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This article presents an approach to the optimization of helical involute gears for  
geometrical feasibility, contact ratio, teeth sliding velocity, stresses and static transmission 
error (STE). The teeth shape is subject to random perturbations due to wear (a randomized 
Archard’s wear). The consequences of shape inaccuracies are statistically expressed as a 
90% percentile of the STE variation, which is optimized. However, estimating a 90% STE 
percentile by a Monte Carlo method is computationally too demanding to be included in the 
optimization iterations. A method is proposed where the Monte Carlo simulations are 
replaced by a kriging metamodel during the optimization. An originality of the method is 
that the noise in the empirical percentile, which is inherent to any statistical estimation, is 
taken into account in the kriging metamodel through an adequately sized nugget effect. The 
kriging approach is compared to a second method where the STE variation for an average 
wear profile replaces the percentile estimation. 

I.  Introduction 
ears are a fundamental mechanical system involved when torques must be transmitted with high efficiencies, 
which is the case of transmissions in cars, windmills, and other special machines. Although gears have been 

designed for a long time, controlling gears performance under teeth shape uncertainties is a recent, difficult and 
important design objective : teeth shape variations result from manufacturing (e.g., heat treatment) and from wear 
and induce, in particular, noise.   

The applicative objective of this article is to design helical gears so as to account for teeth shape inaccuracies. 
Computational challenges that are familiar in Reliability Based Design Optimization (RBDO) accompany this 
problem: the teeth in gears are moving solids in contact with each other whose detailed simulation by finite elements 
is computationally intensive. With the added computational cost of accounting for shape uncertainties (through 
Monte Carlo simulations, reliability index calculation or polynomial chaos expansion), the robust design of these 
systems requires careful methodological developments.  

Gears design is traditionally approached by parameterizing the shape of the teeth as helical and involute1. Most 
gears in use today are chosen in standardized tables and are non-optimal. In Ref. 2, helical involute gears are 
designed for geometrical feasibility and large contact ratio by semi-analytical approaches.  In Ref. 3, the size of 
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helical gear sets is minimized where the gears stress analysis is based on standardized AGMA formula. A finite 
element analysis of the gears was implemented in Ref. 4 and served to optimize the pressure angle for minimum von 
Mises stresses. Modified teeth shapes were proposed in Ref. 4 to make the gears less sensitive to shape and positions 
perturbations. The gears performance criteria were bearing contact, transmission error and stress state. 

In the present article, gears are designed for geometrical feasibility, contact ratio, teeth sliding velocity, stresses 
and Static Transmission Error (STE). Efficient stress and STE analyses are performed using Hertz contact formula 
and beam theory. Teeth wear is described by superposing Archard’s wear model6 and random material removal. 
Gears design is decomposed into i) the optimization of the 11 involute parameters for deterministic responses ii) the 
optimization of the crowning to control teeth shape random perturbations, i.e., to minimize the 90th percentile of the 
STE variation, ∆STE. ∆STE is one of the primary origins of the noise made by gears7. 

From a methodological standpoint, it is not computationally affordable to calculate the ∆STE percentile by 
simple Monte Carlo simulations at each optimization step. A kriging metamodel of the percentile is built before the 
optimization. The optimization uses the kriging prediction of ∆STE instead of the computationally intensive Monte 
Carlo simulations, but other optimization criteria, which are not subject to uncertainties, are calculated with the 
original gears model. 

The contributions of this work are twofold: firstly, a complete formulation of the gears optimum design problem, 
involving the 90th percentile of the STE variation, is solved; secondly, a methodology for robust design based on 
kriging as a substitute for the Monte Carlo simulations is proposed. The noise in the statistical estimator of the 
performance is taken into account in the kriging metamodel through its “nugget” intensity. The kriging approach is 
compared to an alternative method where the STE variation for the average wear is minimized. The comparison is 
made in terms of the achieved 90% percentile of the STE variation. 

II.  Problem formulation 

A. Gears analysis 
Geometrical gears analysis is based on classical involute helical representation1,8. 12 design variables are 

considered, some of which are illustrated in Figure 1: Zp, the number of teeth of pinion 1 ; xp and xr the addendum 
modification coefficients of the two pinions ; ha0p and ha0r the cutting tool addendum of the two pinions, hf0p and 
hf0r the cutting tool dedendum of the pinions ; ρap and ρar the tip fillet radiuses, ρfp and ρfr the root fillet radiuses ; β0 
the helix angle. 

 
Figure 1: Gears parameters definitions. 

 
The optimization criteria are:  
(1) the contact ratio, rc, i.e., the average number of teeth in contact, which is related to gears silence;  
(2) the specific slip ratio, gs, which is a measure of the tangential velocity of a tooth with respects to the tooth 

in contact and which is related to wear;  
(3) the maximum contact pressure between teeth, F (using Hertz’s model for contact between cylinders) ;  
(4) σvm, the maximum von Mises stresses (at the teeth root); 
(5) ∆STE, the difference between the maximum and the minimum of the Static Transmission Error.  
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The STE describes the gears position errors due to teeth deformations under loads and due to teeth shape errors. 
It is estimated by a fast model based on Hertz contact and beam theories. All these aspects of gears analysis were 
implemented in the Filengrene software8.  

Wear profiles are perturbed Archard’s profiles. They are generated by multiplying Archard’s profile 
(proportional to F*V, where F is the contact pressure and V the relative sliding velocity) by a Gaussian random 
processes13, ΘΘΘΘ, as described in Figure 2. The Gaussian processes have mean 1, a range of  0.2 rad and a variance of  
0.01. 

The randomness in the wear profiles represents uncertainties in the load and number of cycles each gear will 
endure, hence inducing deviations (in amplitude and shape) from the nominal Archard’s profile. Shape perturbations 
due to wear mainly affect the STE amplitude, ∆STE, which is therefore a random function of the design variables, x, 
and the wear profiles, ∆STE(x, ΘΘΘΘ). All other gears design criteria (contact and specific slip ratios, stresses, etc.) are 
deterministic functions of x since they are marginally affected by shape variations of the order of 1 µm. A 
deterministic optimization criterion is obtained from ∆STE by taking its 90th percentile, P90

∆STE(x). Such a criterion 
is natural when optimizing a random response because it ensures that 90% of the actual systems (gears here) will 
achieve the declared P90

∆STE performance. Computing this percentile involves Monte-Carlo simulations (MCS), 
which will be detailed in section 3. 

 
Figure 2: Profile wear (mm) vs. angle (rad). The central continuous line corresponds to -0.1*F*V, i.e. wear 
according to Archard’s model. F is the contact pressure and V the relative sliding velocity. Wears (dashed lines) are 
Gaussian random processes multiplied by Archard’s model : Θ∗(-0.1*F*V ). Wear is then proportional to F*V 
curves with a maximum of 5 µm. 

B. Gears optimization formulation 
Eventhough the Filengrene gears simulator is rapid (about 2 CPU seconds per gears analysis) it is not possible to 

directly include the Monte Carlo simulations inside the optimization loop because the computational costs are 
multiplied by each other : for 100 Monte Carlo simulations and 1000 optimization steps (which is an 
underestimation of the needed cost for globally optimizing in 11 dimensions), a single run would take 100*1000 = 
56 CPU hours. To tackle the computational cost barrier, designing gears is first formulated as a deterministic 
problem in 11 variables, and then as a robust optimization problem in 6 variables. The initial deterministic 
optimization permits to fix 11-6=5 variables and provides an entry-level design to compare to. 
 
Deterministic sub-problem: 

The gears teeth involute shape is described by the 12 variables introduced earlier : Zp, xp,  xr , ha0p , ha0r , hf0p , 
hf0r , ρap , ρar, ρfp , ρfr and β0. Zp, the number of teeth of the pinion, is the only integer variable. It is taken out of the 
formulation by setting its value a priori : with only one integer variable, optimizing the number of teeth boils down 
to repeating the procedure described in this article for various values of Zp. 
Let therefore x be the 11 design variables of the deterministic problem,  

 0 0 0 0 0x , ,  ,  ,  ,  , , , , ,p r p r p r ap ar fp frx x ha ha hf hf ρ ρ ρ ρ β =    (1) 
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The deterministic gears design problem is, 

 
                                                                         ( )Min STE x∆  (2) 

such that there is no teeth interference and 

                                                   

max

0 0 0 0

0 0 0 0

1.25, 2, Re,

-1 , 2,  0.8  , ,  ,  1.7,

0 , , 0.05 , 0 30.

c s vm hertz

p r p r p r

ap ar fp fr

r g F P

x x ha ha hf hf

m m m and b

σ

ρ ρ ρ ρ

> < < <
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

 (3) 

 
The number of teeth of the second pinion and the module are not part of the variables vector because they are 

solved by satisfying two equality constraints. The gears ratio (0.9) yields  

 ( )  integer  / 0.9 r pZ Z=  (4) 

m0, the module (a scale factor) is calculated by solving a non linear equation stating that the distance between the 
gears centers is equal to 110 mm. The details of this equation are beyond the scope of this article. Other working 
data are : pressure angle α0=18 deg, the torque transmitted by the pinion is 200Nm, the material is a 20 NC 6 
cemented steel (E=200 GPa, ν=0.29, Re=980 MPa, Phertz

max=1550 MPa ) and the gears thickness is 10 mm.  
The deterministic sub-problem is handled with the Covariance Matrix Adaptation Evolution Strategy, CMA-ES9, 

which is the state-of-the-art evolutionary optimizer. Constraints are treated by a static linear penalization of the 
objective function, i.e., by minimizing 

 ( ) max
1 1 1 1

1.25 2
c s vm

p
ref e hertz

r gEST F
f x p

R P
σ

+++ +   ∆      = + × − + − + − + −       ∆         

 (5) 

where ( ) ( )... max 0,...+ ≡  and 10p = . CMA-ES is a stochastic optimizer, it is therefore not sensitive to the slope 

discontinuity at 0 introduced by our penalization scheme. This penalization scheme has, on the other hand, the 
advantage when compared to quadratic penalty functions of allowing convergence to feasible solutions at a finite, 
reasonably small  values of p14. 

Gears simulations are not possible for every choice of the design variables: for example, there are configurations 
when the involute equation cannot be solved. These cases are handled by setting the objective function equal to a 
large number (100 here), which makes the final penalized objective function non-continuous. This is another reason 
for using a zero order optimizer such as CMA-ES. Note that other evolutionary optimizers (CMA-ES only handles 
continuous variables) are also often applied to gears design because the number of teeth is an integer variable10,11. 

Bounds on the variables are handled by repeating the probabilistic CMA-ES point generations until an in-bound 
point is proposed. Of course, out-of-bounds points are rejected without further analysis, so the numerical cost of this 
strategy is negligible when compared to gears analyses.  
 
Robust optimization sub-problem 

The robust optimization sub-problem is much more computationally intensive than the deterministic sub-
problem because it involves estimating at each optimization step the 90% percentile of ∆STE. Two strategies are 
proposed to decrease the computational cost : reducing the design space dimension and approximating percentiles 
with kriging (see Section 3). The reduction in dimension is achieved by considering the 6 design variables x = [xp,  
xr , ha0p , ha0r , hf0p , hf0r ] , while the rest of the variables, ρap , ρar, ρfp , ρfr and β0 , are set equal to their deterministic 
optimal values. The reasons for this reduction are that i) the fillet radiuses have a more local influence than the 
addendum and dedendum and ii) the effect of the helix angle is almost completely decoupled from the effects of the 
other parameters (it acts in another dimension) : β0 could eventually be tuned a posteriori. 
 

The effect of teeth shape fluctuations due to wear is controlled by solving: 

 ( )90Min xSTEP ∆                                                (6) 

by changing 0 0 0 0x , ,  ,  ,  ,  p r p r p rx x ha ha hf hf =    

such that there is no teeth interference and 
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max

0 0 0 0

1.25, 2, Re,

-1 , 2,  0.8  , ,  ,  1.7.
c s vm hertz

p r p r p r

r g F P

x x ha ha hf hf

σ> < < <
≤ ≤ ≤ ≤

           (7) 

 
The next section describes how we proceed to calculate the 90th percentile. 

III.  Percentile estimation through Monte-Carlo simulations and kriging 

A. Computing percentiles of ∆STE 
In section II, we described wear profiles as random processes modifying Archard’s profiles. Hence, ∆STE is a 

random variable, whose distribution can be estimated by Monte Carlo simulations (MCS). To do so, we first 
generate a large number (k) of wear profiles, 1 2, ,..., kθ θ θ (again, details of the random wear profiles generation were 

given in Figure 2). For each of these profiles, we compute the corresponding ( )STE , i∆ x θ . Then, the 90th percentile 

P90
∆STE(x) is estimated from the sample ( ) ( ){ }1STE , ,..., STE , k∆ ∆x θ x θ . We call ( )90

1 2
ˆ ; , ,...,i

kP x θ θ θ  such an 

estimate. 
A preliminary study is performed on four designs to choose k, the number of MCS (see Table 1). For each 

design, 500 MCS are performed. Using a Lilliefors test15, we find that all the samples 

( ) ( ){ }1STE , ,..., STE , , 1, ,4i i k i∆ ∆ =x θ x θ … , follow normal distributions. Hence, we assume that STE∆  is 

normally distributed for any design x. 
 

Table 1: preliminary statistical analysis of four designs. 
Design 

# 
xp xr ha0p ha0r hf0p hf0r Mean(∆STE) SD(∆STE) 90P̂  

1 0.49 0.49 1.20 1.11 1.00 1.09 5.82 0.41 6.34 
2 0.00 0.20 1.02 1.00 0.90 1.00 6.22 0.66 7.06 
3 1.10 1.00 1.30 1.40 0.90 0.90 7.30 0.44 7.87 
4 0.40 -0.40 1.70 1.00 0.90 1.60 6.66 0.45 7.24 

 
 The normality of the samples allows us to increase the accuracy of the estimated percentile. Indeed, an unbiased 

estimate 90P̂  of P90
∆STE(x) is then 

 90ˆ 1.28P m s= +  (8) 
where 

 

( )

( )

1

2

1
STE , , and

1
STE , .

1

k

i
i

i
i

m
k

s m
k

=

= ∆

= ∆ −  −

∑

∑

x θ

x θ

 (9) 

The variance of 90P̂ can now be expressed analytically. Since m and s are independent random variables, 

 ( ) ( ) ( )90 2ˆvar var 1.28 varP m s= + . (10) 

 
Let 2

STEσ ∆ denote the actual variance of ( )STE ,∆ x θ . We have15: 

 ( )
2

var STEm
k

σ ∆=  (11) 

 ( )
4

2 2
var

1
STEs

k

σ ∆=
−

. (12) 

 It can be shown using a first order Taylor expansion that the variance of s is approximately equal to 

 ( )
2 3

var 1
2 1
STE k

s
k

σ ∆  −= −  − 
. (13) 

 Finally, 
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 ( )
2

90 2 1 1.28 3ˆvar 1
2 1STE

k
P

k k
σ ∆

  −= + −   −   
 (14) 

 
Estimating a percentile requires a large number of calls to the gears simulation. To reduce this computational 

cost, we approximate the percentile by a simple model, often called metamodel or surrogate model.  We chose a  
kriging metamodel (described in section III-B) because, contrarily to deterministic metamodels (neural networks, 
response surfaces, support vector machines, …), it allows to account for the noise in the estimated percentile. 

B. A kriging metamodel for noisy observations 

We make the assumption that the 90P̂  estimate  is equal to the true function P90
∆STE(x) plus a random noise (due 

to the Monte Carlo sampling process): 

 ( ) ( )90 90
1 2

ˆ ; , ,...,i i i
k STEP P ε∆= +x θ θ θ x  (15) 

The variance of εi is defined here as the variance of the estimated percentile (14). 
 

P90
∆STE is observed at n distinct locations X: 

 
{ }

( ) ( ){ }
1

90 1 90

,...,

ˆ ˆ ˆ,...,

n

nP P

=

=90

X x x

P x x
 (16) 

X is called the design of experiments (DoE) and ̂ 90P the observations vector. 
 

P90
∆STE is approximated by a simple model M, called metamodel, based on hypotheses on the nature of P90

∆STE and 

on its observations ̂90P at the points of the DoE. In this article, we consider the ordinary kriging (OK) metamodel, 
which assumes that the function to approximate is one realization of a Gaussian process13 Y of the form 
 ( ) ( )Y Zµ= +x x  (17) 

 
where µ is an unknown constant mean and Z(x) a stationary gaussian process of known covariance. With these 

assumptions, the probability density function of Y(x) knowing the observations ˆ 90P  is Gaussian and analytically 
known 

 ( ) ( ) ( )( )2ˆ| ,OK OKY N m s 
 

90x P x x∼   . (18) 

The OK prediction mean and variance at x are 

 ( ) ( ) ( )1 ˆT
OKm µ µ−

∆= + −90x k x K P 1   (19) 

 ( ) ( )
( )( )21

2 2 1
1

1
( ) T

OK T
s σ

−
∆−

∆ −
∆

−
= − +

k x K 1
x k x K k x

1 K 1
    (20) 

where 
� σ2 is the process variance, 
� 1 is a 1m× vector of ones, 

� ( ) ( ) ( ) ( )1 2, , ,T
mk k k =  …xk x x x x x x , an 1m×  vector, 

� ∆ = +K K ∆  , 

� ( )( )
1 ,

,i j
i j n

k
≤ ≤

=K x x , an m m×  matrix, 

� ( ) ( ) ( ){ }( )1 2var var ... var mdiag ε ε ε=∆  , is the so-called nugget effect accounting for the noise in the 

observations 
� and  ( ),k u v a covariance function. 

For more complete proofs, see for instance Ref. 12 or Ref. 13. Figure 3 shows an example of OK model. Note 
that since the observations are noisy, the kriging mean does not interpolate the data. 
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Figure 3: Example of Ordinary Kriging model with noisy observations. The bars represent the noise standard 
deviation. Because of the noisy observations, the kriging mean does not interpolate the data and the kriging 
variance is non-zero at the observation points. 

C. Design of Experiments 
 We have seen that each observation 90P̂ requires k calls to the gears simulator. Hence, a design of experiments 
(DoE) of size n requires k n×  calls. Due to computational limitations, the number of calls cannot exceed 90,000. 
Both numbers must be chosen to ensure best trade-off between: 

• Space-filling 
• Reasonable variance of each estimate 
• Affordable computational time 

A larger n ensures a better filling of the design space, while a larger k reduces the variance of each observation. 
Empirical studies [16] show that for the kriging model, it is more accurate to have large variance and large DoEs. 
Hence, we choose k as small as possible. However, the hypothesis of normality of the error do not stand for very 
small samples (k <25), so we choose k = 30, and n = 3,000. 
The preliminary analysis already discussed in Table 1 provides us with large ∆STE samples at four design points, 

which can be used to validate our choice of k. Table 2 shows the variability of the percentile estimates, ( )90ˆvar P , 

from (14) assuming only 30 MCS are performed (the true variance 2
STEσ ∆  is replaced by its accurate estimate based 

on 500 MCS).  
 
Table 2: Variability of percentile estimates based on k = 30 Monte Carlo simulations. 

Design # ( )90ˆvar P from (21) ( )90ˆSD P  90P̂  

1 0.010 0.10 6.34 
2 0.027 0.16 7.06 
3 0.012 0.11 7.87 
4 0.013 0.11 7.24 

 
For all four designs, we see that the standard deviations are very small compared to the mean value, so k = 30 is 
sufficient. 

To ensure good space-filling properties, the training point locations are chosen from a Latin Hypercube Sampling 
(LHS) optimized for a maximum minimum distance (maximin) criterion. To each training point corresponds three 
response values: the ∆STE with no wear, the ∆STE with wear taken from the nominal Archard’s profile (written 

∆STEA), and the 90th percentile of ∆STE with random wear (estimated by ˆ 90
∆STEP ). Out of the 3,000 points, 825 are 

found as infeasible designs by the Filengrene software, so the final DoE consists of 2,175 observations. Table 3 
summarizes the values taken by the observations. 
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Table 3: Observation values of the DoE. 

∆STE (no wear) ∆STEA (Archard’s profile) ˆ 90
∆STEP  

Mean Range Mean Range Mean Range 
4.83 [ 0.49 ; 42.70 ] 7.31 [ 1.47 ; 37.75 ] 8.20 [ 2.12 ; 39.67 ] 

 

D. Data analysis : is a  robust optimization approach really necessary ? 
First, to validate our approach, we look at the correlations between the responses. Indeed, there is no evidence a 

priori  that the optimal design for the deterministic problem (2) is different from the robust optimal design (6).  

 
Figure 4: ∆STE without wear vs. ∆STE with Archard’s wear profile (∆STEA, left), and vs. the 90% percentile 
of ∆STE with randomly perturbed Archard’s wear (right).  

 

 
Figure 5: ∆STEA (with Archard’s wear profile) vs. ˆ 90

∆STEP  (30 Monte Carlo simulations). Left: full scale, right: 

zoom. 
 

From Figure 4, we see that the ∆STE with no wear differ in shape and amplitude from the ∆STE with wear. Hence, 
the deterministic and robust optimizations are likely to have different solutions. On the contrary, ∆STE from the 
nominal Archard’s profile and the percentile from the stochastic profile are strongly correlated, the percentile being 
shifted by a margin. So it seems that for large scale optimization, the two problems are equivalent. However, for 
small values of ∆STE (Figure 5, left), the correlation is weaker. It is difficult to determine if the difference is due to 

the noise in 90P̂ or not.  
To refine the analysis, we pick six points out of the 2,175 observations that have similar values of ∆STE with 

Archard’s wear (∆STEA between 2.4 and 2.5) but correspond to different designs. At each design, we run 500 MCS 
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to have an accurate estimate of the percentile (so the noise is negligible). The values of the accurate percentile 
estimates and the ∆STE with deterministic wear are reported in Table 4. 

 
 
Table 4: Comparison of six designs with similar ∆STEA. 

Design # xp xr ha0p ha0r hf0p hf0r 
∆STE 

(Archard) P90 *  

1 0.25 1.37 1.37 0.85 1.31 0.80 2.42 3.03 
2 0.18 0.69 1.54 1.01 1.08 1.05 2.44 3.07 
3 -0.21 1.11 0.90 1.23 1.61 0.90 2.46 3.34 
4 -0.02 1.10 1.03 0.81 1.41 1.00 2.42 3.21 
5 0.15 0.71 1.44 1.07 1.63 1.16 2.48 2.88 
6 -0.12 -0.08 1.25 1.19 1.63 1.61 2.45 2.84 

* Computed using 500 MCS 
 

 
From Table 4, we see that90P and ∆STE do not always behave similarly. For instance, designs #1 and #4 have the 
same best ∆STEA out of the 6 selected designs, but they have the third and fifth 90P . Design #5 is the worst design 
in terms of ∆STEA, but the second best in terms of 90P . This shows that optimizing ∆STE with nominal (Archard) 
and stochastic wear is likely to lead to different solutions.  
 
 

IV.  Optimization results 

A. Optimization without wear 
 

The penalized objective function fp(x) ( Formula (5) ) has been minimized with the Covariance Matrix Adaptation 

Evolution strategy (CMA-ES9). The penalty parameter p was set to 10 and 0.5ref∆ = . The 11 design variables 

were scaled by their range, the initial CMA-ES “step size” was 0.3, there were 10 parents and 5 child designs at each 
CMA-ES iteration, and the runs were 12000 analyses long with a restart (taking the best-so-far design as new 
starting point and re-setting the step size to 0.3) at 6000 analyses. The optimization was repeated from three initial 
points randomly chosen inside the bounds. One of these initial (therefore non optimal) design point is presented in 
Figure 6. The best performing gear out of the three optimizations, which we consider as the optimum of the 
deterministic gears design formulation, is given in Figure 7. Comparison of the starting and optimal designs show 
that, at the deterministic optimum, the teeth mesh has no play and the helix angle is at its upper bound. Large helix 
angles induce forces in the gears axes direction, but the induced axis force is not a criterion of the current design 
formulation (2) and (3). The optimum STE profile has four modes (i.e., four maxima) for one mesh period, versus 
one for the starting design shown in Figure 6. Each mode corresponds to a teeth pair entering or leaving contact. It is 
likely that larger teeth numbers would be optimal for minimizing the static transmission error variation by enabling 
more modes in a mesh period.  
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Figure 6 : Example of an optimization run starting design. Gears cross-section (left) and static transmission 
error (STE) in µµµµm (right). 0 0 0 00.2 , 0.2,  1.5,  1.4,  1.3,  1.17, 0.2, 0.1,p r p r p r ap arx x ha ha hf hf ρ ρ= − = = = = = = =  

00.05, 0.1, 10. 2 , 592, 1556, 11683, 2.45fp fr c s vmr g F STEρ ρ β σ= = = = = = = ∆ = . Although there are no 

teeth interferences, this design is infeasible w.r.t. the maximum slip ratio, the maximum von Mises stress and the 
contact pressure. All dimensions but the STE are in mm, stresses are in MPa. The STE is plotted for one meshing 
period. 
 

      
Figure 7 : Optimum design without wear. Gears cross-section (left) and STE in µµµµm (right). 0.49 ,  px =   

0 0 0 0 0 0.49,  1.20,  1.11,  1.00,  1.09, 0.0003, 0.19, 0.64, 0.23, 30.r p r p r ap ar fp frx ha ha hf hf ρ ρ ρ ρ β= = = = = = = = = =

1.66 , 1.47, 443, 938, 0.38c s vmr g F STEσ= = = = ∆ = . The design is feasible. All dimensions but the STE are 
in mm, stresses are in MPa. The STE is plotted for one meshing period. 
 
 
 

B. Optimization with wear based on a kriging metamodel  
 

Designing gears while accounting for probabilistic wear has been formulated in Equations (6) and (7) by 

replacing the  variation in static transmission error, ∆STE, by its 90th percentile, 90
STEP∆ . Section III has explained 

how 90 ( )STEP x∆  can be estimated by Monte Carlo simulations at a reasonable number (n = 2175) of design points x’s 

and then approximated by an ordinary kriging metamodel. The kriging metamodel is defined by its mean and 

variance at each x, ( ) ( )2andOK OKm sx x , respectively. A basic idea of our approach to robust optimization with 

kriging is, first, to make the costly Monte Carlo simulations before the optimization iterations and estimate the 
percentiles at the sampled points, then learn them with a kriging metamodel which, finally, replaces the percentile 

estimation during the optimization. Although kriging provides ( ) ( )2andOK OKm sx x , i.e., a complete Gaussian 

probability density function at each point x, we only use here the kriging mean, ( )OKm x , for two reasons. Firstly, 

contrarily to global optimization methods based on kriging such as EGO17, we do not iteratively update the kriging 

model. We are therefore not interested in its uncertainty ( )2
OKs x . Secondly, the data points gathered in ˆ 90P  and 
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learned by the kriging model are noisy since estimated from 30 Monte Carlo simulations. The kriging mean with 
nugget effect, ( )OKm x , acts as a filter  of the observations noise. 

 
All other optimization constraints, , , andc s vmr g Fσ , are calculated by a single call to the gears simulator 

because they are mainly insensitive to wear. To sum up, the robust optimization problem with kriging solved is, 
 

                                                         ( )OKMin  m x
x

                                                                        (22)                                          

by changing 0 0 0 0x , ,  ,  ,  ,  p r p r p rx x ha ha hf hf =    

such that there is no teeth interference and 

max

0 0 0 0

1.25, 2, Re,

-1 , 2,  0.8  , ,  ,  1.7.
c s vm hertz

p r p r p r

r g F P

x x ha ha hf hf

σ> < < <
≤ ≤ ≤ ≤

 

 
Like in the deterministic optimization problem, the constraints were handled by minimizing the penalized objective 
function (5) where ∆EST was replaced by mOK. The problem was solved using the CMA-ES optimization algorithm 
with the same settings as in the deterministic optimization of paragraph A, including the search length, restart and 
variables bounds handling. However, there are only six unknowns in the robust problem, the other variables being 
fixed at their deterministic optimal value, 0 0.0003, 0.19, 0.64, 0.23, 30.ap ar fp frρ ρ ρ ρ β= = = = =  

 
The best design found when solving (22) is described in Figure 8. We will henceforth refer to it as the “kriging 
design”.  

 
 

 
Figure 8 : Optimum robust design found using the kriging metamodel instead of the empirical estimator of the 
∆STE 90% percentile. 0 0 0 0 0.20, 1.26,  1.44,  1.49,  1.27,  0.92p r p r p rx x ha ha hf hf= = = = = = . 

90
ˆ1.97 (but 3.37 based on 500 simulations), 1.71 , 2.00, 558, 1189ok c s vmm P r g Fσ= = = = = = . The design is 

feasible. All dimensions but the STE are in mm, stresses are in MPa. The STE is plotted for one meshing period. 
 

C. Optimization with wear based on a deterministic noise representative 
 
An alternative formulation of the gears design problem with wear is to solve replace the percentile estimation by a 
single, deterministic, instance of wear. Here, this instance is simply chosen as the average of the wear profiles, i.e., a 
non-perturbed Archard’s wear profile since the perturbation are centered on it. The design problem solved with 
Archard’s wear is, 
 

                                                         ( )AMin  STE x
x

∆                                                                         (23)                                         

by changing 0 0 0 0x , ,  ,  ,  ,  p r p r p rx x ha ha hf hf =    
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such that there is no teeth interference and 

max

0 0 0 0

1.25, 2, Re,

-1 , 2,  0.8  , ,  ,  1.7.
c s vm hertz

p r p r p r

r g F P

x x ha ha hf hf

σ> < < <
≤ ≤ ≤ ≤

 

 

Note that the numerical cost of evaluating the objective function ASTE∆ involves two calls to the gears simulator : 

a first call to evaluate the contact forces and sliding rates, and a second call to remove material from the teeth 
surfaces and recalculate all gears performance criteria. This numerical cost is twice that of the deterministic 
formulation but it is much lower than a complete Monte Carlo simulation. Problem (23) is solved with the CMA-ES 
optimizer is the same fashion as all other optimization problems discussed in this article. The optimum design for 
this problem, called “Archard’s design”, is described in Figure 9 . 
 

     
Figure 9 : Optimum design with Archard's wear. (2D cross-section, left, and 3D drawing, right). 
 0.028, 0.86,  p rx x= = 0  1.26,  pha = 0 1.32,  rha = 0 0 1.20,  0.81p rhf hf= = .

90
ˆ1.49 (but 2.64 based on 500 simulations), 1.62 ,A cSTE P r∆ = = = 2.00, 631, 1115s vmg Fσ= = = . 

 
 

D. Comparison of approaches 
 
The four methods that have been seen up to now for designing gears are now compared :  
 

1. Neglecting wear and solving Equations (2) and (3). The solution to this deterministic problem was shown 
in Figure 7. The numerical cost of the method is one call to the gears simulator per optimization analysis 
(objective function and constraints). 

2. Replacing Monte Carlo simulations with a kriging metamodel, as stated in Equation (22). The obtained 
optimum design was described in Figure 8. The numerical cost of the procedure is one call to the gears 
simulator plus one call to the metamodel (negligible) per optimization analysis. In addition, there is an 
initial cost for calculating the design of experiments (k n× simulations) and inverting the n n×  kriging 
covariance matrix ∆K .  

3. Optimizing the static transmission error for a deterministic nominal wear profile (Archard’s profile). This 
formulation is stated in Equation (23) and the resulting design described in Figure 9. Each optimization 
analysis costs two calls to the gears simulator. 

4. Designing the gears by selecting the best point of the initial maximin latin hypercube design of experiments 
(DoE). There are npoints where k  Monte Carlo simulations (MCS) are performed for a total cost of  

k n×  simulations. Note that this DoE was used to build the kriging metamodel. The so-called “empirical 
MCS design” is described in Figure 10. 
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Figure 10 : Empirical MCS design, i.e., best design of the original latin hypercube set of points with 30 Monte 
Carlo simulations per point. 0.004, 0.37,  p rx x= − = 0  1.37,  pha = 0 1.51,  rha = 0 0 1.27,  0.87p rhf hf= = . 

90 90
ˆ ˆ2.69 (but 3.29 with 500 simulations), 1.72 ,cP P r= = = 1.96, 614, 1228s vmg Fσ= = = . 

 
 

Table 5 summarizes the designs associated to each approach. The last column (90P ) is the targeted design criterion, 
estimated with 500 Monte Carlo analyses. It is clear from Table 5 that neglecting wear from the ∆STE calculation 
(row 1) leads to designs with poor ∆STE performance in the presence of wear. Accounting for wear (compare rows 

2 to 4 to row 1) decreases the pinion addendum modification coefficient px   and increases its counterpart rx . It 

also increases the teeth heights ('s and 'sha hf ). Minimizing the kriging wear prediction is an improvement over 

neglecting wear. This method yielded a design that was not present in the initial DoE, but its 90P performance is 
similar to that of the best design in the DoE. This is because the initial 6-dimensional design space is quite large for 

fitting a metamodel with about 2000 data points. The kriging 90P prediction at the kriging optimum design is of 
poor quality (1.97 versus 3.37 µm). This is another piece of evidence that optimizing with a metamodel requires an 
iterative enrichment of the DoE around the optimum design area (other examples can be found in, e.g., Ref. 17). The 
overall best design was the Archard’s design. For long optimization runs, it is also the most expensive method out of 
the ones considered here since each evaluation of the objective function needs two gears simulations. Nevertheless, 
for the 3*12000 analyses long optimization runs performed here, this extra-cost remains inferior to that of building 
the kriging database (3000*30 analyses). In robust optimization problems where i) the number of variables is of the 
order of 10 or less and ii)  one knows a noise sample leading to a reliable design, the representative noise sample 
approach is to be preferred.  
 
 
Table 5 : comparison of optimum gears for various formulations : without wear, with Archard's wear, wi th  
kriging percentile approximation, and with Monte Carlo simulations (best point of LHS). All these designs 
are feasible. 

Design 
Numerical cost 
(in simulation call) xp xr ha0p ha0r hf0p hf0r 

∆STE 
used 
criterion 

P90 *  

1) without 
wear 

1 per analysis 
0.49 0.49 1.20 1.11 1.00 1.09 0.38 6.38 

2) Archard’s 
wear 

2 per analysis 
-0.028 0.86 1.26 1.32 1.20 0.81 1.49 2.64 

3) kriging 1 per analysis + initial DoE 0.20 1.26 1.44 1.49 1.27 0.92 1.97 3.37 
4) Monte 
Carlo 
(30 MCS / 
LHS point) 

Initial DoE 

-0.004 0.37 1.37 1.51 1.27 0.87 2.69 3.29 

* Computed using 500 MCS 
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V. Conclusions and perspectives 
This article represents a first step in the optimization of gears while accounting for random teeth wear through 

the static transmission error (STE). Two robust optimization approaches have been proposed where the statistical 
estimation of the performance (here a 90% percentile of the STE variation) is replaced either by a kriging 
metamodel or by fixing the noise to an adequate value (here the average wear profile). This study confirms that the 
kriging approach is feasible because we observed that it leads to reasonable designs. However, it is seen that the 
kriging metamodel needs to be updated to allow a convergence to optimal designs. This is the methodological 
perspective of this article. The optimization with the wear profile fixed at its average value leads to the overall best 
design and is the currently advised method for solving the stated gears design problem. Regarding gears design, the 
results presented here should be completed by varying the number of teeth and considering teeth profile corrections.  
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