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ABSTRACT 

 

There have been many attempts to predict remaining-useful-life of aircraft structures. Many 

non-destructive damage evaluation and testing techniques have been developed for this purpose 

in structural health monitoring. Among these, a migration technique based on ultrasonic wave 

propagation and reflection in structural components holds promise not only for locating the 

damage but also for quantitatively imaging it. Recently, an f-k migration technique showed 

more reliable results in estimating the location and size of the damage than the reverse-time 

migration technique. However, the damage diagnosis is often hampered by poor resolution due 

to a limited number of embedded sensors and ambient noise. In order to achieve higher 

resolution of damage profile, in this paper a Bayesian approach is proposed, which can enhance 

the damage profile obtained from the migration technique. Moreover, it allows more accurate 

estimation of the location and size of cracks, which is crucial for more accurate prediction of 

structural life from the enhanced image. The proposed Bayesian approach is applicable to any 

damage imaging method. The location and size of damage are progressively enhanced using 

likelihood estimators that are constructed based on the image. Two ways of estimating and 

constructing likelihood functions are discussed in detail.  
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Bayesian approach, Likelihood function 
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INTRODUCTION 

 

Structural Health Monitoring (SHM) can be potentially designed to convert maintenance 

of structural components to an automated procedure. The procedure of SHM begins with 

damage diagnosis followed by prognosis. Diagnosis uses damage identification techniques to 

assess the current health status of a structure, and then prognosis uses the diagnosed damage and 

damage progression theory to estimate the remaining useful life (RUL) of the structure and 

indicate the need for maintenance and repair. Diagnosis is composed of two parts, obtaining 

sensor information and interpreting the results to identify the damage. Therefore, two main 

issues of damage diagnosis are sensor development and techniques that transform the raw data 

into estimates of damage profile. We focus on developing techniques to collect the sensor 

information and increase the accuracy of our inspection method.  

Among many non-destructive evaluation (NDE) techniques, ultrasonic inspection is well 

established in the engineering community for several decades (Giurgiutiu and Cuc, 2005). 

Ultrasonic wave based approaches employ piezo sensors and actuators for inspection. 

Furthermore, because of reasons including setup convenience, quantifiability, and capacity for 

real time monitoring, we focus on improving damage profile obtained by the migration 

technique suggested by Yuan and his colleagues (Lin et al, Wang et al, 2005). 

One advantage of using migration technique is that the damage image can be readily 

obtained using the sensor to collect reflected waves from damages. With the image, the size and 

shape of the damage as well as its location can be quantified. That is, more accurate and 

quantifiable damage profile using multiple actuator-sensor pairs can be obtained. However, the 

back propagation part of migration technique is done by finite difference scheme, and numerical 

or experimental noise often obscures the damage imaging results.  

Because of the uncertainty associated with the sensor data, Bayesian techniques are 

appealing for improving the resolution of the damage detection by migration. Bayes rule was 

developed in 1763, but most advances in Bayesian techniques have occurred in the twentieth 

century due to many practical problems (Gelman et al., 2004). In Bayes’ rule, two key factors 

are prior distribution and likelihood function. Compared to conventional statistical approaches, 

Bayesian approaches enjoy better performance by incorporating better prior information and by 

a successive updating procedure. The computational cost for Bayesian approach is rather high, 

but due to recent advances in computing, Bayesian technique is widely developed to handle 

many difficult engineering applications (An et al., Gogu et al., 2008). 

The main objective of this paper is to improve the accuracy of detecting crack location by 

using Bayesian update, but we will also discuss how to obtain an estimate of the crack size from 

the updated damage profile. The paper is organized as follows. In Section 2, we briefly 

introduce the migration technique, and Section 3 describes the Bayesian approach and two ways 

to approximate the likelihood estimator. In Section 4, we provide illustrative numerical results, 

and Section 5 will give concluding remarks. 

 

 

SIMULATION SETUP FOR MIGRATION TECHNIQUE 

 

The migration technique uses elastic wave propagation and reflection for imaging 

damages in the structure. In this study, a horizontal crack centered at (-9, -11) cm with length of 



4 cm is considered. A three-peaked toneburst narrowband excitation with center frequency 150 

kHz (duration of 20 μs) is emitted from an actuator, after the flexural waves propagate in the 
plate, the reflected signals from the damage are detected by the sensors. Seven actuators are 

excited sequentially and 200 sensors located along the x-axis collect reflected waves (see Figure 

1). Under this excitation frequency, only the first fundamental flexural mode propagates in the 

plate. In an isotropic aluminum material, the group velocity for the center frequency is 2437.7 

m/s. The phase velocity is 1413.4 m/s with wavelength 9.4 mm. We use finite difference method 

based on Mindlin plate theory for modeling the wave propagation. An Al-6061 aluminum 

square plate with dimension 50cm×50cm×0.32cm is discretized by 200 × 200 plate elements. 

Simulated sensor data is collected from 2500 time steps (total time span: 250 µs). Using the 

simulated sensor data, the migration technique is then used for imaging the crack.  
 

 
Figure1. Linear array of actuators/sensors on an aluminum plate 

 

Time domain migration 
 

A previous approach in migration technique is called reverse-time migration in time 

domain (Lin et al, Wang et al, 2005). This technique time-correlates the back propagated sensor 

data and the forward propagating waves from the actuator. Figure 2 shows the image intensity 

obtained from excitation from actuator A1. The image intensity is calculated by the strength of 

cross-correlation at nodal location. The term “image intensity” refers to the pixel values of 

resultant image. It will be discussed later in this section. 
 



 
Figure 2. Damage imaging from the first actuator by time domain based migration 

 

Frequency domain migration (F-k migration) 
 

Frequency domain migration technique was first developed in geophysics (Stolt, Gadjag, 

1978) and extended for SHM (Yuan, 2008). This technique is computationally more efficient 

than the reverse-time migration.  
 

 
Figure 3. Damage imaging from the first actuator by f-k migration 



Figure 3 shows the image intensity excited from the same actuator A1. These two variants 

of migration technique basically use the same sensor information, but in different domains. 

However, since an f-k migration considers the entire excitation frequency band, while Time 

domain migration uses only the center frequency information. Clearly the f-k migration shows 

much higher damage fidelity. The remainder of the paper will apply the Bayesian approach with 

f-k migration images. 

From Figures 2 and 3, the image intensity is defined by the strength of cross correlation 

between the actuator signal and migration. It is calculated at each node in finite difference grid.  
 

( , ) ,i thI x y Image intensity obtained at x y fromi actuator result=   (1) 

 

The previous approach of combining the images is to superimpose the image intensities 

from all the actuators to get a new image of the damage (Lin et al, Wang et al, 2005). This is 

called prestack migration and can be represented by Eq (2). The stacked image result of all 

seven actuators is shown in Figure 4. 
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Figure 4. Stacked image results of all seven images from actuators 1~7 

 

 

BAYESIAN APPROACH 

 

The Bayesian framework provides an approach for incorporating the image intensity data 

with previous information. Here we limit ourselves to identifying the location of the of the crack. 

The general form of the Bayes’ rule for finding a location of a point in the given straight crack 

with given image intensity is shown in Eq (3). 
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where ( , )I x y  is the image intensity obtained from a test, ( )initf crack location  is the 

prior distribution of the location derived from previous knowledge, and l  is the likelihood of 

crack location  given by current test data. In Bayesian approach, the likelihood function is 

defined by the relation between actual crack location and what we obtained. For this particular 

example, if the center of crack is x, y then the probability density that we can obtain the image 

intensity from the migration simulation is defined as the likelihood. 

To begin with, the likelihood function or likelihood estimator, l  need to be calculated. If 

we have knowledge about the relationship between the image intensity and the crack location, 

then we can accurately estimate ( ( , ) | )l I x y crack location . After that, by multiplying the prior 

distribution and likelihood function, we calculate the probability distribution of crack location  

given the test data, which is ( | ( , ))updf crack location I x y , and this can be used as the prior 

distribution for the next step. The image intensity ( , )I x y  is obtained by analyzing each 

migration results as an image. 

To clarify this two dimensional problem further, we assume that the image intensity and 

the x and y coordinates of obtained images are independent, or the randomness of the two are 

not correlated. We want to find the crack location x, y by using given image intensity 

information as in Eq (3). In Eq (4), we rewrote Eq (3) using the coordinate information and 

image intensity from the i
th
 test.  
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Where x, y are the coordinates of a possible location of the center of the crack. That is, the 

left hand side of Eq (4) is the probability density that the center of the crack is at x, y, given the 

image we obtained and our prior distribution.  

We start the process to determine the center of the crack location by assuming a non-

informative prior or initial distribution of x and y on the plate. Here we choose a uniform 

distribution function as our prior distribution for plates that have never been inspected before. 

Assuming that the size of the square panel is X Y×  and the origin is at the center of the plate, 

we can construct a prior distribution as Eq (5), which implies that we have no information for 

the plate before inspection. 
 

( , ) ( ; / 2, / 2) ( ; / 2, / 2)initf x y Uniform x X X Uniform y Y Y= − × −   (5) 

 

With the given prior distribution, the next task is the selection of appropriate likelihood 

estimators for our next iteration. The latter part of the numerator of Eq (4), called likelihood 

estimator, is defined by the relation between the real center of crack location and the image. 

This is expressed by the probability that we have the test result when the true value lies at x, y,. 

In this case, the test result iI  indicated by the image intensity is a deterministic and known 

value obtained in the simulation. If the center of crack is x, y then the probability density that we 



can obtain the image intensity from the migration simulation is defined as the likelihood. Since 

we use simulation, the likelihood function depends on the relation between the simulation and 

the real life, but it usually requires a many simulations to obtain an explicit expression for the 

discrepancy between detected location and actual location. Generally, when the relation is 

known as some type of distribution, we can say that the likelihood is the probability density of 

the distribution when we have the expected value at x, y.  

However, due to computational cost of the migration techniques, accurate definition of 

likelihood estimator is almost impossible. Instead, we suggest several ways to assume and 

estimate l  through error analysis. In the following we suggest two basic ways to construct the 

likelihood estimators, direct image intensity and multivariate normal distribution.  
 

Direct image intensity 
 

The simplest way to construct a likelihood function out of given image is directly 

converting the given image intensity as our likelihood function. In other words, the probability 

that we will get the image when the center of the crack is at point (x,y) is proportional to the 

image intensity at (x,y). In this case the likelihood estimator is defined by Eq (6). 
 

 ( | , ) ( , )i il I x y I x y=       (6) 

 

Using this likelihood function with Bayesian updating with all seven images from the 

seven  actuators, we obtained as as the final distribution shown as an image in Figure 5. 
 

 
(a)        (b) 



 
(c) 

Figure 5. Combining image using direct image implementation (a) Up to 3
rd
 actuator (b) Up to 

5
th
 actuator (c) Up to 7

th
 actuator (final) 

 

Multivariate normal model about center of intensity 
 

The center of intensity of an image obtained from the i-th actuator is given in Eq (7). 
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Error in Center of intensity location
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(c)         (d) 

Figure 6. Estimation error in x and y directions. We tested 117 different crack configurations 

with different actuators and calculated the difference between actual locations and the estimated 

locations. (a) and (b) shows estimation error associated with location of crack center, and (c) and 

(d) shows normal fit of the error distribution. 
 

Instead of using the entire image data, we elect to use only the center of intensity an 

estimate where the center of the crack is. This estimation has errors associated with the 

migration technique. By simulating a large number of cracks, we found that the error in 

estimated location from each actuator follows a simple trend defined by a bivariate normal 

distribution, and the variation due to location of crack center is observed (Figure 6). So, we 

defined a multivariate normal model for the likelihood and define the parameters as 

2.42, 0.60x yσ σ= = , and linear coefficient in x direction as 1 0.162c = − from Figure 6(a) and 

the bias in y direction as ˆ 0.307y = cm from Figure 6(d). 

The bivariate distribution gives the probability of the center of intensity being at a point, 

given that the center of the crack is at (x,y). So the likelihood function is given by Eq (8). 
 

, ,

2 2

, 1 ,
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c i c i

c i x c i y
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= ×
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Using Bayesan updating with this likelihood function with all seven images from the seven  

actuators, we obtained as the final distribution shown as an image in Figure 7. 



 
(a)         (b) 

 
(c) 

Figure 7. Combined image using multivariate normal model. (a) Up to 3
rd
 actuator (b) Up to 5

th
 

actuator (c) Up to 7
th
 actuator (final) 

 

CRACK LENGTH  

 

Most cracks are straight under simple loading conditions, and the ultrasonic wave can be 

reflected from any point inside the crack length with equal probability. This suggests that the 

crack length may be estimated from the standard deviation of the distribution of the center of the 

crack. If we assume that the distribution is approximately uniform, we get Eq. 9 
 

2
( ) ( )

1/ 3
estimated crack length a cm

σ
=      (9) 

 



Table 1 shows estimated crack location and size. 
 

Table 1. Estimation error due to several different techniques 
 

Likelihood estimators Estimated location 

(cm) 

Error (cm) Estimated crack length 

(cm) 

Actual -9.00, -11.00 - 4  

Prestack migration -8.11, -10.40    1.073 Not available 

Direct image -8.27, -10.57 0.847 3.08 

Multivariate normal -9.14, -10.55 0.471 3.86 

 
 
CONCLUDING REMARKS 
 

We have discussed how to improve the estimation of damage profile, specifically the 

center location and size of crack damage, by combining Bayesian approach with the migration 

technique. We have examined two likelihood estimators for the Bayesian updating based on 

image results. In applying Bayesian framework, two key procedures are: constructing a proper 

prior distribution and applying an appropriate likelihood function. The prior distribution before 

results from the first actuator is non-informative. In typical SHM situation, prior distribution 

based on previous inspections may further improve the resolution of the technique. 

The choice of likelihood function is the main focus of the paper. As seen in the results, 

setting an appropriate likelihood function is important in that it forms the basis for the updating 

Bayesian procedure. However, practical situation is more complicated and identifying all 

sources of uncertainties explicitly is much more difficult. We compared the efficiency of 

identifying one crack by center location in the plate through two approaches for constructing 

likelihood estimators.  

First, we applied Bayesian approach with direct implementation. Here we simplified the 

types of uncertainty involved in the inspection procedure as the uncertainty already included in 

the migration images. This procedure is very efficient in terms of enhancing the image results by 

suppressing the noise effect, and the resulting image is much clearer than the image produced by 

stacking procedure.  

The second approach involves multivariate normal distribution over the region. Usually, a 

normal distribution is a convenient parameterization of the error. By error analysis based on 

many image results, we concluded that a multivariate normal distribution is suitable for this case, 

and by simulating multiple cracks and correlating to images we were able to refine a likelihood 

function to account for image bias. As our likelihood function improves, the accuracy of 

detection by Bayesian approach will also improve with it. 

Next, we suggested a size estimation scheme based on the width of posterior distribution 

based on the fact that the detected location has a variation due to finite crack size within crack 

length. By comparing the standard deviation of a uniform distribution and the standard deviation 

of the posterior distribution, we were able to estimate the crack size more accurately.  

The accuracy of inspection is very crucial for the accuracy of our prediction and the error 

or uncertainty involved in diagnosis greatly amplifies when applied to prognosis. So, the 

accuracy of inspection is important, and Bayesian approach ensures a higher accuracy when we 

have a better interpretation of relation between real life and our experiment. 
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