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Abstract 

Reliability based design with expensive computer models becomes computationally 

prohibitive when reliability is estimated by sampling methods. While designing for high 

reliability with few samples, techniques like tail models are widely used to extrapolate 

reliability levels from observed levels to unobserved levels. One such approach, the multiple 

tail median approach uses two classical tail modeling techniques and three additional 

extrapolation techniques in the performance space to find reliability estimates in the 

unobserved levels. The method provides the median as the best estimate and the range of the 

five methods as an estimate of the order of the magnitude of error in median. This work 

explores the usage of multiple tail median approach to estimate reliability in the framework 

of reliability-based design. Also, bootstrap technique is employed to obtain bounds on the 

samples and consequently to obtain  a conservative estimate of reliability. 

Keywords: Reliability, Cumulative distribution function, Tail modeling, Monte carlo 

simulation 

Nomenclature 
D = Tip displacement. Eq. (15) 

D0 = Allowable deflection. Eq. (15) 

E = Young’s Modulus. Eq. (15) 

( )
G

F g  = CDF of G, Eq. (6) 

( )
G

F u  = CDF of G at u. Eq.(6)  

                                                 
1
 Postdoctoral Research Associate, AIAA member 

2
 Associate Professor, AIAA Member 

3
 Distinguished Professor, AIAA Fellow 

50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference<br>17th
4 - 7 May 2009, Palm Springs, California

AIAA 2009-2256

Copyright © 2009 by Palaniappan Ramu. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



2 

 

Fu(z) = Conditional CDF, Eq. (4) 

,
ˆ ( )F zξ ψ  = Approximated conditional CDF, Eq. (3) 

X
F  = Load in X direction. Eq. (14) 

Y
F  = Load in Y direction. Eq. (14) 

G = Performance measure. Eq. (2) 

Gd = Displacement performance measure. Eq. (15) 

Gp = (p×N)
th

 quantile of G. Eq. (7) 

Gs = Stress performance measure. Eq. (14) 

gc = Capacity. Eq. (8) 

gr = Response. Eq. (8)  

L = Length. Eq. (15) 

N = Total number of samples 

Nex = Number of exceedances (samples in tail region) 

Pi = Empirical CDF. Eq. (10) 

p = Probability 

Pf = Failure probability. Eq. (1) 

R  = Yield strength. Eq. (14) 

Sr = reciprocal of conventional safety factor, Eq. (8) 

t = thickness. Eq. (14) 

u = threshold for samples assumed to lie in tail region, Eq.(2) 

w = width. Eq. (14) 

z = exceedance, Eq. (2) 

β = Reliability index. Eq. (1) 
η  = mean(error in MTM)/range of the five estimates. 

ξ  = Shape parameter, Eq. (3) 

comp
σ  = Computed stress. Eq. (14) 

Φ = Standard normal cumulative distribution function (CDF) 
ψ  = Scale parameter, Eq. (3) 

Beta-LT = Fit a linear polynomial to the tail data Inverse normal cumulative    

   distribution function applied to the CDF of Sr..Eq. (11) 
Beta-QH = Fit a quadratic polynomial to half of the data. Inverse normal    

    cumulative distribution function applied to the CDF of Sr. Eq. (12) 

GPD = Generalized Pareto Distribution 

LnBeta-QT = Fit a Quadratic polynomial to the tail data. Logarithmic   

    transformation applied to the beta transformed CDF. Eq. (13) 

ML = Maximum Likelihood 

MTM = Multiple Tail Median 

Reg = Regression 

1. Introduction 

Simulation approaches like Monte Carlo Simulation (MCS) are widely used for reliability 

estimation though they are computationally expensive. MCS is preferable over analytical 

approaches because they can address multiple failure modes; handle complex performance 

functions, which is unlike analytical approaches. Reliability analysis is an iterative process and 

using MCS is computationally prohibitive. Researchers develop variants of MCS or other 

approximation methods like response surface or surrogate metamodels that replace the expensive 

simulations. 
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 High reliability translates to small probability of failure, determined by the tails of the 

statistical distributions. Since the safety levels can vary by an order of magnitude with slight 

modifications in the tails of the response variables (Caers and Maes [1], 1998), the tails need to be 

modeled accurately. Application of crude MCS is not possible because of the computational 

expense. Therefore, extrapolation techniques can be used.  Statistical techniques from extreme 

value theory (referred to as classical tail modeling techniques here) are available to perform this 

extrapolation. The basic idea in tail modeling techniques is to approximate the conditional 

cumulative distribution function (CDF) above a certain threshold by the Generalized Pareto 

Distribution (GPD) (Castillo [2], 1988). In order to do this, one needs to estimate the parameters 

of GPD. There are several competing methods available for parameter estimation. This paper uses 

the maximum likelihood and least square regression techniques. 

 The multiple tail median approach (MTM) uses five different data fitting techniques. In 

addition to the GPD based techniques, it uses three alternate extrapolation techniques in the 

performance space. The first technique applies a nonlinear transformation to the CDF of the 

performance measure and approximates the tail of the transformed CDF using a linear polynomial 

fit to about top 10% of the data. The second technique approximates the upper half of the 

transformed CDF by a quadratic polynomial. The third technique applies a logarithmic 

transformation to the already transformed CDF and approximates the tail with a quadratic 

polynomial. It is to be noted that all five techniques do not approximate the functional expression 

of the model output; rather they approximate the tail of CDF.  Thus, they do not need to be 

tailored to any functional form of the output. The MTM applies all the techniques simultaneously 

and use the median of the five estimates as the best estimate. 

 The MTM can be used for estimating reliability at target levels for each design point in a 

Design Of Experiment (DOE). Once the reliabilities are computed, a response surface is fitted to 

the estimates as a function of the design variables. This response function can further be used for 

constraint evaluation in a RBDO set up. 

 The paper is structured as follows. Classical tail modeling concepts and alternative 

extrapolation schemes and the proposed multiple tail median (MTM) approach is presented in 
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Section 2. MTM is applied to an engineering example in Section 3 and the RBDO using MTM is 

discussed in Section 4.  

 

2. Classical Tail Modeling and Alternative Tail Extrapolation Schemes 

The theory of tail models comprises a principle for model extrapolation based on the 

implementation of mathematical limits as finite level approximations. Since several advantages are 

reported by working in performance measure space (Ramu et al., [4], 2006), it is logical to attempt 

to perform tail modeling in the performance measure space to estimate quantities at unobserved 

levels. Reliability index and failure probability Pf are related as: 

 ( )f
P β= Φ −  (1) 

where ( )Φ i  is the CDF of the standard normal random variable. 

 In tail modeling, the interest is to address the excesses over a threshold. In these situations, 

the generalized pareto distribution (GPD) arises as the limiting distribution. The concept of GPD 

is presented in Figure 1. Let G be a performance measure which is random and u be a large 

threshold of G. The observations of G that exceed u are called exceedance, z, which is expressed 

as: 

 z G u= −  (2) 

The conditional CDF ( )
u

F z of the exceedance given that the data G is greater than the threshold u, 

is modeled fairly well by the GPD. Let approximation of ( )
u

F z  using GPD be denoted by 
,

ˆ ( )F zξ ψ  

where  and ξ ψ  are shape and scale parameters respectively. For a large enough u, the distribution 

function of ( )G u− , conditional on G > u, is approximately written as (Coles [5], 2001): 

 ( )

1

,

1 1  if 0
ˆ

1 exp   if =0

z

F z

z

ξ

ξ ψ

ξ
ξ

ψ

ξ
ψ

−

+


 − + ≠


= 
  

− −  
 

 (3) 
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In Eq. (3), max(0, )A A
+
=  and 0z > . In GPD, ξ  plays a key role in assessing the weight of the 

tail. Equation (3) can be justified as a limiting distribution as u increases (Coles [5], 2001, p. 75-6). 

 It is noted that conditional excess CDF ( )
u

F z  is related to the CDF of interest ( )
G

F g  

through the following expression: 

 
( ) ( )

( )
1 ( )

G G

u

G

F g F u
F z

F u

−
=

−
 (4) 

From Eq. (4), the CDF of G can be expressed as: 

 ( ) (1 ( )) ( ) ( )
G G u G

F g F u F z F u= − +  (5) 

Substituting ( )
u

F z from Eq. (2), Eq. (5) becomes: 

 ( )
1

( ) 1 1 ( ) 1 ( )
G G

F g F u G u
ξξ

ψ

−

+

= − − + −  (6) 

For simplicity of presentation, only the case of 0ξ ≠  is considered here. The shape and scale 

parameters can be estimated using either the maximum likelihood estimation or least-square 

regression method. Let N be the total number of samples and p be a probability level. Once we 

obtain estimates of the parameters as ξ̂  and ψ̂ , it is possible to estimate the (p×N)
th

 quantile of G 

denoted as Gp by inverting Eq. (6): 

 � �
�

ɵ

ɵ

1 1
( ) 1

1 ( )
p

G

p
G F p u

F u

ξ
ψ

ξ

−

−
  − = = + −  −  

 (7) 

 In structural applications, the performance measure is often defined as a difference between 

the capacity of a system gc (e.g., allowable strength) and the response gr (e.g., maximum stress). 

For the convenience of the following developments, we normalize the performance measure using 

the capacity. Thus, we have 

 1c r

r

c

g g
G S

g

−
= = −  (8) 
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where Sr is the reciprocal of the conventional safety factor. Failure occurs when G > 0, while the 

system is safe when G < 0. For the performance measure in the form of Eq. (8), we need to 

approximate the upper tail distribution.  

 The accuracy of this approach depends on the choice of the threshold value u. Selection of 

threshold is a tradeoff between bias and variance. If the threshold selected is too low, then some 

data points belong to the central part of the distribution and do not provide a good approximation 

to the tails. On the other hand, if the threshold selected is too high, the data available for the tail 

approximation are too few and this might lead to excessive scatter in the final estimate. Boos [7] 

(1984) suggests that the ratio of Nex (number of tail data) over N (total number data) should be 

0.02 (50 < N < 500) and the ratio should be 0.1 for 500 < N < 1000. Hasofer [8], (1996) suggests 

using 1.5
ex

N N= . Here, we use the 90% quantile as the threshold. 

 There are several methods such as maximum likelihood (MLE) and regression to estimate 

the parameters, ξ̂  and ψ̂ . MLE is based on a likelihood function, which contains the unknown 

distribution parameters. The values of these parameters that maximize the likelihood function are 

the maximum likelihood estimators.The method of least squares minimizes the sum of the 

deviations squared (least square error) from a given set of data. The parameters are obtained by 

solving the following minimization problem 

 ( )2

,
( )

N

G i i

i n

Min F g P
ξ ψ

=

−∑  (9) 

where Pi is the empirical CDF and FG(gi) is the CDF of G in Eq. (6). The empirical CDF is 

computed as:  

 ,    1, ,
1

i

i
P i N

N
= =

+
…  (10) 

where N is the total number of samples. Least square regression requires no or minimal 

distributional assumptions.  

 In addition to the previous two classical tail modeling techniques, additional tail 

extrapolation techniques are proposed to estimate Sr, the reciprocal of the safety factor for low 
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failure probability that is sufficient only to estimate Sr for substantially high failure probability 

(low reliability index). Failure probability can be transformed to reliability index by using Eq. (1). 

The same transformation is applied here to the CDF of Sr. The tail of the resulting transformed 

CDF is approximated by a linear polynomial in order to take advantage of fact that normally 

distributed Sr will be linearly related to the reliability index. This is expressed as: 

 
1 2

Beta-LT :
r

S C C β= +  (11) 

Since this approximation will not be accurate enough if Sr follows distributions very different from 

normal, the second technique approximates the relationship between Sr and reliability index from 

the mean to the maximum data (about half of the sample) using a quadratic polynomial and 

represented as:  

 2

3 4 5
Beta-QH: 

r
S C C Cβ β= + +  (12) 

The third technique further applies a logarithmic transformation to the reliability index of tail data 

that tends to linearize the tail of the transformed CDF. This tail is approximated using a quadratic 

polynomial, which is expressed as: 

 2

6 7 8
LnBeta-QT: (ln( )) (ln( ))

r
S C C Cβ β= + +  (13) 

Here Ci, i = 1,…, 8, are the regression coefficients. The three transformations are described with 

the help of Figure 2. A data set of N = 500 with a mean of 10 and variance 9 following a 

lognormal distribution is used to illustrate the three techniques. In this paper we use least square 

regression to find the coefficients. However, MLE approach can also be used to find the 

coefficients. 

  The alternate extrapolation techniques and classical tail modeling techniques are 

conceptually the same. The major difference in perceiving the two classes is that the classical tail 

modeling techniques model the CDF of Sr, whereas the extrapolation schemes approximates the 

trend of Sr in terms of reliability index. The multiple tail median (MTM) approach applies the five 

techniques simultaneously and uses the median of the five estimates as a compromise best 

estimate. It is observed that the median is a more robust estimate than the mean, because the 
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median is less sensitive to the outliers than the mean. The MTM was demonstrated on several 

statistical distributions and the performance compared in Ramu et al (2008). 

3. Application of multiple tail median for reliability estimation of a cantilever beam 

Consider the cantilevered beam design problem, shown in Figure 3 (Wu et al., [11], 2001).  The 

objective of the original problem is to minimize the weight or, equivalently, the cross sectional 

area, A w t= ⋅ subject to two reliability constraints, which require the reliability indices for 

strength and deflection constraints to be larger than three.  The expressions of two performance 

measures are given as 

Strength:  
2 2

600 600
X Y

comp

s

F F
w t wt

G
R R

σ
 + 
 = =  (14) 

Tip Displacement:  
2 23

2 2

4

O O

d

Y X

D D
G

D F FL

Ewt t w

= =
   +   
   

 (15) 

where R is the yield strength, FX
 
and FY are the horizontal and vertical loads and w and t are the 

design parameters. L is the length and E is the elastic modulus. R, FX, FY, and E
 
are random in 

nature and are defined in Table 1.  It is noted that the performance measures are expressed in a 

fashion such that failure occurs when Gs or Gd is greater than one. In this example, we consider 

system failure case with both failure modes. The optimal design variables taken from Qu and 

Haftka [12], (2004) for a system reliability case are presented in Table 2. The value of 

corresponding reliability index is three. The contribution of each failure mode is also presented in 

Table 2. Five hundred samples are generated, and for each sample, the critical Sr (maximum of the 

two) is computed. The conditional CDF of Sr
 
can be approximated by classical techniques and the 

relationship between Sr
 
and reliability index can also be approximated by the three alternative 

extrapolation techniques and by the MTM approach. These calculations are repeated for 1,000 

different samples and the errors are compared in Tables 3 and 4. The accurate estimates of  Sr are 

calculated using MCS of sample size 1e7. From Table 3, it is observed that the Beta-LT performs 

the best at all seven reliability indices followed by the Beta-QH as the second best. MTM 

consistently performed close to the second best estimate. Table 4 shows that the MTM error is 
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closer to the best error than to the worst error. 

 Figure 4 presents the box plot of η . There is a small percentage of cases when the range is 

not a conservative estimate of the error, but for most of the cases the range overestimates the error 

by factors of 2 to 10.  

 To show the reduction in computational requirement due to the tail extrapolations, an MCS 

study is performed. 100 repetitions of Sr
 
estimates with 500,000 samples and the corresponding 

standard deviation are computed and presented in Table 5. At the reliability index of 4.2, the 

standard deviation in Sr estimate is 0.04, which is the same level with that from MTM using 500 

samples. Therefore, for a same level of accuracy, the reduction in computational effort is about 

three orders of magnitude (500,000 to 500). 

4. RBDO using MTM 

RBDO is a two-stage methodology. The first stage evaluates the cost function, which is a function 

of design variables. The second stage estimates the reliability measure for constraint evaluation. 

Evolution of RBDO methods shows that researchers initially used failure probability in the 

constraint and because of the variation of huge orders of magnitude, they switched to reliability 

index. Though reliability index performed well for most problems, it had some singularity 

problems. Recently researchers showed that inverse measure (Qu and Haftka, 2004, Tu et al, 

2000) can be successfully used for efficient RBDO. However, in the context of simulation 

methods to estimate these inverse measures, though the accuracy was increased and smoother 

convergence to optimal design was achieved, the computational expense remained high. Here, we 

propose to use the multiple tail model approach to estimate the inverse measure and use it in the 

evaluation of reliability constraint, in the RBDO framework.  

One way to alleviate the expense involved in repeatedly accessing the computer models for 

reliability estimation is to construct response surface approximation and use them instead of the 

computer models. In addition, the noise problems that arise when using MCS with limited samples 

is also a motivation to use response surface approximations (RSA). RSA typically employ low 

order polynomials to approximate the inverse measures in terms of design variables to filter out 

noise and facilitate design optimization. These response surfaces are called design response 
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surface (DRS) and are widely used in the RBDO (e.g. Sues et al. 1996). Here, we construct RSA 

of inverse measure reciprocal in terms of design variables based on a design of experiment. The 

inverse measure reciprocals are estimated at each design point in the DOE by Multiple Tail Model. 

Moreover, the principle of separable monte carlo is adopted to increase the accuracy of inverse 

measure reciprocal estimates. 

Response Surface Approximation 

MCS features several advantages such as easy implementation, robustness but large number of 

analyses is required to obtain a good estimate of reliability measure. In addition, it also produces 

noisy response and hence is difficult to use in optimization. RSA typically solve the two problems 

– simulation cost and noise from random sampling. However, in order to estimate the inverse 

measure at the design points in DOE, MCS requires large number of samples. Here, MTM 

approach is used to obviate the need for large number of analyses. Once the MTM estimates are 

obtained, response surface approximations are constructed in the design variable space, which is 

used in optimization. 

RSA fit a closed form approximation to the limit state function to facilitate reliability analysis. 

RSA is very attractive because it helps avoiding the calls to expensive computer simulations like 

finite element analysis for response calculation. RSA usually fits low order polynomial to 

response in terms of random variables  

      ˆ ( ) ( )Tg x Z x b=            (16) 

Where ˆ ( )g x denotes the approximation to the limit state function ( )g x . ( )Z x is the basis 

function vector that usually consists of monomials and b is the coefficient vector estimated by 

least square regression . RSA can be used in different ways. Qu and Haftka (2004) present a 

survey of modes in which RSA can be used as global RSA or local RSA. They construct a design 

response surface (DRS) of PSF in terms of design variables. At each design point in the DOE, they 

use 1e7 samples to estimate PSF. Here, we use 500 samples and MTM at each design point to 

estimate the inverse measure. Standard error metrics are used to assess the quality of response 

surface approximation.  

RBDO of a cantilever beam  
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The cantilever beam example treated in previous section with a system failure mode is considered 

here. MTM is used to estimate inverse measures. The objective of the problem is to reduce the 

weight of the cantilever beam subject to different reliability levels. The reliability constraint is 

expressed in terms of PSF. Since PSF is tied to target failure probability, designs can be made with 

respect to a target failure probability or reliability index. Three different target levels are 

considered. MTM is used to estimate the inverse measure required for the reliability constraint 

evaluation. However, in order to avoid repeated calls to MTM at every design point the optimizer 

visits and to facilitate smooth convergence, a design response surface of inverse measure is 

constructed in terms of design variables width w and thickness t. This response surface is used in 

reliability estimation. The problem description is presented below: 

 

,
min  Area

1
st     PSF= ( , , , , ) 1     

w t

r

w t

f w t X Y R
S

= ×

= ≥
 (17) 

The range for the design response surface is presented in Table 6 is selected based on the mean 

based deterministic design, w=1.9574” and t=3.9149 (Qu and Haftka, 2004).  

A 16 design points Latin Hypercube DOE is used. In addition, 4 samples points in the corners of 

the DOE to avoid extrapolation errors are also considered. At each of the 20 design points, 500 

samples of the random variables X, Y and R are generated to compute the reciprocal of system 

safety factor. At each design point, MTM is used to estimate the safety factor reciprocal at a 

required target reliability index. The MTM estimates at the design points are used to construct a 

cubic response surface of reciprocal of system safety factor in terms of design variables w and t. A 

cubic polynomial with two variables has 10 coefficients. Therefore 20 design points should be 

sufficient to construct the response surface. Once the RSA is constructed, it is used for reliability 

estimation in the RBDO. The error metrics of the RSA is presented in Table 7. In order to 

compare the optimal designs using MTM estimate,1e7 samples are used to estimate reciprocal of 

safety ratio at all the design points and they are used to construct a high fidelity response surface 

whose error metrics are also presented in Table 7. The PRESS-RMS error for the low fidelity 

response surface shows that it is not as good as the high fidelity response surface. Still, it is a fairly 
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good response surface. The optimal designs obtained using both the response surfaces are 

compared in Table 8. The PSF computed using 1e7 samples at designs obtained from the low 

fidelity response surface is also presented in Table 8. At the optimal designs obtained at different 

target reliability indices, MTM can be used to predict errors in the estimate. The predicted mean of 

error and the actual mean of error with the mean of range for a single simulation are presented in 

Table 9. The mean of range can be obtained as a product of MTM and from our experience; the 

ratio of mean of error to mean of range is between 0.15 to 0.35. Thus, the bounds of the predicted 

mean of the error can be computed. These numbers are compared to the actual mean of error for 

that particular simulation and in all the 3 cases; the actual values were between the bounds 

predicted. These results further strengthen our conclusion that the mean of the range can be used 

as a good approximation of the mean of the error. 

5. Bootstrap Technique for Conservative Reliability Estimates 

When only a small number of samples are available, the bootstrap method can provide an 

efficient way of estimating the distribution of a statistical parameter (for example, the mean of a 

population) using the re-sampling technique (Efron,1982 and  Chernick,1999).  The idea is to 

create many sets of bootstrap samples by re-sampling with replacement from the original data. 

Then, the distribution of can be approximated by the empirical distribution of the parameter, 

estimate of θ computed from each set of the bootstrap samples. This method only requires the 

initial set of samples. Each re-sampling can be performed by randomly selecting data out of the 

initial samples. Since the re-sampling procedure allows selecting data with replacement, the 

statistical properties of the re-sampled data are different from that of the original data. This 

approach allows us to estimate the distribution of any statistical parameter without requiring 

additional data.  

The standard error or confidence intervals of the statistical parameter can be estimated from the 

bootstrap distribution. However, the bootstrap method provides only an approximation of the true 

distribution because it depends on the values of the initial samples. In order to obtain reliable 

results, it is suggested that the size of the samples must be larger than 100 [Efron, 1982].  
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Here, the idea is to use the bootstrap technique to obtain confidence bounds on the tail estimates. 

The samples beyond the threshold is resampled many times. With every resampled sample, the 

inverse measures are obtained for the corresponding failure probability. Repeating this n times, 

provides one with n estimates of inverse measure for a particular probability. Now, percentile 

bounds of the inverse measure for each probability in the tail can be obtained. We propose to 

model the region beyond the current tail data and its bounds using MTM approach. This provides 

one with an estimate of inverse measure and corresponding bounds for a particular probability. In 

section 3 it was discussed that the range of the different methods can be used to approximate the 

error in the MTM estimate. But this approximation is very conservative often times. Instead, here 

we propose to use the upper bound from the bootstrap technique as a conservative measure 

(dictates higher probability of failure compared to the actual failure probability) of safety.  

For the example problem presented in Section 4 is used here to demonstrate the obtaining 

conservative estimates using bootstrap technique. Table 10 shows the results for conservative 

estimates. At each reliability index, the ratio of the worst and best error over MTM and MTM 

upper bound errors are presented. The 75% values of the ratios show that the estimated obtained 

from the MTM-upper bound are conservative compared to the MTM error. In term of error, the 

MTM estimate might be better. But the error might be in a conservative or non-conservative sense. 

Here, conservativeness refers to a higher estimation of inverse measure. The difference between 

the actual and the estimate is negative if the estimate is conservative. Table 11 shows the 

conservativeness of using MTM upper bound. It can be observed that the errors are negative 

predominantly when using MTM upper bound. This shows that the upper bound obtained from 

bootstrap and further tail fitted, can be used as a conservative reliability estimate in the 

extrapolated zone.  

 

6. Conclusions  

Multiple Tail Median (MTM) approach can be successfully used for estimating reliability at 

unobserved levels using limited samples. The MTM approach not only provides the user with an 
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estimate of reliability but also magnitude of its error. These reliability estimates can be used to 

construct a response surface in the design space, which can be used to evaluate the constraint in 

RBDO. This work showed that RBDO can be successfully performed using MTM. Also, it was 

shown that bootstrap techniques can be used to obtain conservative estimate of reliability. 
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   (c) 

 
Fig. 2. Transformation of the CDF of safety factor reciprocal (Sr). (a) CDF of Sr. (b) 
Inverse standard normal cumulative distribution function applied to the CDF (c) 

Logarithmic transformation applied to the reliability index. 

 

 
 

 

 

 

 

 

 

 
 

Fig. 3. Cantilever beam subjected to horizontal and vertical loads 

 
Fig. 4. Cantilever beam. Boxplot of η . 
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Tables 

 

Table 1. Random variables for the cantilevered beam problem 
Random 

Variable 

FX FY R E 

Distribution Normal 
(500,100)lb 

Normal  
(1000,100)lb 

Normal  
(40000,2000) psi 

Normal  
(29E6,1.45E6) psi 

 
 

Table 2. Properties of the cantilever beam 

L 100” 
w 2.6041 

t 3.6746 

Do 2.145 

1f
P  0.00099 

2f
P  0.00117 

1 2f f
P P∩  0.00016 

1f
P - Failure probability in mode1. 

2f
P - Failure probability in mode 2.  

 
 

Table 3. Cantilever Beam. Summary of errors in Sr  for different techniques at different 
reliability indices  (mean and median over 1000 repetitions of 500 samples) 

 
Rel Index   3 3.2 3.4 3.6 3.8 4 4.2 

Mean 0.026 0.034 0.044 0.056 0.070 0.086 0.106 GP-MLE 

Median 0.022 0.030 0.039 0.051 0.063 0.075 0.093 

Mean 0.056 0.080 0.113 0.159 0.225 0.323 0.478 GP-Reg 

Median 0.036 0.048 0.062 0.078 0.095 0.110 0.132 

Mean 0.027 0.033 0.038 0.044 0.050 0.056 0.062 LnBeta-QT 

Median 0.022 0.026 0.031 0.036 0.041 0.046 0.052 

Mean 0.019 0.021 0.024 0.026 0.028 0.031 0.034 Beta-LT 

Median 0.016 0.018 0.020 0.022 0.024 0.027 0.030 

Mean 0.022 0.026 0.030 0.035 0.040 0.045 0.051 Beta-QH 

Median 0.019 0.022 0.026 0.031 0.035 0.039 0.044 

Mean 0.022 0.027 0.032 0.037 0.043 0.048 0.055 MTM 

Median 0.018 0.022 0.026 0.029 0.033 0.038 0.044 

 
 

Table 4. Cantilever Beam. Summary of ratios of lowest and highest errors to MTM error  
(mean and median over 1000 repetitions of 500 samples)  

 
Rel 

Index 
Lowest Error/MTM Error Highest Error/MTM Error 

 25%ile Mean Median 75%ile 25%ile Mean Median 75%ile 

3 0.28 0.55 0.58 0.81 1.67 10.02 2.44 5.36 

3.2 0.27 0.53 0.55 0.78 1.77 16.02 2.79 6.14 



18 

 

3.4 0.26 0.52 0.53 0.76 1.84 11.48 3.01 7.47 

3.6 0.27 0.52 0.51 0.76 1.92 16.89 3.26 7.76 

3.8 0.26 0.52 0.52 0.77 1.96 15.00 3.53 8.77 

4 0.26 0.53 0.53 0.77 2.03 37.08 3.72 9.82 

4.2 0.26 0.51 0.50 0.75 2.08 26.74 3.83 9.93 

 

Table 5. 
r

S *estimates (without tail extrapolation) and standard deviation* at different 

reliability indices.  
Rel Index 3 3.2 3.4 3.6 3.8 4 4.2 

r
S  1.012 1.032 1.05 1.07 1.09 1.12 1.13 

SD 0.003 0.004 0.01 0.01 0.01 0.02 0.04 

*Mean of 100 repetitions of 5e5 samples each 
 

 Table 6. Range of design variables for the design response surface 

System Variables W t 

Range 1.5” to 3.0”  3.5” to 5.0” 

 
Table 7. Error metrics for the high fidelity and low fidelity response surface 

Samples High Fidelity:1e7 Low Fidelity: 500 

Rel Index 3 3.6 4.2 3 3.6 4.2 

RMS 0.02 0.03 0.04 0.03 0.07 0.09 
RMS-Pre 0.02 0.04 0.05 0.04 0.09 0.14 

Rsq 0.99 0.99 0.99 0.99 0.99 0.99 
Rsq-Adj 0.99 0.99 0.99 0.99 0.99 0.99 

Press-RMS 0.05 0.11 0.08 0.08 0.15 0.29 
Rsq-Pred 0.99 0.99 0.99 0.99 0.98 0.95 

 
Table 8. Optimal designs using high fidelity and low fidelity response surface 
Samples High Fidelity:1e7 Low Fidelity: 500 PSF* 

Rel Index w t A w t A  
3 2.578 3.756 9.684 2.7498 3.5 9.6243 1.0008 
3.6 2.611 3.765 9.831 2.6213 3.8083 9.9829 0.9976 
4.2 2.949 3.5 10.325 2.9796  3.5 10.429 1.0112 

* Estimates with 1e7 samples at optimal designs obtained using low fidelity response surface 

 
 Table 9. Bounds on the predicted mean of error using the mean of the range 

 

 

 

 

 

 

 

Rel Index 3 3.6 4.2 

Mean(Range) 0.117 0.109 0.356 
Pred Mean(Err) 0.017-0.041 0.016-0.038 0.05-0.12 
Act –Mean(Err) 0.026 0.023 0.109 
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Table 10. Cantilever Beam. Summary of Lowest and Largest error to MTM and MTM – 
Upper bound estimates 

 
Rel 
Index 

Lowest Error/MTM Error Lowest Error/MTM-Upper Bound Error 

 25%ile Mean Median 75%ile 25%ile Mean Median 75%ile 

3 0.27  0.53  0.52  0.77  0.09  0.25  0.85  0.53  

3.2 0.24  0.50  0.51  0.75  0.11  0.25  7.01  0.54  

3.4 0.24  0.49  0.50  0.72  0.11  0.28  0.59  0.55  

3.6 0.25  0.50  0.50  0.71  0.11  0.27  2.34  0.57  

3.8 0.24  0.51  0.51  0.73  0.14  0.30  0.65  0.56  

4 0.26  0.50  0.52  0.78  0.14  0.29  0.65  0.56  

4.2 0.26  0.49  0.51  0.76  0.13  0.30  0.76  0.58  

 Highest Error/MTM Error Highest Error/MTM-Upper Bound Error 

3 1.67  2.45  10.16  4.83  0.86  1.72  4.79  3.63  

3.2 1.77  2.63  11.55  5.57  0.95  1.91  16.31  4.26  

3.4 1.86  2.86  30.16  6.19  1.13  2.02  5.14  4.71  

3.6 1.91  2.97  15.84  6.74  1.27  2.18  145.70  5.00  

3.8 1.97  3.15  18.71  7.06  1.36  2.21  57.57  5.38  

4 2.03  3.27  18.83  7.96  1.41  2.34  8.12  5.88  

4.2 2.05  3.24  18.53  9.04  1.47  2.36  23.80  6.01  

 

 

 

Table 11. Cantilever Beam. Summary of conservativeness using MTM and MTM 

upper bound estimates 

  

 Error using MTM estimate 
Error using MTM-Upper Bound 
Estimate 

 25%ile Mean Median 75%ile 25%ile Mean Median 75%ile 

3 -0.022 -0.002 -0.004 0.015 -0.049 -0.022 -0.025 0.001 

3.2 -0.024 0.001 -0.004 0.018 -0.053 -0.021 -0.025 0.008 

3.4 -0.026 0.003 -0.002 0.025 -0.055 -0.019 -0.022 0.016 

3.6 -0.026 0.006 0.000 0.031 -0.057 -0.017 -0.019 0.025 

3.8 -0.026 0.008 0.002 0.038 -0.060 -0.013 -0.016 0.036 

4 -0.029 0.009 0.003 0.045 -0.063 -0.011 -0.014 0.046 

4.2 -0.028 0.015 0.009 0.057 -0.061 -0.004 -0.006 0.061 


