical stress profile returned by FEA. The contour lines represent the Von Mises stress. For this 
design, the Von Mises stress range is between 100 and 184 MPa.  
 
The FEA is computationally expensive; thus, a surrogate model is used to approximate the maximum stress on the 
design domain. Here, we do not focus on the optimization but on the quality of the surrogate prediction. 
 

IV. Results and Discussion 

A. The Branin-Hoo function 
 

The results are presented for the following configuration: 
The design of experiment consists of the four corners of the design region plus 13 points generated using Latin 
Hypercube Sampling (LHS) with maximum minimum distance criterion, for a total of 17 DOE points. The test 
points are generated using a 32x32 uniform grid (total 1024 points). The RMSE is weighted such that the points 
inside the domain have a weight 1, the points on the edges a weight ½ and the points on the corners ¼. The size of 
the DOE is chosen because it provides equivalent expectation of the RMSE for the unbiased response surface and 
kriging models. 
 
The response surface is a cubic polynomial. For the kriging estimators, the covariance function used is a rational 
quadratic covariance function with Automatic Relevance Determination (ARD) distance measure6, as provided by 
the GPML Toolbox. Indicator Kriging is not implemented for this function since the method requires a substantially 
higher number of training points to be accurate. 
 
Since the DOE is generated randomly, the procedure is repeated 1000 times. We present the results as the average 
over these 1000 repetitions. In addition, we use error bars to represent the 95% confidence interval on the accuracy 
index for a given level of conservativeness. 
 
Comparing empirical estimates 
First, we want to determine the best strategy for the empirical estimators, that is, between using and additive 
constant (CSM) or a multiplicative constant (CSF). In order to draw the Pareto fronts, we choose the following 
ranges: [ ]1 2fS ∈ ; [ ]0 15mS ∈ . Results are shown in Figure 6. 

                                                           
6 Automatic Relevance Determination (ARD) (MacKay, 1992; Neal, 1996) is a hierarchical Bayesian approach 
where there are hyperparameters which explicitly represent the relevance of different input features. ARD optimizes 
these hyperparameters to discover which inputs are relevant. 
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Figure 6: Pareto fronts of empirical conservative estimates for RS and Kriging. Using safety factors 

substantially increases the RMSE and its variability compared to using safety margins. 
 
For both Kriging and PRS, using a safety margin is much more efficient than a safety factor. To reach the same level 
of conservativeness, the RMSE is much higher when using safety factors. The variability is also much higher. The 
reason to such difference is simply that safety factors substantially increase the bias where the predicted response is 
high and only a little where it is low, while the error does not depend on the response value. On the contrary, safety 
margins increase the bias constantly among the design region. 
 
Comparing biased fitting estimates 
Now, we compare the two strategies for biased fitting estimates. The range of the constraint relaxation is chosen as 
[-3; 15]; the proportion of selected constraints is chosen between 0 and 1. 

 
Figure 7: Biased fitting estimates with constraint relaxation (blue) and constraint selection (red). The left 
figure represents the trade-off between conservativeness and accuracy, the right figure shows the relationship 

between percentage of conservativeness and maximum unconservative error reduction. 
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Both methods seem to provide similar results; the difference for high percentiles on the left figure is here due to 
numerical noise. Using constraint selection does not allow obtaining very conservative estimates: indeed, using all 
the 17 constraints leads to a 85% conservativeness. On the other hand, with constraint relaxation, using a negative 
shift allows to be more conservative. On the right graph, we see that a high proportion of conservative estimates 
does not prevent for having large unconservative errors: for instance, for a 90% conservativeness, the maximum 
unconservative error is reduced by 40% only. 
 
Comparing CSM and ED estimators 
Now, we compare, for each metamodel, the empirical and the statistical-based approaches. We show the results of 
the best empirical estimator only, which is the CSM. Figure 8 shows the results corresponding to response surface, 
Figure 9 to kriging. For both graphs, the range of the safety margin is chosen in the interval [0; 15]; the target 
conservativeness is chosen between 50% and 97%. 

 
Figure 8: CSM (blue) and ED estimators (red) for RS. 

 
For the response surface, we see on the left figure that the two methods are equivalent in terms of accuracy and 
variability. 95% conservativeness is obtained for an RMSE twice as big as the RMSE of the unbiased response 
surface. However, there is a substantial difference for the maximum unconservative error: for the same proportion of 
conservative results, this error is more reduced with ED than with CSM. 

 
Figure 9: CSM (blue) and ED estimators (red) for Kriging. 

 
For the kriging, the CSM estimator is clearly better than the ED estimator in terms of accuracy vs. conservativeness 
(left figure). The same level of conservativeness is obtained with less effect on the RMS error, especially for the 70-
90% range. Moreover, the variability is much larger for the statistical estimator.  
A remarkable result is the flat portion of the curve for the low conservative levels of the empirical estimator: up to 
70% conservativeness can be achieved with very little effect on the RMS error. This behavior can be imputed to the 
nature of the kriging model: since it is an interpolation, errors are very small at the vicinity of the training points; 
thus, adding a small constant is sufficient to be conservative but has a little effect on the accuracy. 
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On the other hand, ED estimator appears to be much better to reduce the maximum unconservative error: on the 
right figure, the blue curve is always higher than the red one, which means, for a equivalent proportion of 
conservative results, the maximum unconservative error is more reduced with ED than with CSM. 
 
When comparing response surface and kriging, we see that the mean values are equivalent, except for the flat 
portion. However, the variability is much bigger for kriging than for response surface. Indeed, for the Branin-Hoo 
function, kriging appears to be much more sensitive to the DOE values than response surface. Thus, we want to see 
if the observed behavior is consistent when we increase significantly the DOE size. Figure 10  shows the results for 
a 34-point DOE. 

 
Figure 10: CSM and ED kriging estimators for 34-point DOEs. 

 
The behavior observed for 17-point DOEs is much clearer for 34-point DOEs. The CSM estimator curve has a very 
flat portion up to 75% conservativeness, while the ED estimator curve increases rapidly. A longer flat portion is 
logical since the region where errors are small, at the vicinity of the DOE points, is larger since there are more 
points. The variability is much higher for the ED estimator.  
On the other hand, the CSM estimator does not prevent at all from large unconservative errors: the maximum error 
remains almost the same even for large proportions of conservative results. The ED estimator performs a lot better.  
A detailed analysis of error distribution is proposed in Appendix 2. 
 
ED estimators: QQ-plots 
The Pareto fronts showed the relation between conservativeness and accuracy. Another central measure is the 
fidelity to the target conservativeness. Figure 11 represents the QQ-plots for both polynomial response surface and 
kriging. The x-axis represents the target conservativeness, the y-axis the actual conservativeness. The error bars 
show the 95% confidence interval on the actual conservativeness for a given target conservativeness. 

 
Figure 11: QQ-plots of target and actual conservativeness for PRS (red) and Kriging (black).  
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In average, kriging shows a very good fidelity since the trend is almost equal to the straight line. For the higher 
levels, the actual conservativeness is a less than the target. This is due to the fact that kriging assume normality of 
errors, while for the Branin-Hoo function this assumption may be at a certain degree violated. The response surface 
results are biased: actual conservativeness is (in average) always more than the target. Again, the assumptions of 
regression may be violated with the Branin-Hoo function; for the unbiased response surface, the actual 
conservativeness is 52% where 50% is expected.  
When looking at the variability, the difference between response surface and kriging is very significant. Indeed, the 
confidence interval is about plus and minus 10% for the response surface, which can be considered reasonable, but it 
is plus or minus 20% for kriging. In particular, when 97% conservativeness is expected, the actual conservativeness 
can be as low as 70% only. 
 
Comparing biased fitting and CSM response surface estimates 
Finally, we compare empirical strategies with biased fitting for the response surface. Figure 12 shows the Pareto 
fronts for the CSM estimator and the biased fitting estimator with constraint relaxation.  

 
Figure 12: Biased fitting and CSM estimators. 

The two estimators have similar trends, but biased fitting results with higher variability. Indeed, this method is a lot 
more sensitive to the DOE, since a single constraint can have a large influence on the shape of the response. 

B. The Torque Arm Analysis 
 

In this part, we consider the analysis of the Torque Arm. The analysis is set up as follow: 
- the DOE consists of 300 points generated from LHS with maximum minimum distance criterion 
- 1000 test points are generated using LHS 
- For each point, the ANSYS code is run and returns the overall maximum stress. The values are in MPa; 

their range is of the order of 102. 
 
The stress values strongly violate the hypothesis of normality of residuals of the regression analysis. Thus, we 
performed the analysis on the natural logarithm of the stress instead of the stress itself. Using such transformation, 
the hypothesis of normality is verified. From an engineering point of view, looking at the logarithm of the stress 
might not seem relevant; indeed, we focus here on the quality of the surrogate prediction rather than on the 
mechanical problem. However, it is to be noticed that adding a margin to the logarithm is equivalent to multiplying 
the stress by a safety factor. 
 
The response surface used is a second order polynomial. For the kriging estimators, the covariance function used is 
the sum of a rational quadratic covariance function with ARD and white noise. For the IK, a rational quadratic 
function with ARD is used; the parameters of the function are re-estimated for each cut-off. A total of 100 cutoffs 
are used for the distribution estimation. 
 
For the Branin-Hoo function, we chose the DOE size in order to have comparable RMS errors for the unbiased 
estimators. Table 2 shows the performances of the unbiased surrogates for the Torque Arm analysis (the unbiased IK 
corresponds to the 50th percentile given by this method). Kriging performs better than polynomial response surface; 
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indicator kriging performs poorly compare to the other methods. However, IK has the lowest ratio between RMSE 
and maximum unbiased error, which means that there is less risk of having an outlier in the unconservative side. 
Distribution of errors are given in Appendix 3. 
 
Table 2: Performances of unbiased surrogates for the Torque Arm. 

Surrogate RMSE MaxUE MaxUE / RMSE 
PRS 0.0589 0.4956 8.41 

Kriging 0.0415 0.2835 6.83 
IK 0.1413 0.6049 4.28 

 
Since the finite element analysis computationally expensive, it is not possible to generate a large number of DOEs 
for variability analysis, as we did for the Branin-Hoo function. In order to obtain confidence intervals, we randomly 
choose 300 points out of the 1300 points generated (300 training + 1000 test points), and use the remaining 1000 as 
test points. This procedure is repeated 500 times. 
 
Comparing CSM and ED estimators 
Figure 13 shows the results of the CSM and ED estimators for the polynomial response surface.  

 
Figure 13: CSM and ED PRS estimator performances for the Torque Arm analysis. 

 
For the torque arm analysis, using safety margins and error distribution lead to almost identical results for all our 
three indices. One reason to explain such equivalence is that the width of the confidence interval does not vary a lot. 
Figure 14 shows the histogram of all the confidence interval widths at the 1000 test points for a 80% target 
conservativeness. We see that the range of the size of the confidence interval is [0.042, 0.051], which means that the 
confidence interval range vary by less than 11% around its mean value. For a 95% target conservativeness, this 
value increase to 14% only. 

 
Figure 14: Histogram of the confidence interval widths at the 1000 test points for a 80% target 

conservativeness with PRS. 
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Figure 14 shows the results of the CSM and ED estimators for kriging.  

 
Figure 15: CSM and ED kriging estimator performances for the Torque Arm analysis. 

 
Here, the CSM and ED estimators are equivalent for the percentage of conservativeness and RMSE. For the Branin-
Hoo function, we found that CSM performed a lot better than ED, particularly when the DOE size was large. Here, 
the DOE size is 300, which is not large since there are seven dimensions. Thus, the flat behavior of the Pareto front 
due to small local errors is here negligible.  
Results are different for the reduction of maximum unconservative error: here, like for the Branin-Hoo example, the 
ED estimator reduces a lot more the unconservative errors. Since the results are equivalent in terms of accuracy and 
variability, we can conclude that the kriging ED estimator outperforms the CSM estimator for this example. 
 
Figure 16 shows the histogram of all the confidence interval widths at the 1000 test points for a 80% target 
conservativeness. The range is a lot larger than for PRS. There are a few very large values that may have a large 
impact on the RMSE.  

 
Figure 16: Histogram of the confidence interval widths at the 1000 test points for a 80% target 

conservativeness with kriging. 
 
 
Comparing biased fitting and CSM response surface estimates 
 
Figure 17 shows the results for the biased fitting and CSM estimators. 
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Figure 17: CSM and BF estimator performances for the Torque Arm analysis. 

 
On the left figure, we see that constraint selection gives equivalent results to CSM, but constraint relaxation is less 
efficient. Indeed, its RMSE is increased for the lowest levels of conservativeness: that means without any effect on 
the conservativeness, the constraints change the shape of the response surface. With constraint selection, the error 
increase only for high levels of conservativeness. That means, only a few constraints are responsible for large errors 
in the model fit. These few constraints may correspond to outliers. Hence, constraint selection is an efficient way to 
get rid of outliers by being conservative where it is not expensive to be, while on the contrary, constraint relaxation 
increases error without significant effect on the conservativeness. 
 
When looking at the reduction of unconservative errors, we see that biased fitting with constraint relaxation 
outperforms by far the other methods, while constraint selection is not as good as CSM. This is logical since by 
construction constraint relaxation tries to correct all the unconservative errors, while constraint selection tries to 
correct the smallest unconservative errors first. 
 
Comparing all statistical-based estimators 
Here, we want to compare the performances of the different surrogates. We saw that for PRS, CSM and ED are 
equivalent, and for kriging, ED performs better. Thus, we use for comparison only the ED estimators, and indicator 
kriging (IK). 
 
First, we compare the absolute performances of the different surrogates, so we do not normalize our indices and use 
RMSE and MaxUE as defined in (27) and (29). Results are shown in Figure 18. 

 
Figure 18: ED and IK estimator (not normalized) performances for the Torque Arm analysis. 

 
On the left graph, we see that the conservative strategies do not change the order of the surrogate performances: 
kriging performs better than the others, and IK performs poorly. However, when looking at the maximum 
unconservative error, we see that IK reduces a lot more the error than the other methods, and for the highest levels of 
conservativeness, it is almost equivalent to PRS. 
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Figure 19 shows the normalized results for the three surrogates. 

 
Figure 19: ED and IK estimator performances for the Torque Arm analysis. 

 
On the left graph, Indicator kriging is accurate until 75% conservativeness; for the highest percentiles, the error 
increases rapidly. Indeed, indicator kriging fails to accurately predict high percentiles [10]. Kriging and PRS show 
very comparable results; for both, a 95% conservativeness is at a price of an 80% increase of the RMS error. A 
change of curvature on the Pareto front occurs around 90% conservativeness; that means, low levels of 
conservativeness are relatively cheap to obtain, while more than 90% increase a lot the error. 
On the right graph, we see that IK performs better than the others. Kriging performs better than PRS, which is not 
unexpected since the kriging prediction variance is more accurate than the PRS one. For all three surrogates, we 
notice that the maximum unconservative error is never fully compensated, even for the highest levels of 
conservativeness. That means, even with a high percentage of conservative results, unconservative errors remain 
large. 
 
Additional details, including distribution of errors for a 95% target conservativeness, are given in Appendix 3. 
 
ED estimators: QQ-plots 
Finally, Figure 20 shows the graph of target conservativeness vs. actual conservativeness for the statistical-based 
estimators. Both parametric (ED RS and kriging) and non-parametric (IK) estimators show a very good fidelity, 
even for high percentiles. The poor accuracy of the IK for the high percentiles does not affect the overall fidelity to 
the target level of conservativeness. For the parametric estimators, it means that the hypotheses of normality are not 
violated.  

 
Figure 20: QQ-plots of the ED estimators 
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Figure 21 show the QQ-plots when the surrogates are fitted to the stresses directly and not the natural logarithm of 
the stresses. The violation of normality hypothesis affects a lot the fidelity of the PRS. Kriging results are not as 
good as in the previous case but remain acceptable. As expected, IK is the least sensitive to violation of normality. 

 
Figure 21: QQ-plots of the ED estimators when hypothesis of normality of residuals are violated. 

 

V. Conclusion 
 

In this report, we explored the alternatives to obtain conservative predictions using surrogate modeling. First, we 
showed that conservativeness could be obtained by empirical methods, such as constant safety factors or margin, by 
adding constraints during the fitting to obtain a biased model, or by taking advantage of error distribution measures 
given by the model. Then, a Pareto front methodology was introduced to measure the quality of the different 
methods. Finally, the methods are implemented for two tests problem: one analytical and one based on Finite 
Element Analysis. Results showed that: 

- safety margins are much more efficient that safety factors, in particular when the range of the response is 
large 

- the use of safety margins and error distribution lead to very comparable results when looking at an accuracy 
and conservativeness trade-off 

- although, ED estimators, for an equivalent level of conservativeness and accuracy, prevent better than CSM 
from the risk of large unconservative errors 

- for biased fitting, constraint selection is better than constraint relaxation, in particular in presence of 
outliers 

- Indicator kriging is reliable in terms of level of conservativeness but shows poor accuracy, in particular for 
high percentiles 

- ED estimators are based on assumptions that may not be violated in order to obtain acceptable fidelity of 
conservativeness level. 

 
More generally, it has been shown that measuring the conservativeness of a method is not easy and can be very 

problem-dependant. Indeed, the chance of being conservative and the risk of large unconservative errors are two 
measures of conservativeness that do not behave identically. One may choose a conservative strategy based on the 
trade-off between these two quantities and the global measure of accuracy. 
The results for the ED estimators were overall disappointing, since they provide local estimates of error, while safety 
margin uses a single constant an perform as well for the torque arm problem, and better for the Branin-Hoo function 
in terms of accuracy. However, MSE estimates do not depend on the response values but only on the DOE and 
prediction location. Since we used equally maximum minimum distance criterion for the DOE, results may not be as 
interesting as for clustered DOE. Besides, the local measure of error seems to actually detect the regions of 
unconservativeness (hence a better reduction of the large unconservative errors), but this is counterbalanced by 
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assessing large uncertainties to regions where prediction is accurate, which leads to large overestimations that 
penalize the global measure of accuracy. 
The equivalence of safety margin and error distribution is interesting since the challenge with empirical estimators is 
to choose the appropriate margin. Thus, one can use the statistical information to accurately choose the margin 
corresponding to a certain level of conservativeness. 
 

Appendix 1: Trade-off curve of a single kriging modeling of the Branin-Hoo function 
 
We show here the results of a typical kriging model of the Branin-Hoo function. DOE and test points are chosen 

as described in section III-1. The DOE and unbiased kriging prediction are represented in Figure 22. For this model, 
the RMSE is 8.1 and the percentage of conservative predictions is 49.1%. 

 
Figure 22: Branin-Hoo function (left) , DOE and unbiased kriging prediction (right). 

 
We choose five values for the CSM: [0, 1.5, 4, 6, 12] and five levels for the confidence intervals (1-α): [0.5, 0.6, 0.7, 
0.8, 0.9]. For each, we compute the different indices as described in section II-1. The results are reported in Table 3 
and Table 4. In Figure 23, we represent for the two estimators the curves of the percentage of conservative 
predictions vs. the percentage increase of RMSE, and the percentage of conservative predictions vs. the percentage 
reduction of MaxUE. 
Table 3: Results for the CSM estimator. 

CSM 
% cons. 

predictions 
RMSE MaxUE RMSEnorm maxUEnorm 

0 49.1 8.1 15.5 0 0 
1.5 63.5 8.4 14.0 3.2 9.7 
4 76.6 9.3 11.5 15.0 25.9 
6 82.2 10.5 9.5 29.1 38.8 
12 95.8 15.0 3.5 85.3 77.7 

 
Table 4: Results for the ED estimator. 

(1 - α) 
% cons. 

predictions RMSE MaxUE RMSEnorm maxUEnorm 

0.5 49.1 8.1 15.5 0 0 
0.6 62.3 9.1 12.0 12.7 22.1 
0.7 72.8 11.1 8.5 37.1 45.1 
0.8 82.1 14.1 4.5 73.7 70.6 
0.9 95.8 18.7 1.7 131.3 88.9 
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Figure 23: Results for CSM and ED estimators. 

 
Here, we see that for an equivalent proportion of conservative results, the RMSE is more increased when using the 
ED estimator than with the CSM estimator. On the other hand, the maximum unconservative error is better reduced 
with the ED estimator. 
 

Appendix 2: Error analysis of a single kriging modeling of the Branin-Hoo function 
 

Here, we analyze the spatial error distribution of the kriging conservative predictors for the Branin-Hoo function. 
We compare the errors for three models: the unbiased kriging, CSM kriging with a margin of 5.97 and ED kriging 
with a confidence of 80%. For these two conservative estimators, the percentage of conservative prediction is the 
same, equal to 82.1%.  Their indices are reported in Table 5. 
 
Table 5: Results for unbiased, CSM and ED kriging estimators. 

 
% cons. 

predictions RMSE MaxUE RMSEnorm MaxUEnorm 

Unbiased 49.1 8.1 15.5 0 0 
CSM = 5.97 82.1 10.4 9.5 28.9 38.6 
(1 - α) = 0.8 82.1 14.1 4.5 73.7 70.6 

 
We see that, for an equivalent level of conservativeness, the RMSE is higher for the ED estimator, but the reduction 
of maximum unconservative error is higher. In order to explain this in detail, we draw the error contour plots over 
the design region and the histograms of the 1024 errors at data points. 
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Figure 24: Error contour plots and histograms of errors at data points for unbiased, CSM and ED kriging 

estimators. 
 

On the top left figure, we see that, since kriging is an interpolation, it leads to regions of small errors (pale blue) that 
are around the training points, and large errors far from the training points (yellow, at the bottom left, and dark blue, 
center left and top right). Thus, the histogram (top right figure) shows a pick around zero, and large tails on both 
sides. 
When using a CSM (middle figures), all the errors are switched up by the constant; hence, the histogram has the 
exact same shape but is moved toward the right. Since the pick of small errors is not large, a small margin is enough 
to move it to the positive values, and increase a lot the percentage of conservative predictions with a small effect on 
the RMSE. However, if the maximum unconservative error is large compared to the margin, it will not be reduced 
substantially. 
The ED estimator increases the prediction values in the regions of high uncertainty: center left, top right, bottom left. 
The two first correspond to the region of high unconservativeness. Thus, the unconservative errors are reduced. 
When comparing the CSM and ED histograms, we see that the distribution of the unconservative errors (the part of 
the histogram on the left of the red line) is very different: both correspond to 18% of the total errors, but most errors 
are close to zero for ED while the tail is heavier for CSM. However, although the ED estimator captures the region 
of unconservativeness, it also leads to very large overestimations, in particular in the bottom left. As a consequence, 
the distribution of errors has a very long right tail that affects the RMSE value. 
 
In section II-1, we saw that this behavior is amplified when the number of points is increased. In Table 6 and Figure 
25, we present the results for a 34-point DOE. 
 
 
Table 6: Results for unbiased, CSM and ED kriging estimators based on a 34-point DOE. 

 
% cons. 

predictions 
RMSE MaxUE RMSEnorm MaxUEnorm 

Unbiased 57.1 0.0502 0.296 0 0 



 
American Institute of Aeronautics and Astronautics 

 

24 

CSM = 0.0135 76.4 0.0518 0.282 3.2 4.6 
(1 - α) = 0.8 76.2 0.0737 0.1713 46.8 42.0 

 

 
Figure 25: Error contour plots and histograms of errors at data points for unbiased, CSM and ED kriging 

estimators based on a 34-point DOE. 
 
For the unbiased estimator, most of the errors are very small, but the errors are locally large in regions where there 
are not training points. Hence, the histogram has the form of a thin pick centered on zero, with a couple of large 
values on both sides. 
On the second histogram, we see that a very small margin is sufficient to move the entire pick to the positive side. 
As a consequence, the proportion of conservative estimations is increased to 76.4% with almost no effect on the 
RMSE. On the other hand, the maximum unconservative error remains almost the same.  
On the third histogram, the pick is also moved to the right, but the maximum unconservative error is also reduced by 
42%. On the other hand, large positive errors have appeared that affect the RMSE: on the right edge and top right of 
the contour graph. 

 

Appendix 3: Error analysis of the statistical-based estimators for the Torque Arm analysis 
 

Here, we report the histograms of the residuals for kriging, PRS and IK estimators. The DOE is the original DOE 
generated; the residuals are computed at the 1000 data points. Table 7 and Table 8 show the results for the unbiased 
estimators and the conservative estimators with a target conservativeness level of 95%, respectively.  
 
 
Table 7: Statistics for unbiased estimators. 

Surrogate Pcons RMSE MaxUE 
PRS 49.7 0.0589 0.4956 

Kriging 47.8 0.0415 0.3106 
IK 49.8 0.1411 0.6049 
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Table 8: Statistics for a 90% target conservativeness estimators. 

Surrogate Pcons RMSE MaxUE 
PRS 82.7 0.1059 0.4011 

Kriging 95.1 0.0732 0.2272 
IK 90.9 0.2908 0.3434 

 
Figure 26: Histograms of residuals for the statistical-based estimators, unbiased and 95% target 

conservativeness. 
 
For the unbiased estimators, kriging and PRS show the presence of a few outliers (5-6), while IK does not. These 
large unconservative values are not significantly decreased for the 95%. Comparatively, IK reduces a lot more the 
MaxUE. However, we see on the bottom right histogram that there are a few large overestimations. 
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