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This article presents an approach to the optimizatin of helical involute gears for
geometrical feasibility, contact ratio, teeth sliding velocity, stresses and static transmission
error (STE). The teeth shape is subject to randomgrturbations due to wear (a randomized
Archard’s wear). The consequences of shape inaccuias are statistically expressed as a
90% percentile of the STE variation, which is optinized. However, estimating a 90% STE
percentile by a Monte Carlo method is computationdy too demanding to be included in the
optimization iterations. A method is proposed wherethe Monte Carlo simulations are
replaced by a kriging metamodel during the optimizéion. An originality of the method is
that the noise in the empirical percentile, whichs inherent to any statistical estimation, is
taken into account in the kriging metamodel throughan adequately sized nugget effect. The
kriging approach is compared to a second method whe the STE variation for an average
wear profile replaces the percentile estimation.

I. Introduction

ears are a fundamental mechanical system involveehworques must be transmitted with high efficiesc

which is the case of transmissions in cars, windménd other special machines. Although gears haen
designed for a long time, controlling gears perfance under teeth shape uncertainties is a reciéfituld and
important design objective : teeth shape variati@ssilt from manufacturing (e.g., heat treatment) ftom wear
and induce, in particular, noise.

The applicative objective of this article is to deshelical gears so as to account for teeth slvegezuracies.
Computational challenges that are familiar in Rality Based Design Optimization (RBDO) accompatmyst
problem: the teeth in gears are moving solids imact with each other whose detailed simulatiofiitije elements
is computationally intensive. With the added comagiohal cost of accounting for shape uncertain(tasough
Monte Carlo simulations, reliability index calcutat or polynomial chaos expansion), the robustglesif these
systems requires careful methodological developsient

Gears design is traditionally approached by pararizng the shape of the teeth as helical and irtebl Most
gears in use today are chosen in standardizedstanld are non-optimal. In Ref. 2, helical involgkars are
designed for geometrical feasibility and large eshtratio by semi-analytical approaches. In Refthg size of
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helical gear sets is minimized where the gearsstamalysis is based on standardized AGMA formAlléinite
element analysis of the gears was implemented indRend served to optimize the pressure anglenfarmum von
Mises stresses. Modified teeth shapes were propodeef. 4 to make the gears less sensitive toeshag positions
perturbations. The gears performance criteria Weeging contact, transmission error and stress.stat

In the present article, gears are designed for g#ical feasibility, contact ratio, teeth slidinglocity, stresses
and Static Transmission Error (STE). Efficient ssrand STE analyses are performed using Hertz ctdiotanula
and beam theory. Teeth wear is described by supep@rchard’s wear modebnd random material removal.
Gears design is decomposed into i) the optimizatiothe 11 involute parameters for deterministgpenses ii) the
optimization of the crowning to control teeth shagedom perturbations, i.e., to minimize the 9Gthcpntile of the
STE variation ASTE.ASTE is one of the primary origins of the noise maggears

From a methodological standpoint, it is not compatelly affordable to calculate th&STE percentile by
simple Monte Carlo simulations at each optimizattep. A kriging metamodel of the percentile isltéfore the
optimization. The optimization uses the kriginggiotion of ASTE instead of the computationally intensive Monte
Carlo simulations, but other optimization criterighich are not subject to uncertainties, are catedl with the
original gears model.

The contributions of this work are twofold: firstig complete formulation of the gears optimum degigblem,
involving the 98" percentile of the STE variation, is solved; sedgnd methodology for robust design based on
kriging as a substitute for the Monte Carlo simiolad is proposed. The noise in the statisticalresttor of the
performance is taken into account in the kriginganmedel through its “nugget” intensity. The krigiagproach is
compared to an alternative method where the SThti@r for the average wear is minimized. The corngoa is
made in terms of the achieved 90% percentile ofSthE variation.

[I. Problem formulation

A. Gears analysis

Geometrical gears analysis is based on classisallite helical representatibh 12 design variables are
considered, some of which are illustrated in Figlir&,, the number of teeth of pinion X; andx, the addendum
modification coefficients of the two pinionshay, andhay the cutting tool addendum of the two pinioh%, and
hf: the cutting tool dedendum of the pinions,s and o, the tip fillet radiusesg, andg;, the root fillet radiuses
the helix angle.

Ty, , rack type cutter

- definition

/ !:ch ine

o nelix angle atr
8, :cone 1/2 angle at 1,
b : face width
Figure 1: Gears parameters definitions.

The optimization criteria are:

(1) the contact ratia,, i.e., the average number of teeth in contactclvis related to gears silence;

(2) the specific slip ratiogs, which is a measure of the tangential velocitadboth with respects to the tooth
in contact and which is related to wear;

(3) the maximum contact pressure between tdetasing Hertz's model for contact between cylinjlers

(4) o the maximum von Mises stresses (at the teeth;root

(5) ASTE the difference between the maximum and the mimrofithe Static Transmission Error.
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The STEdescribes the gears position errors due to tesftbrmations under loads and due to teeth shapeserro
It is estimated by a fast model based on Hertzamrdnd beam theories. All these aspects of gemlysis were
implemented in th&ilengrenesoftwaré.

Wear profiles are perturbed Archard’s profiles. yhare generated by multiplying Archard’s profile
(proportional toF*V, whereF is the contact pressure akdthe relative sliding velocity) by a Gaussian ramdo
processes, ©, as described in Figure 2. The Gaussian procésa@smean 1, a range of @&l and a variance of
0.01.

The randomness in the wear profiles representsriaitges in the load and number of cycles eachr gékh
endure, hence inducing deviations (in amplitude strabe) from the nominal Archard’s profile. Shapéuyrbations
due to wear mainly affect the STE amplitud8TE, which is therefore a random function of theige variablesy,
and the wear profileddSTHEX, ©). All other gears design criteria (contact and #pmeslip ratios, stresses, etc.) are
deterministic functions ok since they are marginally affected by shape \ariat of the order of Jum. A
deterministic optimization criterion is obtainedn ASTE by taking its 90 percentile P*4s(x). Such a criterion
is natural when optimizing a random response bec#usnsures that 90% of the actual systems (desnes) will
achieve the declareB® e performance. Computing this percentile involvesnkéeCarlo simulations (MCS),
which will be detailed in section 3.

shape variation

020 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
angle

Figure 2: Profile wear (mm) vs. angle (rad).The central continuous line corresponds to -0.1*Ff\é. wear

according to Archard’s model. F is the contact e and V the relative sliding velocity. Wearssfued lines) are
Gaussian random processes multiplied by Archardxleh : ©/(-0.1*F*V ). Wear is then proportional to F*V
curves with a maximum ofsn.

B. Gears optimization formulation

Eventhough the Filengrene gears simulator is régiidut 2 CPU seconds per gears analysis) it iposgible to
directly include the Monte Carlo simulations insittee optimization loop because the computationatscare
multiplied by each other : for 100 Monte Carlo slations and 1000 optimization steps (which is an
underestimation of the needed cost for globallynojzing in 11 dimensions), a single run would tdki®©*1000 =
56 CPU hours. To tackle the computational costidardesigning gears is first formulated as a eiteistic
problem in 11 variables, and then as a robust dopdition problem in 6 variables. The initial detenistic
optimization permits to fix 11-6=5 variables andydes an entry-level design to compare to.

Deterministic sub-problem:

The gears teeth involute shape is described by 2heariables introduced earlieZ;, X,, X , hay, , hay , hfy, ,
hfor , Oap » Pars P+ P @NA 5. Zp, the number of teeth of the pinion, is the onleger variable. It is taken out of the
formulation by setting its value a priori : withlgrone integer variable, optimizing the numberedth boils down
to repeating the procedure described in this arfimt various values .

Let thereforex be the 11 design variables of the deterministidjam,

X:[vaxr’ h%p' h%r’ ht)p' h&' pap par pfp pfr BO] (1)
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The deterministic gears design problem is,

Min ASTE( x) )
such that there is no teeth interference and

r.>1.25, g,< 2, 0,,< Re, F <Py

hertz

-1<x,,x <2, 0.8< ha, hg ,hf, hf< 1.7, 3
0< PP =My, 0.05Mm<p, p,<m and & ps 30

The number of teeth of the second pinion and thduileoare not part of the variables vector becahsg &re

solved by satisfying two equality constraints. Dears ratio (0.9) yields
z, = intege( Z, /0.9 4)

Mo, the module (a scale factor) is calculated byiagha non linear equation stating that the distdmeteveen the
gears centers is equal 140 mm The details of this equation are beyond the sadphis article. Other working
data are : pressure angig=18 deg,the torque transmitted by the pinion is 200Nm, thaterial is a 20 NC 6
cemented steeEE200 GPa,r=0.29, Re=980 MPa, R, =1550 MPa) and the gears thicknessli@ mm

The deterministic sub-problem is handled with tlewa&iance Matrix Adaptation Evolution Strategy, CNES,
which is the state-of-the-art evolutionary optintizEonstraints are treated by a static linear pesi@dn of the
objective function, i.e., by minimizing

f(x) = AEST, px [1—r—°j +[&—1j A %m_q| 4 _F 4 (5)
Aref 125 2 Re P::t(z
where (..)" =max( 0,.) and p=10. CMA-ES is a stochastic optimizer, it is therefar sensitive to the slope

discontinuity at O introduced by our penalizatiasheme. This penalization scheme has, on the othed,the
advantage when compared to quadratic penalty fumetof allowing convergence to feasible solutiona &inite,
reasonably small values pf".

Gears simulations are not possible for every chofadbe design variables: for example, there ardigarations
when the involute equation cannot be solved. Tlieses are handled by setting the objective funaipmal to a
large number (100 here), which makes the final [t objective function non-continuous. This io#rer reason
for using a zero order optimizer such as CMA-ESteNbat other evolutionary optimizers (CMA-ES ohigndles
continuous variables) are also often applied togdasign because the number of teeth is an integisblé® ™

Bounds on the variables are handled by repeatiagtbbabilistic CMA-ES point generations until arbiound
point is proposed. Of course, out-of-bounds paanésrejected without further analysis, so the nicaécost of this
strategy is negligible when compared to gears apaly

Robust optimization sub-problem

The robust optimization sub-problem is much morengotationally intensive than the deterministic sub-
problem because it involves estimating at eachmapétion step the 90% percentile S§TE. Two strategies are
proposed to decrease the computational cost : irgltice design space dimension and approximatimgepéles
with kriging (see Section 3). The reduction in dirsien is achieved by considering the 6 design bbex = [x,
X, hagy , hay, , hfy, , higr ], while the rest of the variables,, , oar, O , O and3 , are set equal to their deterministic
optimal values. The reasons for this reductionthegi) the fillet radiuses have a more local influencanttthe
addendum and dedendum and ii) the effect of thi& helyle is almost completely decoupled from theas$ of the
other parameters (it acts in another dimensigi)could eventually be tuned a posteriori.

The effect of teeth shape fluctuations due to vigeaontrolled by solving:
Min P%ygre(x) (6)
by changingx =[ x,, %, hay,, ha, , hf,, h§ |
such that there is no teeth interference and
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r,.>1.25 g.< 2, 0,,< Re, F<Pp e
-1<x,,x <2, 0.8< hg, hg ,hf, hf< 1.7

The next section describes how we proceed to catetie 98 percentile.

Percentile estimation through Monte-Carlo simulations and kriging

A. Computing percentiles ofASTE
In section I, we described wear profiles as rangwotesses modifying Archard’s profiles. Hena&TE is a
random variable, whose distribution can be estithdig Monte Carlo simulations (MCS). To do so, westfi

generate a large numbéa) o6f wear profiles 8,,0,,...,0, (again, details of the random wear profiles genemavere
given in Figure 2). For each of these profiles,aompute the correspondirigSTE(x ,Oi) . Then, the 90 percentile
P ste(x) is estimated from the samglSTE(x 8,) ,...A STEx 0,)}. We call P°(x'; 6,,0,,...8,) such an

estimate.
A preliminary study is performed on four designsctmosek, the number of MCS (see Table 1). For each
design, 500 MCS are performed. Using a Lilieforestt, we find that all the samples

{ASTE(x, 0,)....A STEx, )} i,= 1. ,, follow normal distributions. Hence, we assumet thsSTE is
normally distributed for any design

Table 1: preliminary statistical analysis of four designs.

Design A
o Xp X, hagp hagr hfop hfe | Mean(ASTE) | SDASTE)| pw
1 0.49 0.49 1.20 111 1.00 1.09 5.82 0.41 6.34
2 0.00 0.20 1.02 1.00 0.90 1.00 6.22 0.66 7.06
3 1.10 1.00 1.30 1.40 0.90 0.90 7.30 0.44 7.87
4 040 | -040 | 1.70 1.00 0.90 1.60 6.66 0.45 7.24

The normality of the samples allows us to increagseaccuracy of the estimated percentile. Indeedjnbiased
estimateP” of P*%s1(X) is then
P* = m+1.28s (8)
where
1 k
m:EZASTE(x,Oi) , and

i=1

)
1 2
s=,|—) | ASTE(x 0, )—m
[ SlasTe(xo ) -]
The variance ofP® can now be expressed analytically. Sintands are independent random variables,
var(lf’%) = var(m)+ 1.28 vaf s . (10)
Let o7 denote the actual variance ABTE(x ) . We havé™
0_2
var(m) = % (11)
20,
var(s®) = —25€ 12
()= (12)
It can be shown using a first order Taylor expanshat the variance gfis approximately equal to
— UESTE k-3
var(s) =——| 1-,|— |. 13
( ) 2 k-1 (13)

Finally,
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Var(,ggo)zaz 1+1.282 - k-3 14)
ASTE k 2 k_l

Estimating a percentile requires a large numbecatls to the gears simulation. To reduce this cdatnal
cost, we approximate the percentile by a simple e@hanften callednetamodebr surrogate model.We chose a
kriging metamodel (described in section 1lI-B) basa, contrarily to deterministic metamodels (nemetiworks,
response surfaces, support vector machines, .aljpws to account for the noise in the estimatadgtile.

B. A kriging metamodel for noisy observations

We make the assumption that tRE° estimate is equal to the true functi®fasr(x) plus a random noise (due
to the Monte Carlo sampling process):

PY(x; 0,,0,,...0,) = ROe(X )+ (15)
The variance of is defined here as the variance of the estimateckntile (14).

P*,sTeis observed at distinct locationsX:
X :{xl,...,x“}
B (B (), .. B%(x')

X is called thedesign of experimen{®oE) andP*theobservations vector

(16)

P ,ste is approximated by a simple modd| called metamodel, based on hypotheses on theenat®* st and

on its observation$*at the points of the DoE. In this article, we cdesithe ordinary kriging (OK) metamodel,
which assumes that the function to approximateesrealization of a Gaussian procédsof the form

Y(x) =u+ Z(X) a7)

wherep is an unknown constant mean anc)Zé stationary gaussian process of known covariawith these
assumptions, the probability density function ok)Yknowing the observation®* is Gaussian and analytically

known
[Y (1P ]~ N(mye (%), $c (%) - (18)
The OK prediction mean and varianceare
Mo (X) = p+k (x) K, 2 (P - 1a1) (19)
L (1-k (K 41
Sk’ () =% =k (x)K .7k (¢ )+ ——s——7F— (20)
1K, ™
where
» o°is the process variance,
= 1is amxlvector of ones,
o kT (x)=[k(x.x) K(xx5) ... K(xxy)],anmx1 vector,
* K, =K +A,
= K= (k(xi X ))]Si’jsn , an mx m matrix,
= A= diag({var(sl) var(s,) ... va(sm)}) , is the so-callediuggeteffect accounting for the noise in the

observations
= and k(u,v) a covariance function.

For more complete proofs, see for instance RebrlRef. 13. Figure 3 shows an example of OK modele
that since the observations are noisy, the krigiiegn does not interpolate the data.
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Figure 3: Example of Ordinary Kriging model with noisy observations.The bars represent the noise standard
deviation. Because of the noisy observations, tiging mean does not interpolate the data and thigitkg
variance is non-zero at the observation points.

C. Design of Experiments

We have seen that each observatii?ﬁrequiresk calls to the gears simulator. Hence, a desigrkpéements
(DoE) of sizen requireskx n calls. Due to computational limitations, the numbégcalls cannot exceed 90,000.
Both numbers must be chosen to ensure best tradetofeen:

» Space-filling

* Reasonable variance of each estimate

» Affordable computational time
A largern ensures a better filling of the design space, evhillargek reduces the variance of each observation.
Empirical studies [16] show that for the kriging ded, it is more accurate to have large variancelarge DoEs.
Hence, we choosk as small as possible. However, the hypothesisoohality of the error do not stand for very
small samples (k <25), so we chodése 30, anch = 3,000.
The preliminary analysis already discussed in Tdbprovides us with largdSTE samples at four design points,

which can be used to validate our choicé.ofable 2 shows the variability of the percentiwmates,var(ﬁgo) ,

from (14) assuming only 30 MCS are performed (the varianceo’,. is replaced by its accurate estimate based
on 500 MCS).

Table 2: Variability of percentile estimates basean k = 30 Monte Carlo simulations.

Design # var(ﬁg") from (21) SD( ﬁ”o) poo
1 0.010 0.10 6.34
2 0.027 0.16 7.06
3 0.012 0.11 7.87
4 0.013 0.11 7.24

For all four designs, we see that the standardatievis are very small compared to the mean valé, = 30 is
sufficient.

To ensure good space-filling properties, the trajrpoint locations are chosen from a Latin Hypeec8ampling
(LHS) optimized for a maximum minimum distance (iimax) criterion. To each training point corresporteee
response values: te&STE with no wear, thASTE with wear taken from the nominal Archard’s peofwritten

ASTE,), and the 99 percentile oASTE with random wear (estimated lﬁ’QgTE). Out of the 3,000 points, 825 are

found as infeasible designs by tRéengrenesoftware, so the final DoE consists of 2,175 olstisns. Table 3
summarizes the values taken by the observations.
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Table 3: Observation values of the DoE.

ASTE (no wear) ASTEA (Archard’s profile) P2,
Mean Range Mean Range Mean Range
4.83 [0.49;42.70] 7.31 [1.47;37.75]] 8.20 2.12;39.67 ]

D. Data analysis : is a robust optimization approacheally necessary ?
First, to validate our approach, we look at theaations between the responses. Indeed, there é&videncea

priori that the optimal design for the deterministic peato (2) is different from the robust optimal des{@.
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Figure 4: ASTE without wear vs.ASTE with Archard’s wear profile (ASTEa, left), and vs. the 90% percentile
of ASTE with randomly perturbed Archard’s wear (right).
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Figure 5: ASTE, (with Archard’'s wear profile) vs. IsngE (30 Monte Carlo simulations).Left: full scale, right:
zoom,

From Figure 4, we see that th8TE with no wear differ in shape and amplitude fri'@ASTE with wear. Hence,
the deterministic and robust optimizations areljike have different solutions. On the contraN§TE from the
nominal Archard’s profile and the percentile frone tstochastic profile are strongly correlated,gbecentile being
shifted by a margin. So it seems that for largdesogatimization, the two problems are equivalenbwdver, for
small values oASTE (Figure 5, left), the correlation is weakerisItifficult to determine if the difference is dte

the noise inP% or not.
To refine the analysis, we pick six points out loé 2,175 observations that have similar valueASTE with

Archard’s wear ASTE, between 2.4 and 2.5) but correspond to differestghs. At each design, we run 500 MCS
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to have an accurate estimate of the percentilehi@moise is negligible). The values of the aceudrcentile
estimates and th&STE with deterministic wear are reported in Table 4

Table 4: Comparison of six designs with SIMASTE,.

Design # % X hagp hag, hfop hfo (A?;;Ed) po0
1 0.25 1.37 1.37 0.85 1.31 0.80 2.42 3.03
2 0.18 0.69 1.54 1.01 1.08 1.05 2.44 3.07
3 -0.21 1.11 0.90 1.23 1.61 0.90 2.46 3.34
4 -0.02 1.10 1.03 0.81 1.41 1.00 2.42 3.21
5 0.15 0.71 1.44 1.07 1.63 1.16 2.48 2.88
6 -0.12 -0.08 1.25 1.19 1.63 1.61 2.45 2.84

* Computed using 500 MCS

From Table 4, we see tha and ASTE do not always behave similarly. For instan@sighs #1 and #4 have the
same besASTE, out of the 6 selected designs, but they havetting and fifthP* . Design #5 is the worst design

in terms ofASTE,, but the second best in terms BT . This shows that optimizingSTE with nominal (Archard)
and stochastic wear is likely to lead to differsolutions.

IV. Optimization results
A. Optimization without wear

The penalized objective functidp(x) ( Formula(5) ) has been minimized with the Covariance Matrix ptaéion
Evolution strategy (CMA-EY. The penalty parametgrwas set to 10 and\,, =0.5. The 11 design variables

were scaled by their range, the initial CMA-ES (ssize” was 0.3, there were 10 parents and 5 deitiigns at each
CMA-ES iteration, and the runs were 12000 analysag with a restart (taking the best-so-far designnew
starting point and re-setting the step size to 8t3000 analyses. The optimization was repeatad three initial
points randomly chosen inside the bounds. One exdfethnitial (therefore non optimal) design poinpissented in
Figure 6. The best performing gear out of the thop&mizations, which we consider as the optimumthod
deterministic gears design formulation, is giverFigure 7. Comparison of the starting and optimegdigns show
that, at the deterministic optimum, the teeth ma& no play and the helix angle is at its uppendotarge helix
angles induce forces in the gears axes directionthe induced axis force is not a criterion of tuerent design
formulation (2) and(3). The optimum STE profile has four modes (i.e.rfmaxima) for one mesh period, versus
one for the starting design shown in Figure 6. Hackle corresponds to a teeth pair entering or hgasntact. It is
likely that larger teeth numbers would be optin@al finimizing the static transmission error vadatby enabling
more modes in a mesh period.
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Figure 6 : Example of an optimization run starting design. Gears cross-séction (left) and static tramgssion
error (STE) in pum (right). x, =-0.2,x = 0.2,hg, = 1.5,hg, = 1.4hf, = 13hf= 1.37,,= 0& = (

Pip =0.0504 = 015, = 10. 1, = 2,9,= 592,0,,= 1556F = 116&HTE= 2. Although there are no

teeth interferences, this design is infeasibletwtie maximum slip ratio, the maximum von Mise®s$ and the
contact pressure. All dimensions but the STE anmnm stresses are iMPa. The STE is plotted for one meshing
period.
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Figure 7 : Optimum design without wear. Gears crossection (left) and STE inpum (right). X, =0.49,
% =0.49,hg, = 1.20,hg, = 1.11hf, = 1.00hf = 1.08,= 0.0003 = DAy, =0.6404 = 0.235,= 3(
r.=1.66, g,=147, g,,= 443, F = 93&STE= 0.l The design is feasible. All dimensions but the Sif&
in mm stresses are MPa. The STE is plotted for one meshing period.
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B. Optimization with wear based on a kriging metamodel

Designing gears while accounting for probabilistiear has been formulated in Equatiqiéd and (7) by

replacing the variation in static transmissioroerASTE, by its 98 percentile,PfSOTE. Section Il has explained

how PAQSOTE( X) can be estimated by Monte Carlo simulations asaenable numben € 2175) of design pointes

and then approximated by an ordinary kriging met@e@hoThe kriging metamodel is defined by its meawl a
variance at eack, my (x) and i (), respectively. A basic idea of our approach tausttoptimization with

kriging is, first, to make the costly Monte Carlinslations before the optimization iterations argfireate the
percentiles at the sampled points, then learn twéma kriging metamodel which, finally, replacdsetpercentile

estimation during the optimization. Although krigiprovidesmy, (x) and s (x), i.e., a complete Gaussian
probability density function at each point x, wdyonse here the kriging meamy, (x) for two reasons. Firstly,
contrarily to global optimization methods basedkdging such as EGH, we do not iteratively update the kriging
model. We are therefore not interested in its uwaasy séK (x) Secondly, the data points gatheredﬁ?? and
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learned by the kriging model are noisy since egechdrom 30 Monte Carlo simulations. The kriginganewith
nugget effectimy, (), acts as a filter of the observations noise.

All other optimization constraints;,, g,, o,, and F, are calculated by a single call to the gears kitou

vm

because they are mainly insensitive to wear. To gpnthe robust optimization problem with kriginghsed is,
Min mgy (x) (22)
X

by changingx =[x, %, ha,, ha, , hf, . hf |
such that there is no teeth interference and

r.>1.25, g,< 2, 0,,< Re, F <P

hertz

1<x,,% <2, 08< ha, ha ,hf hf< 17

Like in the deterministic optimization problem, tbenstraints were handled by minimizing the peralinbjective
function(5) whereAEST was replaced bydr. The problem was solved using the CMA-ES optiniaraglgorithm
with the same settings as in the deterministicrojataition of paragraph A, including the search langeéstart and
variables bounds handling. However, there are si¥yunknowns in the robust problem, the other \dés being

-

fixed at their deterministic optimal valug,, = 0.0003p,, = 0.19,= 0.6Qq= 028, = <

The best design found when solvi(2R) is described in Figure 8. We will henceforth referit as the “kriging
design”.

A N

Figure 8 : Optimum robust design found using the kiging metamodelinstead of the empirical estimator of the
ASTE 90% percentile. Xp =0.20,x. = 1.26,hg, = 1.44hg, = 1.49hf, = 1.2hHf = O.

my =1.97 (but|590 = 3.37 based on 500 simulationsy 711. g, = 2.00, 0,,= 558, F= 118. The design is
feasible. All dimensions but the STE aremim stresses are MPa. The STE is plotted for one meshing period.

C. Optimization with wear based on a deterministic nage representative

An alternative formulation of the gears design peabwith wear is to solve replace the percentilénestion by a
single, deterministic, instance of wear. Here, thigance is simply chosen as the average of tle prefiles, i.e., a
non-perturbed Archard’s wear profile since the ymation are centered on it. The design problemesblwith

Archard’s wear is,

Min ASTE, (x) (23)

by changingxz[xp,xr, hap, ha,, hf, . hf)r}
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such that there is no teeth interference and

r.>1.25 g9.<2, 0,,< Re, F<Pp
-1<x,,%x <2, 0.8< ha, hg, ,hf, ,hf < 1.7

Note that the numerical cost of evaluating the etbje function ASTE, involves two calls to the gears simulator :

a first call to evaluate the contact forces andirsjj rates, and a second call to remove materoah fthe teeth
surfaces and recalculate all gears performancerieit This numerical cost is twice that of the dmiaistic
formulation but it is much lower than a completertw Carlo simulation. Proble(23) is solved with the CMA-ES
optimizer is the same fashion as all other optitndzaproblems discussed in this article. The optimdesign for
this problem, called “Archard’s design”, is desedhin Figure 9 .

e
Figure 9 : Optimum design with Archard's wear. (2D cross-section, left, and 3D drawing, right).
X, =0.028,x. = 0.86, ha,, =1.26, ha, =1.32, hf,, =1.20, hfy, = 0.8.

ASTE, =1.49 (but Tgo = 2.64 based on 500 simulationg)= 6219, =2.00,0,,,= 631F = 111.

D. Comparison of approaches
The four methods that have been seen up to nodefgsigning gears are now compared :

1. Neglecting wear and solving EquatiofZy and(3). The solution to this deterministic problem waswsh
in Figure 7. The numerical cost of the method ie oall to the gears simulator per optimization gsial
(objective function and constraints).

2. Replacing Monte Carlo simulations with a kriging taveodel, as stated in Equati¢22). The obtained
optimum design was described in Figure 8. The nigalecost of the procedure is one call to the gears
simulator plus one call to the metamodel (negligilpber optimization analysis. In addition, therears
initial cost for calculating the design of experimse (K X Nsimulations) and inverting th@X N kriging
covariance matrix , .

3. Optimizing the static transmission error for a dei@istic nominal wear profile (Archard’s profileThis
formulation is stated in Equatiof23) and the resulting design described in Figure ZhEagptimization
analysis costs two calls to the gears simulator.

4. Designing the gears by selecting the best poithi@fnitial maximin latin hypercube design of expents
(DOE). There aren points wherek Monte Carlo simulations (MCS) are performed fototal cost of
k x n simulations. Note that this DoOE was used to btlikl kriging metamodel. The so-called “empirical
MCS design” is described in Figure 10.
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Figure 10 : Empirical MCS design, i.e., best desigaf the original latin hypercube set of points with30 Monte
Carlo simulations per point. X, =-0.004,x. = 0.37, hg, =137, ha, =1.51, hfy, =1.27, hf,, = 0.8..

P, = 2.69 (butPy, = 3.29 with 500 simulations), = 1.7g, =1.96,0,,,= 614F = 122

Table 5 summarizes the designs associated to gpchaeh. The last cqumrF{go) is the targeted design criterion,
estimated with 500 Monte Carlo analyses. It isicfeam Table 5 that neglecting wear from th8TE calculation
(row 1) leads to designs with paABTE performance in the presence of wear. Accourftingvear (compare rows

2 to 4 to row 1) decreases the pinion addendum fination coefficient X, and increases its counterpagt. It
also increases the teeth heighlyals andhf *). Minimizing the kriging wear prediction is an ingvement over

neglecting wear. This method yielded a design e not present in the initial DoE, but iR% performance is
similar to that of the best design in the DoE. Tikibecause the initial 6-dimensional design spscgiite large for

fitting a metamodel with about 2000 data pointse Khiging p prediction at the kriging optimum design is of
poor quality (1.97 versus 3.3ifm). This is another piece of evidence that optingavith a metamodel requires an
iterative enrichment of the DoE around the optimiesign area (other examples can be found in,Ref.,17). The
overall best design was the Archard’s design. &ogloptimization runs, it is also the most expemsinethod out of
the ones considered here since each evaluatidreastjective function needs two gears simulatidiecertheless,
for the 3*12000 analyses long optimization runsfqgrened here, this extra-cost remains inferior tat thf building
the kriging database (3000*30 analyses). In robpsitmization problems wheii¢ the number of variables is of the
order of 10 or less anij) one knows a noise sample leading to a reliablggdethe representative noise sample
approach is to be preferred.

Table 5 : comparison of optimum gears for variousdrmulations : without wear, with Archard's wear, with
kriging percentile approximation, and with Monte Carlo simulations (best point of LHS). All these degjns
are feasible.

Numerical cost ASTE

Design (in simulation call) Xp X hag, | hag | hfgp | hfor | used p%*
criterion

\}v)e‘;":tho“t 1 per analysis 049 | 049 | 1.20 1.11 1.00 1.09 038 6.38
fv)e’;d‘ard S | 2 per analysis 0028 | 0.86| 1.26 132 1.20 081 1.49 2.64
3) kriging 1 per analysis + initial DOE | 0.20 1.26 | 1.44| 149 127 092 1.97 3.37
4) Monte Initial DoE
Carlo 0.004 | 037 | 1.37 151 1.27 0.87 2.69 3.29
(30 MCS / . . . . . . . .
LHS point)

* Computed using 500 MCS
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V. Conclusions and perspectives

This article represents a first step in the optatian of gears while accounting for random teetlamt@rough
the static transmission error (STE). Two robusimijziation approaches have been proposed wheretdlistisal
estimation of the performance (here a 90% peraerdfl the STE variation) is replaced either by agikg
metamodel or by fixing the noise to an adequataevéihere the average wear profile). This studyicmsfthat the
kriging approach is feasible because we observatitheads to reasonable designs. However, ie@ghat the
kriging metamodel needs to be updated to allow mvexmence to optimal designs. This is the methayio
perspective of this article. The optimization witie wear profile fixed at its average value leadthe overall best
design and is the currently advised method forisglthe stated gears design problem. Regarding gksmign, the
results presented here should be completed byngtkie number of teeth and considering teeth grafirrections.
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