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ABSTRACT 

Image segmentation for quantifying damage based on Bayesian updating scheme is proposed for diagnosis and prognosis 
in structural health monitoring. This scheme enables taking into account the prior information of the state of the 
structures, such as spatial constraints and image smoothness. Bayes’ law is employed to update the segmentation with 
the spatial constraint described as Markov Random Field and the current observed image acting as a likelihood function. 
Segmentation results demonstrate that the proposed algorithm holds promise of searching a crack area in the SHM image 
and focusing on the real damage area by eliminating the pseudo-shadow area. Thus more precise crack estimation can be 
obtained than the conventional K-means segmentation by shrinking the fuzzy tails which often exist on both sides of the 
crack tips.  
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1. INTRODUCTION 
Aircraft plate-like structures are prone to develop cracks due to cyclic loads and severely corrosive service environments. 
Diagnosis and prognosis of damage are essential issues in structural health monitoring for preventing catastrophic 
failures and predicting the remaining life of structures. Ultrasonic wave imaging with various sensor array forms has 
potential to detect the damage or abnormity on large-scale, complex plate-like structures. Damage location, shape and 
severity evaluation is one of the most important topics in structural health monitoring. The Lamb wave imaging method 
has been recently shown to be effective in detecting damage such as crack or delamination in structures [1][2][3]. 
Damage imaging methods have focused on time-reversal based migration technique in both time-space domain and 
frequency-wave number domain [4][5][6][7]. These methods can generate images indicating the damage condition of 
structures by interpolating the data measured from different forms of sensor arrays.  

The paper aims at quantifying the damage based on the images generated from existing imaging techniques. Since the 
size of the crack provides the essential information for structural health prognosis to estimate residual life of the 
structural component according to crack propagation law such as Paris law [8] in metals, which relates stress intensity 
factor and crack growth under fatigue. Image segmentation is an image processing technique, which separates the whole 
detected image into several meaningful regions with homogeneous attributes, e.g., damaged regions/non-damaged 
regions, according to the image itself and some prior knowledge. Figure 1 shows a typical intensity image and its 
segmentation. Although human diagnosis with experience can identify the segmented regions from the observed image, 
but it is not an easy job for a computer to automatically divide an observed image (especially noise contaminated images 
with fuzzy information) into meaningful regions. Image segmentation based on statistical models has been developed in 
medical image analysis [9][10] and computer vision [11] [12] [13]. Bayesian updating scheme used for image 
segmentation is introduced to merge the observed image data with the prior knowledge, including spatial constraints, 
strength and distribution of disturbance to achieve more precise segmentation results than those obtained using 
traditional image segmentation method like K-means method [14].  

The service environments and specific aircraft structures lead to the following three main properties of the detected 
images using ultrasonic waves when compared to medical imaging technique for human bodies. First, the large scale of 
aircraft structures and online diagnostic requirements promote relative low density of sensor distribution. Second, severe 
variations of temperature and humidity during the in-flight service alter the dynamic response of detected structures. 
Third, due to noise, electromagnetic disturbances from the environment, the monitoring system itself and structural 
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vibrations, the experimental images from SHM ultrasonic wave diagnosis are always of relatively low quality. It is 
difficult for the traditional image segmentation like the threshold method, K-means clustering to effectively separate the 
damage region from the background. A reliable image segmentation scheme, which can be relatively immune to noise 
and fuzzy tails, is imperative to obtain a meaningful segmentation and precise damage quantification. 

 
Figure 1 An Image of intensity and its binary segmentation 

In this paper, image segmentation based on Bayesian updating with Markov Random Field is investigated for plate-like 
structural health monitoring using ultrasonic guided Lamb waves. This paper is organized as follows. Section 2 
introduces the Bayesian updating concept in image segmentation. Section 3 introduces Markov Random Field and Gibbs 
Random Field as prior information in the Bayesian updating framework. Section 4 discusses how to model the image 
segmentation problem with Bayesian updating framework, and to quantify the image segmentation as a problem of 
maximizing a posterior (MAP). An illustrative example is also given in this section. Section 5 presents the application of 
the segmentation method for reverse-time migration image in frequency-wavenumber domain. Section 6 carries out 
some discussion on the results. Section 7 provides concluding remarks. 

 

2. IMAGE SEGMENTATION BASED ON BAYESIAN UPDATING 
Image segmentation refers to the process of partitioning an image into multiple regions. The goal of segmentation is to 
simplify the representation of an image into a class of certain representations, each of which holds distinct characteristic 
and is easier to distinguish among them. Researchers have developed many methods based on traditional clustering 
method such as fuzzy mathematics, neural network, and statistical models. Bayesian updating is one viable approach, 
which takes advantage of a statistical model to combine the current observed data with prior knowledge, such as spatial 
constraints and smoothness level. 

Bayesian updating is statistical inference in which evidence or observations are used to update or to newly infer the 
probability that a hypothesis may be true. It uses aspects of the scientific method, which involves collecting evidence that 
is meant to be consistent or inconsistent with a given hypothesis. As evidence accumulates, the degree of belief in a 
hypothesis should change. With enough evidence, it should become very high or very low. 

Thomas Bayes firstly introduced Bayesian theorem [15], which relates the conditional and marginal probabilities of 
events x and y by 

 ( | ) ( )( | )
( )

p y x p xp x y
p y

=    (1) 

Where, 

( )p x is the prior probability or marginal probability of x before the observation. It is ‘prior’ in the sense that it does not 
take into account any information about y.  

( | )p x y is the conditional probability of x after the observation, given y. It is also called the posterior probability because 
it is derived from or depends upon the specified value of y.  
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( | )p y x  is the likelihood function, which is the conditional probability of y given x.  

( )p y  is marginal probability of y, and acts as a normalizing constant. 

In image segmentation, the prior function ( )p x can represent prior assumptions about the image for monitoring the 
structural health. For instance, the assumption can include how the pixels constrain each other in the space, and how 
severe the environmental noise is. In addition, a previous monitoring image and prior knowledge about the structure can 
also be considered as prior information. The likelihood function relates to the observed information, which is the 
detected intensity image in diagnosis from guided wave imaging with finite sensor array, such as linear sensor array [16] 
or distributed sensor array [17]. 

 

3. MARKOV RANDOM FIELD AND GIBBS RANDOM FIELD 
Markov Random Field (MRF) image modeling has been used successfully in many image processing techniques [18]. 
The success of Markov Random Field modeling mainly arises from its systematic and flexible treatment of the 
contextual information in the image. Prior knowledge about the image segmentation can be easily quantified by Markov 
Random Field model parameters. Image segmentation processes the property of contextual smoothness of the class labels 
in the image space so that a pixel with a particular class label is likely to share the label with its immediate neighbors. 
Moreover a Bayesian framework using MRF provides feasible optimal solutions. The optimization process using spatial 
local interaction makes parallel and local computations possible. Following are some basic definitions [19] and 
derivations for the image segmentation based on Bayesian updating scheme. 

Neighborhood  

A neighborhood system η associated with the whole image Ω is a collection of neighborhoods { | }s sη η= ∈Ω , where 
each sη is a neighborhood of the pixel at the site of s satisfying 

(1) The pixel itself does not belong to its own neighborhood, or ss η∉ ; 

(2) The pixel s belonging to the neighborhood of pixel t implies that pixel t belongs to the neighborhood of pixel s, or
ts η∈  implies st η∈   

Clique 

A clique is a subset C of the whole image Ω if two different element of C are neighbors. Figure 2 gives the 2nd order 
neighborhood and all the available cliques in this 8-element neighboring system. 

 
Figure 2 All possible cliques for the second-order neighborhood system 

 

Markov Random Field 

A Markov Random Field on ( , )ηΩ is a random field with its probability property of each site in the whole field satisfying 
the Markovian property described as following, 
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( | , , ) ( | , ),s s t t s s t t sP X x X x t t s P X x X x t η= = ∀ ∈Ω ≠ = = = ∈ ∀∈Ω  . 

Gibbs Random Field 

A random field X with (Ω, η, C), is a Gibbs Random Field (GRF, or a random field with a Gibbs distribution) if its joint 
distribution has the form  

 1( ) exp ( )c
c C

P x V x
Z ∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (2) 

where C is the set of all cliques in Ω,  Z is the normalizing constant, and Vc(x) is the clique potential associated with 
clique c . There is no particular restriction on the clique potential definition. As long as the resulting Gibbs distribution 
satisfies the definition of the probability, the associated clique potentials are valid. The Gibbs potential can be defined 
such that some specific features of the image can be identified and emphasized. In addition, it is not necessary to use all 
types of cliques for a given neighborhood system; that is, any specific set of clique types can be selectively used. 

A Gibbs Random Field is defined by a joint probability. On the contrary, the MRF is defined based on a conditional 
probability. Prior Knowledge about the problem such as the smoothness constraint on the class label can be incorporated 
into the Gibbs distribution by the choice of specific clique types and their potentials. For example, the smoothness of the 
class label in image space can be measured by defining the clique potential such that a high positive clique potential is 
assigned only when all class label in the clique are identical. 

Hammersley-Clifford Theorem 

On (Ω, η, C), a random field X is a Markov random field with respect to η if and only if P(x) has a Gibbs distribution 
with respect toη. Hammersley-Clifford Theorem builds a bridge between MRF and GRF. The joint distribution (i.e., 
Gibbs distribution) can be constructed from the local conditional probability (i.e. MRF). As a sequence of the theorem, it 
is now possible to express the conditional probability of a Markov Random Field in terms of clique potentials. This is 
useful in practice because it is easy choose the clique types and their potentials to describe the desired local behavior. For 
example, local spatial relationships such as smoothness and continuity of the neighboring pixels can be specified by 
isotropic pair clique potential β. It is crucial for the theorem to share the same neighborhood system η and the associate 
clique c  for both MRF and GRF.  

 

4. PROBLEM MODELING WITH MAXIMUM A POSTERIOR  
4.1 Bayesian updating with MRF/GRF 

The image constructed by the signals from the sensor array for structural health diagnosis is usually noisy and with fuzzy 
tails as discussed in Section 1. In Bayesian updating scheme, the current image, which can be considered as a likelihood 
function, is updated by introducing prior assumption. MRF/GRF discussed in Section 3 is employed to eliminate the 
effect of noise in the images by designating these similar neighbors with high probability. Thus the segmentation 
procedure depends on not only the image intensity but also the space restriction property of the neighboring system.  

For computational efficiency, the 2nd-order clique is used, which contains an 8-element neighborhood. According to the 
MRF-GRF equivalence described by Hammersley-Clifford theorem, the clique potential is given in the form of Gibbs 
density as Eq.(2) The Gibbs potential value is defined as [12], 

 
if and ,

( )
if and ,

s q
C

s q

x x s q C
V x

x x s q C

β

β

−     =     ∈⎧⎪= ⎨+     ≠     ∈⎪⎩
 (3) 

where β is positive. The choice of β will affect the spatial constraint in the GRF. Larger β results in stronger spatial 
constraint; that is, neighbors are more likely to have the same label. 
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The image segmentation problem is ill-posed simply because its solution space is too large. The solution space can be 
reduced by incorporating prior knowledge about the image, such as the smoothness in the problem formulation. The 
Maximum a posteriori (MAP) criterion [20] has frequently been used to characterize the prior knowledge. According to 
the MAP criterion, given a realization of a random field, the goal is to find an optimal realization of x) , which maximizes 
the a posteriori probability ( | )P x y  for all possible realizations of x . By exploiting the chain rule and taking the 
monotonically increasing logarithmic function, the maximization can be equivalently expressed as:  

 

arg max ( | )

( | ) ( )arg max
( )

arg max ( | ) ( )

arg max[ln ( | ) ln ( )]

x

x

x

x

x P x y

P y x P x
P y

P y x P x

P y x P x

=

=

=

= +

)

 (4) 

The observed image can be modeled with a Gaussian distribution [12], and the prior function is the Gibbs Random Field, 
which holds the probability in Eq. (5). Thus the MAP problem can be described as: 

 ( )
2

2

1( | ) exp
2

sx
s s C

C

p x y y V xμ
σ

⎧ ⎫⎡ ⎤∝ − − −⎨ ⎬⎣ ⎦⎩ ⎭
∑  (5) 

In this equation, x is the segmentation label ranging from 1 to k. S is the position of the estimated grid. ys  is the observed 
value (obtained image from SHM system). And sx

sμ is the mean value in the window with a certain size centered at 
position s . ( | )p x y is the probability of the evaluated grid belonging to the cluster label x, given the intensity of some 
grid. For the posterior probability, if ( 0 | ) ( 1 | )p x y p x y= > = , then the estimated x should be 0; and if 

( 0 | ) ( 1 | )p x y p x y= < = , then the estimated x should be 1; thus the estimation of the segmentation label x̂  is achieved. 

This posterior probability comprises of two parts. The first part is Gaussian distribution likelihood, and the second part is 
the prior density function -- Gibbs potential. The first part is essentially K-means method, which calculates the distance 
between the evaluated value and the clustering center. For the first likelihood part, if the evaluated pixel value is close to 
the cluster center, the posterior energy function will be enhanced. The second part is the adjustable part according to the 
neighboring environment. For the prior– Gibbs potential part, if the neighbor clique member is the same label (from 
initialization or the previous segmentation), the Vc(x) should be negative, then the posterior energy density will be 
enhanced. On the other hand, if the clique members are at different labels, the posterior energy density will be weakened. 
For a given case, neglecting the prior distribution by setting β = 0, this algorithm degenerates to a K-means clustering 
method, which only counts the distance between each point with the clustering centers. 

4.2 An illustrative example 

To illustrate the procedure and the power of the Bayesian based algorithm for SHM image segmentation, a small size 
grey-level matrix, which represents a simple image of intensity scaling from 0 to 1, is shown in Figure 3. 
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(a)                             (b)                           (c) 

Figure 7 Comparison of (a) the original image and (b) K-means result and (c) Bayesian updated result 

 

5. SEGMENTATION FOR F-K MIGRATION IMAGES 
Imaging algorithms for diagnosing damage in plate-like structures have drawn continual interest. The time reversal 
scheme developed in time-space domain and frequency-wave number domain has been successfully verified its 
effectiveness and efficiency for damage detection. The migration imaging technique, based on Mindlin plate theory, is 
one of the most promising methods for multi-damage identification in plate-like structures using scattered Lamb waves 
in combination with the time-coincidence imaging condition.  

The migration technique can effectively interpret the sensor data recorded by a distributed linear array sensor system and 
makes it possible to establish an active, in-service, and intelligent monitoring system. The image for segmentation is 
obtained from an active diagnostic linear array of actuators/sensors, which is used to excite/receive the flexural waves. 
The wave field scattered from the damage and sensor array data are synthesized using a two-dimensional explicit finite 
difference scheme to model wave propagation in the plate based on the Mindlin plate theory. The damage image can be 
represented by the cross-correlation in frequency domain as:  

 ( , ) ( , , ) ( , , )e sI x y w x y w x y
ω

ω ω∗= ∑  (6) 

in which ( , )I x y  is the pixel value at ( , )x y , ( , , )ew x y ω and ( , , )sw x y ω  are the extrapolated excitation and scattered 
wave-fields in frequency domain, respectively. 

 
(a)                                                        (b) 

Figure 8 (a) f-k migration image and (b) the Bayesian based segmentation 

When K-means segmentation is applied to the f-k migration image, some of the medium grey-levels in the fuzzy tails will 
be segmented as the damaged area. Markov Random Field features the property of emphasizing the local constraint by 
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introducing the Gibbs potential in the posterior probability. Thus the damaged area from the segmentation shrinks 
regardless of ghost images. Figure 8(b) gives the segmentation result and its region resulting from Bayesian updating 
scheme. As a comparison, for a 20 mm crack case, the crack length obtained from the K-means (without noise) 
segmentation is 30 mm, while the estimated crack size obtained from Bayesian updating algorithm is 25 mm, providing 
more precise crack size estimation. Furthermore, the crack size estimated is larger than the true crack size, ensuring the 
conservative measure of the damage. 

The parameter β in the Gibbs potential plays an important role of the segmentation procedure. It determines how the 
neighboring system affects the label of the estimated site. When β = 0, the Bayesian segmentation reduces to the K-
means clustering, which segments some of the noise area in the same region of the damaged area and the result is given 
in Figure 9(b). It is difficult to determine the crack length with such segmentation. With the increase in β, the noise is 
suppressed, and the damage area shrinks to the real damaged area.  Results show that the segmentation does not change 
when β varies from 0.9 to 100, which shows the stability of the segmentation.  The reason for the convergence 
phenomenon is that the Gibbs potential provides plays only an adjustment role in the Bayesian updating procedure, but 
not a dominating role. 

 
The resolution of the segmentation first depends on the quality of the image. For the imaging procedure using f-k 
migration technique, the center frequency of the excitation is 150 kHz as shown in Figure 10. The maximum frequency 
over 3% frequency magnitudes is about 244 kHz, and the thickness of the monitored aluminum plate in the simulation is 
3.2 mm. The mainly excited mode in the simulation is the first-order asymmetric mode, A0 mode. From the dispersive 
curve the velocity of A0 mode for Lamb wave is 3.025 m/ms. Through Eq. (7), the wavelength for the highest frequency 
in the excitation signal can be obtained. 

 v
f

λ =  (7) 

The shortest wavelength in the excitation frequency band is 12.4 mm. Therefore, the estimated error of 5 mm in crack 
size is smaller than half of the shortest wavelength. To improve the accuracy of the crack size estimation, higher 
frequency excitation may be used. However there will be a tradeoff between the complexity of multi-modes in high 
frequencies and the image resolution. 

 (b) β=0   (c) β=0.1   (d) β=0.5 (a) Original 

Figure 9 Bayesian based image segmentation with different Gibbs potentials 
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Figure 10 Excitation waveform in time-domain and frequency-domain 

 

6. CONCLUSIONS 
The proposed Bayesian based segmentation algorithm for estimating damage size has been shown to possess the 
following advantages: (1) Spatial constraint using  the neighboring system is better than K-means clustering, which only 
considers the grey-level distance between the pixels and the clustering centers. As a result, the damage area is focused 
suppressing the fuzzy tails that may appear on both crack tips. (2) Bayesian based segmentation holds the promise of 
reducing noise by applying the Gibbs Random field, which assumes that neighboring pixels more likely belong to be the 
same class. (3) The segmentation result gives damage shape and region estimation of the damaged area. In other words, 
the Bayesian updating with the MRF as a prior can efficiently segment an image into multiple regions, which 
distinguishes damaged regions from undamaged regions. For future work, the segmentation results can also be used as 
prior information for the next Bayesian updating scheme, thereby enhancing the current image. Furthermore, different 
diagnostic techniques that form the images can contribute to Bayesian updating and makes the segmentation more 
precise and reliable.   
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