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Probability of detection curves used for manual inspections are typically based entirely 

on damage size. The randomness in the process is likely to be due to variability in the 

circumstances of the inspection (including the competence of inspector), as well as objective 

difficulties associated with the location and type of damage. In order to shed light on the 

relative contributions of these two sources of randomness, we analyze a large US Air Force 

study from the 1970s that distributed 43 panels with cracks to 62 inspectors. We develop a 

simple model that assumes that for each combination of crack location and inspector there is 

a threshold crack size such that all cracks above this size will be detected and all cracks 

below that size will be missed. The model is fitted to 2602 detection events by finding 43 

location threshold increments and 62 inspector increments. With the 62 inspector 

increments we match 78% of the inspections, and location increments increase this value to 

81%. For comparison, the traditional approach of using only the crack size matches on 

average only 55% of the inspections. We conclude that most of the randomness in manual 

inspections is due to the circumstances of the inspections. We speculate that most of such 

randomness will be eliminated by automated structural health monitoring (SHM), which 

will be an important benefit of SHM. 

Nomenclature 

a = crack size, inches 

am  = crack size detected with 50% probability 

atrs = detection threshold, inches 

a’ = normalized crack size 

a’trs = normalized threshold 

d = detection event 

de = experimental detection event 

ds = simulated detection event 

m = detection margin 

Pd = probability of detection 

x = agreement margin 

β = detection parameter in Palmberg equation 

∆ah = inspector competence 

∆al = location difficulty 

θ = penalty function 
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I. Introduction 

OST aircraft structural components are designed based on a fail-safe philosophy that uses inspection and 

maintenance in order to detect damage before it can cause structural failure. In general the inspection can be 

done either manually or by using onboard equipment. In this paper, the former is referred to manual inspection, 

while the latter to structural health monitoring (SHM). For manual inspections different techniques have been used, 

such as radiographic inspection (Lawson et al. [4]). Usually, SHM uses actuator-sensor technique (Giurgiutiu et al. 

[1]) to detect damages such as ultrasonic and eddy current techniques (Pohl et al. [7]), comparative vacuum 

monitoring (Stehmeier et al. [8]), elastic wave propagation and electromechanical impedance (Giurgiutiu et al. [2]). 

 The effectiveness of various inspection techniques is typically characterized by probability of detection (POD) 

curves that relate the size of damage to POD (Zheng et al. [9]). The information on POD can be used for various 

purposes, including structural diagnosis and prognosis (Zheng et al. [9]). For example, Kale et al. [3] used POD 

curves to optimize the inspection schedule that can maintain a certain level of structural reliability. Although the 

POD curve is traditionally given in terms of damage size, in reality POD depends not only on damage size but also 

on other variables. For example, damage in some locations is more difficult to detect than in other locations. The 

competence of inspector or inspection method can also be an important factor for determining POD curves.  

 Developing an accurate damage detection model that can take into account the effects of the location of damage 

and the competence of inspector is important, but it is not available in the literature. As a first step toward 

developing such a model, we propose a simple model based on a damage detection threshold size that is affected by 

both the damage location and the inspector competence. We further simplify the process by assuming that damage 

detection process is deterministic, not probabilistic. The proposed model assigns a competence score to each 

inspector and location difficulty score to each panel. Then, the equivalent damage threshold size for a specific panel 

and inspector is obtained using the scores. As a second step, we model the randomness in human performance by 

combining the traditional POD curve with our threshold model. 

 In order to demonstrate the performance of the proposed model, we used the US Air Force study from the 1970s 

in which 43 panels with different crack sizes are inspected by 62 technicians (2,603 detection events) (Lewis et al. 

[5]). We use optimization techniques to find the location factors associated with 43 panels and the human factors 

associated with 62 technicians. 

More complete characterization of the probability of detection becomes important when SHM is used instead of 

manual inspections. The location may be much more important than in the case of manual inspection. The objective 

of the paper is to demonstrate the development of a more complete characterization of POD curves based on the 

results of large number of inspections. We propose to fit a model to the inspection results that assigns competence 

scores to inspectors and location difficulty scores to panels by maximizing the agreement with the results of 

inspections. We demonstrate the approach by using inspection results available in the literature [5]. 

II. Proposed Statistical Model (Inspector-Location-Size model) 

The detection process is often conventionally modeled using a POD curve, which describes the probability of 

detecting a crack with a specific size. A commonly used POD curve is the Palmberg equation (Palmberg et al. [6]). 

It specifies the probability of detecting a crack of size 𝑎′ as 

𝑃𝑑(𝑎′ ) =
 𝑎′/𝑎𝑚

′  𝛽

1 +  𝑎′/𝑎𝑚
′  𝛽

 (1) 

where 𝛽 is the exponent, and 𝑎𝑚
′  is the crack size that corresponds to 50% probability of detection (hence it 

measures the quality of the inspection process). As the exponent 𝛽 increases, the detection process approaches a 

deterministic one; i.e., all cracks larger than 𝑎𝑚
′  will be detected and smaller ones be missed. When 𝛽 = 4, for 

example, the probability of detecting a crack size of 𝑎′ = 2𝑎𝑚
′  will be 94.12%. It is noted that the POD curve in Eq. 

(1) only accounts for crack size. 

 Although the Palmberg model has been widely used in manual inspections, there are many cases that the model 

is unable to describe the inspection situations. For example, when damage exists in a difficult location to detect, the 

POD is relatively low even if the size of damage is large. Thus, the actual inspection results are often scattered 

around the POD curve and, sometimes, show inconsistent behavior. The scatter in inspection results can be 

explained by differences in the competence of inspectors and differences in damage location. The former includes 

technician’s skill, inspection method, and inspection environment (such as fatigue and distractions).  
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We seek a model that includes the above two effects in addition to the traditional crack size effect. We assume 

that when a panel is subjected to periodic inspections, the failure to detect a crack of size 𝑎′ = 𝑎𝑚
′  is due to the 

following two variables. The first variable, denoted by h, characterizes the circumstances of the inspection, such as 

the competence of the inspector and difficulties in the inspection process. The other variable, denoted by l, 

characterizes the difficulty associated with the location of the damage. These two variables are random by nature. 

For example, an inspector who missed a crack with size 𝑎′  may detect the crack in the second trial. It is noted that 

by introducing these two variables, we move the uncertainty in detection process from POD to these two random 

variables. 

As a first step we use a quasi-deterministic model that removes the randomness associated with the two variables. 

We assume that for given inspector and location, there is a threshold crack size so that every crack larger than this 

threshold will be detected and every crack below it will be missed. This model interprets the randomness as being 

entirely aleatory (lack of knowledge). That is, if we knew everything about the location of the damage and the 

inspection condition, then the randomness would disappear. Denoting the threshold value by 𝑎𝑡𝑟𝑠
′ , the detection 

event d for a crack of size 𝑎′  can be defined as 

𝑑 =  
0    if 𝑎′ − 𝑎𝑡𝑟𝑠

′ < 0

1    if 𝑎′ − 𝑎𝑡𝑟𝑠
′ ≥ 0

  (2) 

We simplify the following derivations by normalizing all crack sizes using the mean value 𝑎𝑚
′  of the threshold 

crack size over all locations and inspectors: 

𝑎𝑡𝑟𝑠 =
𝑎𝑡𝑟𝑠

′

𝑎𝑚
′

 (3) 

The same normalization is applied to 𝑎′  such that 𝑎 = 𝑎′ /𝑎𝑚
′ . 

The objective is to develop a model of 𝑎𝑡𝑟𝑠  that can accurately represent the contributions from both location and 

inspection condition. In view of the deterministic model, if the damage is located in the neutral position and if the 

inspection conditions are the same, every crack larger than 𝑎𝑚
′  will be detected and those smaller than that will be 

missed. The proposed model adjusts the threshold based on the contribution from the location Δ𝑎𝑙  and that from the 

inspection variability Δ𝑎ℎ : 

𝑎𝑡𝑟𝑠 = 1 + Δ𝑎𝑙 + Δ𝑎ℎ  (4) 

A positive Δ𝑎𝑙  means that the crack is positioned in a more difficult location than average such that it will be 

detected when it becomes larger than 𝑎𝑚
′ . A positive Δ𝑎ℎ  means the inspection condition is more difficult to detect 

the damage than average. Thus, a value of 𝑎𝑡𝑟𝑠  greater than one means that the crack is more difficult to detect than 

average because either its location is difficult to find or the inspector is not competent.  The detection event can be 

determined using the normalized version of Eq. (2). We call this model the ILSdet (Inspector, location, size) model. 

The performance of this model will be tested by applying it to a matrix of tests where a series of 43 panels with 

cracks were inspected by 62 technicians ([5]). Part of the matrix (13 inspectors, 32 locations) is shown in Table 1. 

In order to generate the traditional Palmberg equation from the experiments, we start by calculating the 

probability of detection for each panel. 𝑃𝑒
𝑗

= 𝑁𝑑𝑒𝑡
𝑗

/62, 𝑗 = 1, … ,43, where 𝑁𝑑𝑒𝑡
𝑗

 is the number of inspectors that 

detect the j
th

 crack. Note that the j
th

 panel has a crack of size 𝑎𝑗
′ . We then fit the two Palmberg parameters to the 43 

probabilities by minimizing the discrepancy defined in Eq. (5).  

minimize
𝑎𝑚

′ ,𝛽
  𝑃𝑑 𝑎𝑗

′ − 𝑃𝑒
𝑗
 

43

𝑖=1

 (5) 

After minimization, we obtain 𝑎𝑚
′ = 0.48cm and 𝛽 = 1.30. Figure 1 shows the POD curve as function of crack 

size, 𝑎′ , along with the 43 probability data used to fit it. It can be observed that the curve fits most of the points, but 

on the bottom right we can see that the largest crack has a very low probability of detection, which indicates that this 

crack might be located in a place where it is very difficult to detect. 
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Table 1. Partial matrix of crack detection events(1=detection, 0=non-detection), from [5]. 

Flaw 

ID 

Flaw 

size 

Technician ID 

0
2

0
1
 

0
2

0
2
 

0
2

0
4
 

0
2

0
7
 

0
2

0
8
 

0
3

E
1
 

0
3

E
2
 

0
3

E
3
 

0
3

E
4
 

0
3

E
5
 

0
3

E
7
 

0
3

E
9
 

0
3

E
1

0
 

77a 0.09 0 0 1 0 0 0 0 0 1 0 0 0 0 

122 0.09 1 0 0 0 0 0 0 1 1 0 0 0 0 

132 0.10 1 0 0 0 0 0 0 0 0 0 0 1 0 

121 0.10 1 0 1 0 0 1 0 1 1 0 0 0 1 

75 0.10 1 0 1 0 0 0 0 0 0 0 1 0 0 

76b 0.12 1 0 1 0 0 0 0 0 1 1 1 1 0 

80 0.12 1 1 1 0 0 0 0 0 1 0 0 0 0 

77b 0.13 1 1 1 0 0 0 0 0 1 1 1 0 1 

79d 0.13 1 0 0 0 0 0 0 0 0 0 0 1 0 

125 0.13 1 0 0 1 0 0 0 1 0 0 0 0 1 

133 0.14 0 0 0 0 0 0 - 0 0 0 0 0 0 

12a 0.15 1 1 1 1 0 0 0 1 1 0 0 0 0 

78 0.16 1 1 1 0 0 0 0 0 1 0 1 0 0 

9b 0.16 1 1 1 1 0 0 0 1 0 1 0 1 1 

131 0.16 1 1 1 0 0 0 0 1 1 0 1 0 0 

7 0.16 1 0 1 1 0 0 - 1 1 0 0 0 0 

8a 0.17 0 0 1 0 0 0 - 1 0 0 0 0 0 

130 0.19 1 1 1 1 0 0 1 1 1 1 0 0 1 

10d 0.19 1 1 1 1 0 1 1 0 0 1 1 0 1 

101 0.20 0 0 1 1 1 0 - 0 0 0 0 0 1 

76a 0.21 1 0 1 0 1 0 1 0 1 1 0 0 1 

81b 0.21 1 1 1 1 1 0 1 1 1 0 0 1 1 

123 0.21 1 1 1 1 1 0 1 0 1 0 1 0 0 

8c 0.21 1 0 1 0 0 0 0 1 0 1 1 0 1 

9a 0.22 1 1 1 1 1 0 1 1 1 1 0 1 1 

11b 0.22 1 1 1 1 0 0 1 1 1 1 0 1 1 

79a 0.23 1 1 1 1 1 0 1 0 1 1 1 0 1 

12b 0.23 1 1 1 1 1 0 1 1 1 1 0 1 1 

8b 0.23 1 0 1 0 0 0 - 1 0 1 0 0 1 

10a 0.24 1 1 1 1 0 0 1 1 0 1 0 1 1 

81a 0.25 1 1 1 1 1 0 1 1 1 1 1 1 1 

11a 0.29 1 1 1 1 0 1 1 1 1 1 0 1 1 
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Figure 1. Probability of detection𝒂𝒎
′ = 𝟎. 𝟒𝟖cm and 𝜷 = 𝟏. 𝟑𝟎𝟖) curves including the traditional Palmberg 

equation and two typical ILS curves corresponding to the data in [5]. 

III. Optimization formulations 

In order to test if the statistical model describes well the results of the inspections, we seek the 43 Δ𝑎i
𝑙

 corresponding to the 43 panels and the 62 Δ𝑎j
ℎ  corresponding to the 62 technicians that fit best the observed 

inspections success. The threshold increments Δ𝑎j
ℎ  associated with the technicians are easy to estimate because for 

each technician we have 43 different crack sizes. On the other hand, for each location we have only a single crack 

size, and therefore the estimate of the location difficulty must rely on the scores of the technicians. If a crack in a 

panel is not found even by the most competent technicians (lowest threshold values), then we can deduce that it is in 

a difficult location. 

The Air Force study [5] reports on 2,603 detections events out of 62 × 43 = 2,666 possible events. The 

objective is to find 105 values for the technicians, Δ𝑎j
ℎ  , and the panels, Δ𝑎j

ℎ  , that will predict the large majority of 

the inspection results. An optimization problem is formulated such that the differences between the inspection 

results from the tests and that from the model in Eqs. (1) and (4) is minimized. We consider two different ways of 

quantifying the differences between the prediction and the inspection results: binary and continuous formulations. 

The former represents detection and non-detection as binary events. We denote by de detected events from actual 

inspections and by ds detected events from the model. We define the detection margin mij and the detection event dsij 

resulting from the model for the crack in the i
th

 panel and j
th

 inspector as follows: 

 
𝑚𝑖𝑗 = 𝑎𝑖 − (1 + Δ𝑎𝑙𝑖

+ Δ𝑎ℎ𝑗
) 

𝑑𝑠𝑖𝑗
=  

0 if 𝑚𝑖𝑗 < 0 (non detection)

1 if 𝑚𝑖𝑗 ≥ 0 (detection)
  

(6) 

The objective function of the binary formulation is  

 

minimize    𝑑𝑠𝑖𝑗
− 𝑑𝑒𝑖𝑗

 

62

𝑗 =1

43

𝑖=1

 (7) 

The objective function in Eq. (7) is obviously discontinuous as infinitesimal changes in the threshold values can 

switch a detected event to a non-detected event and vice versa. 

The continuous formulation takes into account the size of the margin mij in each detection event. When the 

detection events from inspection and model are not consistent, we penalize the event based the size of the margin. 
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On the other hand, when the detection events from inspection and model are consistent, we provide a small bonus to 

the objective function that increases with the margin.  

Using the margins in an objective function allows us to define a continuous objective function that may be easier 

to optimize. However, it is desirable to define an objective function that will lead to an optimum that will not result 

in substantial deterioration in the matching objective of Eq. (7). For this reason, we chose to associate higher 

penalty, θ, with non-matching margins than with matching margins. This is done by the following optimization 

problem: 

 

 
 
 
 

 
 
 minimize   𝜃𝑖𝑗

62

𝑗 =1

43

𝑖=1

𝜃𝑖𝑗 =  

𝑥𝑖𝑗
2

2
− 𝑥𝑖𝑗 if 𝑥𝑖𝑗 < 0

exp −𝑥𝑖𝑗  − 1 otherwise

 

𝑥𝑖𝑗 = (2𝑑𝑒𝑖𝑗
− 1)𝑚𝑖𝑗

  (8) 

where xij is the agreement margin. It is negative when the results of the statistical model do not match the 

experimental event and positive when there is a match. The objective function for a single detection event is shown 

in Figure 2.  Although the individual penalty function is monotonic, the objective function may not be unimodal 

because it is sum of all penalty functions. 

 
Figure 2. Penalty function 

IV. Initial Estimates 

Because the first objective function is not continuous and the second may not be unimodal, it is important to start 

the optimization process with a good initial estimate. To obtain the initial estimate, the optimization problem is 

simplified by separating the inspector contributions from the location contributions. We first estimate the threshold 

Δ𝑎j
ℎ   of each inspector by solving the problem column by column without associating any difficulty with the cracks 

(i.e., all Δ𝑎i
𝑙  are zero). The next step is to estimate Δ𝑎i

𝑙   using these Δ𝑎j
ℎ . The first step is illustrated graphically in 

Figure 3. The figure shows the percentage of matches of 43 panels for inspector 14. For this inspector, a 

qualification of −0.5 is associated with matching 38 of the 43 detection events or 88.37% match. That is, for average 

location difficulty, this inspector will detect every crack longer than 1.5 times ah. 

Figure 4 shows the continuous objective function for the same inspector. Comparison of Figure 4 and Figure 3 

shows a good agreement between the optima. 
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Figure 3. Percentages of matching events for technician 19 as a function of threshold  

  
Figure 4. Continuous objective function for one inspection and different matches   

By solving the optimization problem individually for each inspector, we find 62 Δ𝑎𝑗
ℎ , which represent the 

competence of inspectors. Overall these 62 Δ𝑎𝑗
ℎ  match 78.30% of the detection events. Using the optimal Δ𝑎𝑗

ℎ  as 

initial estimates, and varying Δ𝑎𝑖
𝑙 , we obtain a matching percentage of 80.61%, a small improvement. 

In order to evaluate the quality of the optimization results, we can compare the matching percentage result with 

the traditional model in which POD is determined based entirely on the crack size. Let us consider that the i
th

 panel 

has a crack with size 𝑎𝑖
′ . Using the two-parameter Palmberg equation, the POD of the crack can be calculated by 

(Palmberg et al. [6]) as shown in Eq. (1). 

By performing a Monte-Carlo simulation using the Palmberg equation to calculate the POD of the crack sizes 

used in [5] for 62 inspectors, we obtain a matching percentage between those simulated data and the experimental 

ones of 55.5% (with a standard deviation of 0.96%) which is much lower than 78% in the proposed model. Thus our 

very simple model accounts much better for the actual inspection results than a model that takes only the crack 

length. 
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V. Optimization Results 

The estimation results are used as initial point for both optimization problems discussed previously (continuous 

and discrete). The main concern for both optimization problems is the number of variables (105) but both are 

constraint free.  

The continuous optimization, Eq. (8), is solved using the Matlab function, fminunc, which uses the BFGS [11-

14] Quasi-Newton method with a mixed quadratic and cubic line search procedure. The optimization problem 

converges to a solution that yields 77.79% matches. It can be observed that this result is slightly lower that obtained 

by performing a sequential optimization for both Δ𝑎𝑖
𝑙  and Δ𝑎𝑗

ℎ . This can be explained by the fact that the continuous 

objective function is different from the discrete one. 

The discrete optimization problem in Eq. (7) cannot solve using gradient-based optimization algorithms because 

the objective function is discontinuous. It is different from conventional discrete optimization problems, in which 

the objective function is continuous, while the design variables are discrete. The discrete optimization problem is 

solved using Particle Swarm Optimization algorithm (Schutte et al. [10]). This algorithm suits well our purpose 

because it does not require the gradient of objective function, and the design variables are continuous. The discrete 

optimization problem converges to a percentage of 82.75% matches. However, there are many design points that 

yield the same value of optimum objective function. Figure 5 shows how the objective function varies along a line in 

105
th

 dimensional space drawn between two optima, We see that the discrete objective function (non-matching 

percentage) changes rapidly near the optima and that the two designs yield the same matching percentage. 

 
Figure 5. Non-matching percentage variation between two PSO optima 

Our ILSdet model neglects the variability in human performance. That is, the same technician inspecting the same 

panel may detect the damage at the first trial but miss it in the second time. Thus we cannot expect 100% match. In 

fact, it is quite possible that the optimization process over fitted the data, in that if the 2603 inspection events were 

repeated, the match between the two repetitions would be less than 82.75%. The results of the optimization provide 

some insight into the magnitude of this randomness in the form of inconsistency on the part of the technicians. That 

is, even with the optimum assignments of difficulty to the 43 panels, the experimental results still show technicians 

identifying a difficult crack while missing an easier one. Thus the present model can be improved by modeling the 

randomness responsible for this inconsistency. 

VI. Conclusions  

We developed a simple model that accounts for inspector competence and location difficulty in order to explain 

the randomness in detecting cracks by manual inspection. By fitting 105 parameters to 2,602 experiments we were 

able to match more than 82% of the detection events compared to 55% achieved by the commonly used model 

which is based only on crack size. The procedure revealed that most of the randomness in the detection is due to 

inspector competence rather than due to the location of the crack. This implies that automated structural health 

monitoring, which will eliminate most of the variability due to the circumstance of the inspection is likely to provide 

substantial improvement in the probability of detection. 
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Additional work is being done to model the randomness in human performance. This will account for the fact 

that even with the optimum results some detection events are inconsistent in that a technician identifies a difficult 

crack while missing an easier one. 
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