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Abstract— In the inspection of aircraft structures, the 

probability of detection has typically been determined based on 

the size of damage alone. However, the inspection process 

involves randomness due to variability in inspection conditions 

(including inspector’s competence), as well as difficulties 

associated with the location and type of damages. To 

demonstrate the effects of these other factors, we present a 

simple model from the assumption that for each combination of 

crack location and inspector there is a threshold crack size such 

that all cracks above this size will be detected and all below that 

size will be missed. The proposed model adjusts the threshold 

crack size according to the difficulty associated with the crack 

location and the competence of inspectors. The model is then 

used to fit 2,603 detection events reported for 43 panels 

inspected by 62 technicians in an Air Force study. The 

threshold increments by location and inspector are obtained by 

maximizing the matching percentage in detection events 

between the model and the experiment. We first use 62 

inspector thresholds only and find the best matching 

percentage of 78%. It is further increased to 81% when both 

inspector and location thresholds are considered. For 

comparison, the matching percentage using crack size alone is 

only 55%. We then add randomness to the process in order to 

include inconsistency on the part of inspectors. Replicating the 

observed inconsistency reduces the matching to about 72%. We 

conclude that most of the randomness in manual inspections is 

due to the circumstances of the inspections. We speculate that 

much of this randomness will be eliminated by automated 

structural health monitoring (SHM), which will be an 

important benefit of SHM. 

 
Index Terms—Detection, Inspection, Health monitoring, 

Probability of detection, Optimization 

 

I. INTRODUCTION 

ost aircraft structural components are designed based 

on a fail-safe philosophy that uses inspection and 

maintenance in order to detect damage before it can cause 

structural failure. In general the inspection can be done 
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either manually or by using onboard equipment. In this 

paper, the former is referred to manual inspection, while the 

latter to structural health monitoring (SHM). For manual 

inspections different techniques have been used, such as 

radiographic inspection (Lawson et al. [4]). Usually, SHM 

uses actuator-sensor technique (Giurgiutiu et al. [1]) to 

detect damages such as ultrasonic and eddy current 

techniques (Pohl et al. [7]), comparative vacuum monitoring 

(Stehmeier et al. [8]), elastic wave propagation and 

electromechanical impedance (Giurgiutiu et al. [2]). 

 The effectiveness of various inspection techniques is 

typically characterized by probability of detection (POD) 

curves that relate the size of damage to POD (Zheng et al. 

[9]) The information on POD can be used for various 

purposes, including structural diagnosis and prognosis 

(Zheng et al. [9]). For example, Kale et al. [3] used POD 

curves to optimize the inspection schedule that can maintain 

a certain level of structural reliability. Although the POD 

curve is traditionally given in terms of damage size, in 

reality POD depends not only on damage size but also on 

other variables. For example, damage in some locations is 

more difficult to detect than in other locations. The 

competence of inspector or inspection method can also be an 

important factor for determining POD curves.  

 Developing an accurate damage detection model that can 

take into account the effects of the location of damage and 

the competence of inspector is an important task, but not 

available in the literature. As a first step toward developing 

such a model, we propose a simple model based on a 

damage detection threshold size that is affected by both the 

damage location and the inspector competence. We further 

simplify the process by assuming that damage detection 

process is deterministic, not probabilistic. The proposed 

model assigns a competence score to each inspector and 

location difficulty score to each panel. Then, the equivalent 

damage threshold size for a specific panel and inspector is 

obtained using the scores. 

 Although the proposed model can take into account 

location difficulty and human factors, it is still a 

deterministic model, which means that the detection event is 

completely determined with the threshold crack size. 

However, there exists uncertainty in detecting a crack even 

if the same technician inspects the same crack. In order to 

model this randomness, we further improved the model 

using a traditional POD curve. 

 In order to demonstrate the performance of the proposed 

model, we used the US Air Force study from the 1970s in 

which 43 panels with different crack sizes are inspected by 
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62 technicians (2,603 detection events) (Lewis et al. [5]). 

We use optimization techniques to find the location factors 

associated with 43 panels and the human factors associated 

with 62 technicians.  

II. PROPOSED STATISTICAL MODEL (INSPECTOR-LOCATION-

SIZE MODEL) 

The detection process is often conventionally modeled 

using a POD curve, which describes the probability of 

detecting a crack with a specific size. A commonly used 

POD curve is the Palmberg equation (Palmberg et al. [6]). It 

specifies the probability of detecting a crack of size 𝑎′ as 

𝑃𝑑(𝑎′) =
 𝑎′/𝑎𝑚

′  𝛽

1 +  𝑎′/𝑎𝑚
′  𝛽

 (1) 

where 𝛽 is the exponent, and 𝑎𝑚
′  is the crack size that 

corresponds to 50% probability of detection (hence it 

measures the quality of the inspection process). As the 

exponent 𝛽 increases, the detection process approaches a 

deterministic one; i.e., all cracks larger than 𝑎𝑚
′ will be 

detected and smaller ones be missed. When 𝛽 = 4 for 

example, the probability of detecting a crack size of 

𝑎′ = 2𝑎𝑚
′  will be 94.12%. It is noted that the POD curve in 

Eq. (1) only accounts for crack size. 

 Although the Palmberg model has been widely used in 

manual inspections, there are many cases that the model is 

unable to describe the inspection situations. For example, 

when damage exists in a difficult location to detect, the POD 

is relatively low even if the size of damage is large. Thus, 

the actual inspection results are often scattered around the 

POD curve and, sometimes, show inconsistent behavior. The 

scatter in inspection results can be explained by differences 

in the competence of inspectors and differences in damage 

location. The former includes technician’s skill, inspection 

method, and inspection environment (such as fatigue and 

distractions).  

We seek a model that includes the above two effects in 

addition to the traditional crack size effect. We assume that 

when a panel is subjected to periodic inspections, the failure 

to detect a crack of size 𝑎′ = 𝑎𝑚
′  is due to the following two 

variables. The first variable, denoted by h, characterizes the 

circumstances of the inspection, such as the competence of 

the inspector and difficulties in the inspection process. The 

other variable, denoted by l, characterizes the difficulty 

associated with the location of the damage. These two 

variables are random by nature. For example, an inspector 

who missed a crack with size 𝑎′  may detect the crack in the 

second trial. It is noted that by introducing these two 

variables, we move the uncertainty in detection process from 

POD to these two random variables. 

As a first step we use a quasi-deterministic model that 

removes the randomness associated with the two variables. 

We assume that for given inspector and location, there is a 

threshold crack size so that every crack larger than this 

threshold will be detected and every crack below it will be 

missed. This model interprets the randomness as being 

entirely aleatory (lack of knowledge). That is, if we knew 

everything about the location of the damage and the 

inspection condition, then the randomness would disappear. 

Denoting the threshold value by 𝑎𝑡𝑟𝑠
′ , the detection event d 

for a crack of size 𝑎′  can be defined as 

𝑑 =  
0    if 𝑎′ − 𝑎𝑡𝑟𝑠

′ < 0

1    if 𝑎′ − 𝑎𝑡𝑟𝑠
′ ≥ 0

  (2) 

We simplify the following derivations by normalizing all 

crack sizes using the mean value 𝑎𝑚
′  of the threshold crack 

size over all locations and inspectors: 

𝑎𝑡𝑟𝑠 =
𝑎𝑡𝑟𝑠
′

𝑎𝑚
′

 (3) 

The same normalization is applied to 𝑎′  such that 

𝑎 = 𝑎′/𝑎𝑚
′ . 

The objective is to develop a model of 𝑎𝑡𝑟𝑠  that can 

accurately represent the contributions from both location and 

inspection condition. In view of the deterministic model, if 

the damage is located in a neutral position and if the 

inspection conditions are the same, every crack larger than 

𝑎𝑚
′  will be detected and those smaller than that will be 

missed. The proposed model adjusts the threshold based on 

the contribution from the location Δ𝑎𝑙  and that from the 

inspection variability Δ𝑎ℎ : 

𝑎𝑡𝑟𝑠 = 1 + Δ𝑎𝑙 + Δ𝑎ℎ  (4) 

A positive Δ𝑎𝑙  means that the crack is positioned in a 

more difficult location than average such that it will be 

detected when it becomes larger than 𝑎𝑚
′ . A positive Δ𝑎ℎ  

means the inspection condition is more difficult to detect the 

damage than average. Thus, a value of 𝑎𝑡𝑟𝑠  greater than one 

means that the crack is more difficult to detect than average 

because either its location is difficult to find or the inspector 

is not competent.  The detection event can be determined 

using the normalized version of Eq. (2). We call this model 

the ‘ILSdet’ (Inspector, location, size) model. 

The performance of this model will be tested by applying 

it to a matrix of tests where a series of 43 panels with cracks 

were inspected by 62 technicians ([5]). Part of the matrix (13 

inspectors, 32 locations) is shown in Table 1. 

Table 1 – Partial matrix of crack detection (1=detection, 

0=non-detection), from [5]  

Flaw 

ID 

Flaw 

size 

Technician ID 

0
2

0
1
 

0
2

0
2
 

0
2

0
4
 

0
2

0
7
 

0
2

0
8
 

0
3

E
1
 

0
3

E
2
 

0
3

E
3
 

0
3

E
4
 

0
3

E
5
 

0
3

E
7
 

0
3

E
9
 

0
3

E
1

0
 

77a 0.09 0 0 1 0 0 0 0 0 1 0 0 0 0 

122 0.09 1 0 0 0 0 0 0 1 1 0 0 0 0 

132 0.10 1 0 0 0 0 0 0 0 0 0 0 1 0 

121 0.10 1 0 1 0 0 1 0 1 1 0 0 0 1 

75 0.10 1 0 1 0 0 0 0 0 0 0 1 0 0 

76b 0.12 1 0 1 0 0 0 0 0 1 1 1 1 0 

80 0.12 1 1 1 0 0 0 0 0 1 0 0 0 0 

77b 0.13 1 1 1 0 0 0 0 0 1 1 1 0 1 

79d 0.13 1 0 0 0 0 0 0 0 0 0 0 1 0 

125 0.13 1 0 0 1 0 0 0 1 0 0 0 0 1 
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133 0.14 0 0 0 0 0 0 - 0 0 0 0 0 0 

12a 0.15 1 1 1 1 0 0 0 1 1 0 0 0 0 

78 0.16 1 1 1 0 0 0 0 0 1 0 1 0 0 

9b 0.16 1 1 1 1 0 0 0 1 0 1 0 1 1 

131 0.16 1 1 1 0 0 0 0 1 1 0 1 0 0 

7 0.16 1 0 1 1 0 0 - 1 1 0 0 0 0 

8a 0.17 0 0 1 0 0 0 - 1 0 0 0 0 0 

130 0.19 1 1 1 1 0 0 1 1 1 1 0 0 1 

10d 0.19 1 1 1 1 0 1 1 0 0 1 1 0 1 

101 0.20 0 0 1 1 1 0 - 0 0 0 0 0 1 

76a 0.21 1 0 1 0 1 0 1 0 1 1 0 0 1 

81b 0.21 1 1 1 1 1 0 1 1 1 0 0 1 1 

123 0.21 1 1 1 1 1 0 1 0 1 0 1 0 0 

8c 0.21 1 0 1 0 0 0 0 1 0 1 1 0 1 

9a 0.22 1 1 1 1 1 0 1 1 1 1 0 1 1 

11b 0.22 1 1 1 1 0 0 1 1 1 1 0 1 1 

79a 0.23 1 1 1 1 1 0 1 0 1 1 1 0 1 

12b 0.23 1 1 1 1 1 0 1 1 1 1 0 1 1 

8b 0.23 1 0 1 0 0 0 - 1 0 1 0 0 1 

10a 0.24 1 1 1 1 0 0 1 1 0 1 0 1 1 

81a 0.25 1 1 1 1 1 0 1 1 1 1 1 1 1 

11a 0.29 1 1 1 1 0 1 1 1 1 1 0 1 1 

 

In order to generate the traditional Palmberg equation 

from the experiments, we start by calculating the probability 

of detection for each panel. 𝑃𝑒
𝑗

= 𝑁𝑑𝑒𝑡
𝑗

/62, 𝑗 = 1, … ,43, 

where 𝑁𝑑𝑒𝑡
𝑗

 is the number of inspectors that detect the j
th

 

crack. Note that the j
th

 panel has a crack of size 𝑎𝑗
′ . We then 

fit the two Palmberg parameters to the 43 probabilities by 

minimizing the discrepancy defined in Eq. (5).  

min
𝑎𝑚
′ ,𝛽

  𝑃𝑑 𝑎𝑗
′ − 𝑃𝑒

𝑗
 

43

𝑖=1

 (5) 

 

 

  

Figure 1 - Probability of detection (𝒂𝒎
′ = 𝟎. 𝟒𝟖cm, 

𝜷 = 𝟏. 𝟑𝟎) curves using the Palmberg equation and two 

typical ILS curves corresponding to the data in [1] 

After minimization, we obtain 𝑎𝑚
′ = 0.48cm and 

𝛽 = 1.30. Figure 1 shows the POD curve as function of 

crack size, 𝑎′ , along with the 43 probability data used to fit 

it. It can be observed that the curve fits most of the points, 

but on the bottom right we can see that the largest crack has 

a very low probability of detection, which indicates that this 

crack might be located in a place where it is very difficult to 

detect. 

III. LOSS FUNCTION FOR THE DETERMINISTIC ILS MODEL 

For the Palmberg equation, we have only two parameters 

to fit 43 data. For the deterministic ILS model, we can fit 43 

location ∆𝑎𝑖
𝑙  (𝑖 = 1, … ,43)

 
corresponding to 43 panels and 

62 ∆𝑎𝑗
ℎ  (𝑗 = 1, … ,62) corresponding to 62 technicians that 

fit best the observed inspections events (detected or not). 

The Air Force study [5] reports on 2,603 detections events 

out of 62 × 43 = 2,666 possible events. If there is no 

uncertainty in the detection events and all cracks are located 

in the position with same difficulty level, it is possible to 

estimate the threshold increments ∆𝑎𝑗
ℎ  associated with the 

technicians by arranging 43 panels in the order of crack size 

and finding the threshold value between the largest missed 

crack and the smallest detected crack. However, as can be 

found in Table 1, technician 0201 found the crack 122 (size 

= 0.9 inch), but missed crack 133 (size = 1.4 inch). This can 

be caused by either these two cracks being located in 

positions with different levels of difficulty or the inspection 

condition being changed. On the other hand, since each 

panel only has a single crack size, the estimation of location 

difficulty must rely on the scores of the technicians. If the 

crack in a panel is not found even by the most competent 

technicians (smallest threshold value), then we can deduce 

that it is in a difficult location. However, this may fail to 

provide deterministic value of location difficulty.  

In the proposed study, we use optimization to find the 

threshold increments ∆𝑎𝑖
𝑙  and ∆𝑎𝑗

ℎ  by minimizing the 

difference between the detection events from experiment and 

that from the model. We present two different objective (or 

loss) functions as follows.  

The loss function, fbinary, is defined as a sum of the 

differences between the two events. That is for each 

detection event, we can have agreement (zero loss) or 

disagreement (loss of one event). That is,  

𝑓𝑏𝑖𝑛𝑎𝑟𝑦 =    𝑑𝑖𝑗
𝑠  Δ𝑎𝑖

𝑙 , Δ𝑎𝑗
ℎ − 𝑑𝑖𝑗

𝑒  

62

𝑗=1

43

𝑖=1

 (6) 

where 𝑑𝑖𝑗
𝑒  is the detection event (0 or 1 in Table 1) for the i

th
 

panel and j
th

 inspector, and 𝑑𝑖𝑗
𝑠  is the predicted inspection 

result from the proposed model, defined by 

𝑑𝑖𝑗
𝑠 =  

0 if 𝑚𝑖𝑗 < 0 (not detected)

1 if 𝑚𝑖𝑗 ≥ 0 (detected)
  (7) 

In Eq. (7), the detection margin 𝑚𝑖𝑗  is defined for the crack 

in the i
th

 panel and j
th

 inspector as 

𝑚𝑖𝑗 = 𝑎𝑖 −  1 + Δ𝑎𝑖
𝑙 + Δ𝑎𝑗

ℎ  (8) 

The loss function in Eq. (6) is obviously discontinuous 

because it can only have integer values. However, the design 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crack size, mm

P
ro

b
a

b
il
it
y
 o

f 
d

e
te

c
ti
o

n



 

4 

 

variables are continuous. It is different from the 

conventional type of discrete optimization problems in 

which the objective function is continuous and design 

variables are integer or discrete. 

IV. FITTING THE DETERMINISTIC ILS MODEL 

Figure 2 shows the percentages of matching events for 

technician 19 as a function of Δ𝑎19
ℎ . The inspector detected 

36 cracks and missed 7 cracks. The minimum of Eq. (6) is 

obtained with Δ𝑎19
ℎ = −0.5 in which 26 cracks are detected. 

A total of 38 detection events (88.37%) matched out of 

possible 43. That is, for average location difficulty, this 

inspector will detect every crack longer than 1 + Δ𝑎19
ℎ = 0.5 

times 𝑎𝑚
′ . It is noted that the matching percentage decreases 

quickly as the inspector threshold increases, which means 

that the particular inspector performs better than average. 

  

Figure 2 - Percentages of matching events for technician 

19 as a function of threshold  

By solving the optimization problem individually for each 

inspector, we find 62 Δ𝑎𝑗
ℎ , which represent the competence 

of inspectors. Overall these 62 Δ𝑎𝑗
ℎ  match 78.3% of the 

detection events. Starting from the optimal Δ𝑎𝑗
ℎ  as initial 

estimates, the optimization problem in Eq. (6) is solved by 

varying Δ𝑎𝑖
𝑙 , to obtain a matching percentage of 80.6%, a 

small improvement. 

In order to evaluate the quality of the optimization results, 

we can compare the matching percentage result with the 

traditional model in which POD is determined based entirely 

on the crack size. Let us consider that the i
th

 panel has a 

crack with size 𝑎𝑖
′ . Using the two-parameter Palmberg 

equation, the POD of the crack can be calculated by equation 

(1). By performing a Monte-Carlo simulation using the 

Palmberg equation to calculate the POD of the crack sizes 

used in [5] for 62 inspectors, we have a matching percentage 

between the simulated data and the experimental ones of 

55.5% (with a standard deviation of 0.96%) which is much 

lower than 80.61% in the proposed model. Thus our very 

simple model accounts much better for the actual inspection 

results than a model that takes into account only the crack 

size. 

V. RANDOM ILS MODEL 

The results of the inspections reported in [1] have some 

randomness in them, since they are dictated by the 

circumstances of the inspections (e.g., human fatigue, 

distraction, temperature, etc) as well as by objective 

difficulty (location) and inspector competence. This means 

that if the process were repeated, we would expect 

somewhat different set of inspection effects. An indication 

of the magnitude of the randomness can be obtained by 

inconsistency of an inspector. That is, if an inspector finds a 

difficult crack and misses an easy one, we have evidence of 

randomness. In order to test for this randomness, we first 

define a corrected crack size that accounts for the location 

difficulty 

𝑎𝑐𝑜𝑟𝑟 = 𝑎 − Δ𝑎𝑙 (9) 

Next we arrange the plates in increasing order of corrected 

crack size and calculate the number of times the detection 

and non-detection events alternate  

𝐼𝑗 =   𝑑𝑖−1,𝑗 − 𝑑𝑖 ,𝑗  

43

𝑖=2

 (10) 

With  𝑑𝑖−1,𝑗 −𝑑𝑖,𝑗 = max(𝑑𝑖−1,𝑗 −𝑑𝑖,𝑗, 0) 

A perfectly consistent inspector will have 𝐼𝑗 = 0, with 

zeros for small cracks and ones for large ones. The average 

value of 𝐼𝑗  for the 62 inspectors is 5.24 with the values 

ranging from 1 to 10. Surprisingly, the inconsistency levels 

did not appear to be related to competence as seen in Figure 

3. Note that Δ𝑎ℎ  is interpreted, for an average location 

difficulty (Δ𝑎𝑙 = 0), as follows: a value of 1 means that the 

inspector’s threshold is twice the average, while a -1 means 

that the inspector can identify any size of crack of average 

difficulty. 

    

Figure 3 - Inspectors inconsistency with respect to their 

competence 

To account for inconsistency, the threshold in the 

deterministic model is used in the traditional POD curve as 

the size 𝑎𝑚 corresponding to 50% POD, obtaining the new 

ILSrandom.𝑎𝑚aThat is, the Palmberg equation is rewritten as  
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𝑃𝑑
𝑖 ,𝑗

=
 𝑎𝑖 𝑎𝑡𝑟𝑠

𝑖 ,𝑗
  

𝛽

1 +  𝑎𝑖 𝑎𝑡𝑟𝑠
𝑖 ,𝑗  

𝛽
 (11) 

A very large value of β in Eq. (11) would correspond to 

the deterministic ILS model. In ILSrandom model, the 

exponent 𝛽 is selected such that the inconsistency from the 

model matches with that of the experimental data. In order to 

match the average inconsistency of 5.24, we need 𝛽 = 2.7. 

In addition, we obtain a matching percentage about 72% 

using Eq. (11). This means that we lose about 10% matching 

percentage in order to reach the same level of inconsistency. 

A summary of the results is given in Table 2. 

 

Table 2 - Matching percentage and average inconsistency 

for the 3 models presented in this paper. Values in 

parenthesis are standard deviations  

Method Palmberg ILSrandom ILSdet 

Matching 

percentage 

55.5 (0.96) 72.07(0.68) 80.61 

Average 

inconsistency 

10.1 (0.2) 5.2 (0.1) 0 

 

Unlike the ILSdet model, the ILSrandom model will have 

different results if the same process is repeated. The values 

in the parenthesis in the third column of Table 2 show the 

standard deviation of the matching percentage. In order to 

estimate the effect of this randomness in the model, we find 

that the percentage of matches between two different trials is 

67.4% (standard deviation of 0.9%).  

This shows that the match with the experimental result is a 

reasonable manifestation of the inconsistency of the 

inspectors. 

VI. CONCLUSIONS AND FUTURE WORK 

We developed a simple model that accounts for inspector 

competence and location difficulty in order to explain the 

randomness in detecting cracks by manual inspection. By 

fitting 105 parameters to 2,602 experiments we were able to 

match more than 80.61% of the detection events compared 

to 55% achieved by the commonly used model based on 

crack size alone.  

The procedure revealed that most of the randomness in the 

detection process is due to inspector competence rather than 

due to the crack location. This implies that automated 

structural health monitoring, which will eliminate most of 

the variability due to the circumstance of the inspection, is 

likely to provide substantial improvement in the probability 

of detection.  

The experiments revealed inconsistency in the 

performance of inspectors, and we defined a measure of 

inconsistency and matched it by adding randomness to our 

model. With this new model we found that the matches 

reduced to about 72%, which was similar to the matches 

between two realizations of the simulated inspections. This 

indicates that our model captured well both the deterministic 

and random components of the inspection process. 
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