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When modeling crack growth in composite materials, one encounters strong (cracks) and 

weak (material interface) discontinuities. Traditional finite element methods require the 

mesh to conform to the material interface and crack surface. In addition, costly remeshing is 

required as crack growth occurs. In this paper, the extended finite element method (XFEM) 

coupled with the level set method is presented to model both strong and weak discontinuities. 

For the material interface, an element-based enrichment function is introduced, which shows 

more consistent behavior than the node-based enrichment function. The XFEM crack 

implementation and element-based bi-material implementation are validated using 

analytical solutions. 

Nomenclature 

a  = crack length 

Ia , 
Ib  = enriched nodal degrees of freedom associated with enrichment functions 

 xh  = Heaviside enrichment function 

 H x  = shifted Heaviside enrichment function 

IN  = finite element shape functions 

r  = distance from crack tip to a point of interest 

cr  = radius of fiber 

u , v  = x, y-components of interface velocity 

 hu x  = XFEM displacement approximation 

Iu  = nodal degree of freedom vector associated with continuous finite element solution 

V  = velocity field for level set method 

ix , 
iy  = x, y-coordinates of the thi  node 

cx , 
cy  = x, y-coordinates of the center of the fiber 

N  = set of all nodes in the mesh 

eN  = set of all enriched nodes 

N  = set of nodes whose shape function is cut by the crack 

N  = set of nodes whose shape functions are cut by the crack tip 

  = generic index 

x , y  = grid density in x, y-directions 

 x  = level set function representing fiber 

  = angle from crack to point of interest in the crack tip coordinate system 

c  = angle of crack growth 
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  = scaling parameter associated with a crack in a finite plate given as crack length divided by area 

 x  = level set function normal to crack 

 x  = linear elastic asymptotic crack tip enrichment function 

 x  = shifted linear elastic asymptotic crack tip enrichment function 

 x  = generic enrichment function 

 I x  = generic enrichment function evaluated at node I  of an element 

 x  = generic shifted enrichment function 

 x  = level set function tangent to crack 

  = domain of interest 

I. Introduction 

CCURATELY modeling discontinuities that are present in materials is a challenging engineering task. 

Originally the finite element framework was modified to accommodate the discontinuities that are caused by 

phenomena such as cracks, inclusions and voids. The finite element framework is not well suited for modeling crack 

growth because the domain of interest is defined by the mesh. At each increment of crack growth, at least the 

domain surrounding the crack tip must be remeshed such that the updated crack geometry is accurately represented. 

The extended finite element method (XFEM) can be used to alleviate many of the inconveniences of using the 

finite element method (FEM) to model the evolution of a crack. Special enrichment functions are added to the 

traditional finite element framework through the partition of unity framework. For modeling the strong discontinuity 

of a cracked body two enrichment functions are used. The Heaviside step function represents the discontinuity away 

from the crack tip and the linear elastic asymptotic crack tip displacement fields are used to account for 

discontinuity at the crack tip. The crack is represented independent of the mesh by the enrichment functions which 

allows for the crack geometry to be updated without a need to create/update a new mesh on the domain. For the case 

of a material interface, an enrichment function is used which combines distance from the weak discontinuity and the 

absolute value function. 

Since the crack is independent of the mesh it can be challenging to accurately track the growth of the crack as it 

evolves over time. To this end the level set method is used to represent and update the crack geometry. The level set 

method is a numerical algorithm which models the evolution of a boundary or interface. The interface of interest is 

defined to be the zero level set of a function of one higher dimension. Since the level set method was originally used 

only for tracking closed boundaries, a modified version introduced to represent and track open line segments is used 

here. The use of the level set method also simplifies the selection of enriched nodes. 

Crack growth was modeled using the maximum circumferential stress criterion. This criterion is selected based 

on its ease of use in being integrated into a computational algorithm. The stress intensity factors needed for this 

criterion were calculated using the domain form of the J-integral interaction integrals. 

The combined use of the extended finite element and level set methods will be used to study crack propagation 

in composite materials. An emphasis will be made on the crack growth as it approaches the fiber reinforcement 

within a composite matrix. The goal is to be able to accurately assess if failure occurs as a result of crack penetration 

into the fiber or debonding between the fiber and matrix. 

II. Extended Finite Element Method 

The extended finite element method allows discontinuities such as cracks
1-5

, inclusions
6
 and voids

6,7
 to be 

represented in the finite element domain independent of the mesh
1
. Cracks in two

1-4,8,9
 and three

5,8,10,11
-dimensions 

have been modeled, including those with arbitrary branches
7
 and bi-material cracks

12
. Cohesive crack growth

13,14
 has 

also been modeled using the XFEM. While many discontinuous structures have been modeled using XFEM, 

modeling of composite materials has seen less interest. Hettich
15,16

 has shown progress in the modeling of composite 

materials including debonding
16

 and small-scale composite material failure
15

. 

Arbitrary discontinuities are modeled independent of the finite element mesh by enriching the finite element 

approximation with additional functions to model the discontinuities. In general the approximation of displacement 

field in XFEM takes the following form
1
: 

A 
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      u x x u x a

e

h

I I I

I
I

N 




 
  
 
 


N

N

 (1) 

where  IN x  are the FEM shape functions, 
Iu  are the nodal displacements associated with the continuous part of 

the approximation,  x  is an enrichment function, 
Ia  are additional degrees-of-freedom (DOFs) associated with 

the discontinuous part of the approximation and 
eN  is the set of enriched nodes. It is noted that Eq. (1) does not 

satisfy the interpolation property; i.e., u (x )h

I Iu . The actual displacement at a node is a combination of the 
Iu  

and 
Ia . Therefore it is convenient to modify Eq. (1) such that the displacement is of the form

2
: 

      u x x u x a

e

h

I I I

I
I

N




 
   
 
 


N

N

 (2) 

where  x  is given as 

     Ix x     (3) 

where 
I  is the value of the enrichment function at node I . Thus the enrichment function is shifted such that it is 

now zero at the nodes. This means that the displacement approximation at node I  takes the following form: 

    h

I J I J I

J

u x N x u u   (4) 

since the enrichment function vanishes at the nodes. Here a general enrichment function is denoted by  x  while 

the corresponding shifted enrichment function such that the enrichment is zero at the nodes is denoted by  x . A 

description of the various enrichment functions used for modeling composite material behavior follows along with 

an example of the stiffness matrix calculation in the XFEM. 

 First the enrichment functions for a crack are considered. The generalized Heaviside step function is used to 

model the interior of a crack
3
. The Heaviside function h is given by 

  
1 Above Crack

x
1 Below Crack

h


 


. (5) 

For those elements that are cut by a crack, the Heaviside step function is multiplied by nodal enriched DOFs to 

enrich the displacement. 

The crack tip is modeled using a crack-tip enrichment function which incorporates the radial and angular 

behavior of the two-dimensional asymptotic crack-tip displacement field
1
. The crack tip enrichment functions in 

isotropic elasticity are given by 

   , 1 4 sin , cos , sin sin , sin cos
2 2 2 2

x r r r r

   
   

 
      

 
 (6) 

where r  and   are polar coordinates in the local crack-tip coordinate system. For the element that contains the 

crack tip, the above functions are multiplied by nodal enriched DOFs to enrich the displacement. When a node is 

enriched by both of Eqs. (5) and (6), Eq. (6) is used. 

For two-dimensional crack modeling the enriched displacement function in XFEM follows the following form: 
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        
4

1

u x x u x a x bh

I I I I

I
I

I

N H 








 




 
 

    
 
  

 
N

N

N

 (7) 

where u I
 is the nodal displacement vector associated with the 

continuous part of the finite element solution, a I
 is the enriched 

nodal DOF vector associated with the Heaviside enrichment 

function, and b I

  is the enriched nodal DOF vector associated 

with the asymptotic crack-tip functions. In Eq. (7) N  is the set 

of all nodes in the mesh, 
N  is the set of nodes whose shape 

function is cut by the crack, and 
N  is the set of nodes whose 

shape functions are cut by the crack tip. A visual representation of 

the nodes which have enriched degrees-of-freedom in XFEM is 

shown in Fig. 1. 

Using the Bubnov-Galerkin method to build the system of 

equations by using the approximation given in Eq. (7), we are 

able to derive a system of discrete linear equations is derived that 

will allow the solution of the nodal DOFs in our system of 

equations. The system of linear equations can be written in the 

form which is commonly associated with the finite element 

method as 

     K q = f  (8) 

where 1 2 3 4{q}={ }T

I I I I I Iu a b b b b  is the vector of unknowns at the nodes, [K]  is the stiffness matrix given 

by 

 

K K K

K K K K

K K K

uu ua ub

IJ IJ IJ

au aa ab

IJ IJ IJ IJ

bu ba bb

IJ IJ IJ

 
 

  
 
 

 (9) 

    
T

K B CB d , , ,IJ I J u a b    


    (10) 

and {f}  is the external force vector defined as 

  1 2 3 4f f , f , f , f , f , fu a b b b b

I I I I I I I  (11) 

 td bdu

I I If N N
 

     (12) 

 td bda

I I If N H N H
 

     (13) 

  j jtd bd 1 4b

Ij I If N N j
 

        . (14) 

 

 
Figure 1. Heaviside (squares) and crack 

tip (circles) enriched nodes for the crack 

shown. 
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In Eq. (10) C  is the constitutive matrix for an isotropic linear elastic material, and Bu

I
, Ba

I
 and Bb

Ij
 are the 

matrix of shape function derivatives in two-dimensions given by 

 

,

,

, ,

0

B 0

I x

u

I I y

I y I x

N

N

N N

 
 

  
 
 

 (15) 

 

 

 

   

,

,

, ,

0

B 0

I x

a

I I y

I Iy x

N H

N H

N H N H

 
 
 
 
  

 (16) 

 1 2 3 4B B B B Bb b b b b

I I I I I
     (17) 

 

 

 

   

,

,

, ,

0

B 0

I j x

b

Ij I j y

I j I jy x

N

N

N N

 
 
 

 
 
 

   

. (18) 

The system of equations from Eq. (8) can be solved to find the nodal displacements and nodal enrichment vectors. 

For detailed information on the integration of an enriched element, the reader is referred to Sukumar
9
 for a 

discussion on element partitioning. 

 Sukumar
6
 introduced a convenient way to represent the weak discontinuity created by a bi-material interface. 

The enrichment function for this discontinuity takes the form of  

    x x   (19) 

where  x  is the value of the level set function at a given point or is the shortest distance from any point in the 

domain to the discontinuity at the material interface. The shifted approximation takes the form given in Eq. (2). 

While this formulation is valid it requires an additional minimization process to reduce the relative error in the 

energy norm
6
. Another formulation to represent the material interface independent of the mesh is to use a 

formulation similar to the global-local finite element approximation
17

. 

III. Element-Based Enrichment for Material Interface  

In this section, a new formulation for enrichment is proposed, which is similar to the global-local FEM. The 

global-local FEM was originally introduced by Mote
17

 to incorporate global and local information about the finite 

element space into the finite element displacement field. The generalized global-local finite element approximation 

takes the form 

    h

I I I

I

u x N u x a   (20) 

where  x  is the global enrichment function. The enrichment function  x  for the element-based enrichment is 

chosen such that  

  
 

 

0

0 1

I x
x




 

 
 

 
 (21) 
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where  I x  is the value of  x  at node I , and   is some general level set function tracking the material 

interface. Since the nodal value of the enrichment function are zero, the nodal displacement is given by Eq. (4). 

Furthermore, the function  x  is defined continuous across the interface, while its derivative is discontinuous.  

 The only difference in the element-based enrichment is to use Eq. (20) within an element. Thus, the enrichment 

function  x  is defined within an element and an additional DOF 
Ia  for each spatial dimension is associated with 

the element. Since  x  has been defined to be one at the material interface the additional DOF 
Ia  scale  x  

such that the interpolation between elements across the domain is accurate. Only one additional spatial DOF will be 

needed to represent a bi-material element, unlike in the XFEM formulation where two additional spatial DOFs 

would be added at each node of a bi-material element. For integration the same element partitioning scheme used by 

Sukumar
9
 is used in the element-based enrichment. The element-based enrichment is used to represent bi-material 

elements in this implementation. 

IV. Level Set Method 

The level set method is a versatile method for computing and analyzing the evolution of an interface   in two or 

three dimensions, which was introduced by Osher and Sethian
18

. The interface bounds an open region  . The 

velocity of the evolving interface can depend on position, time, interface geometry and the physics of the underlying 

problem. The level set function will be used for representing the material interface between the fiber and matrix as 

well as the geometry of a crack.  

The level set function ( ( ), )x t t  is a continuous function, where ( )x t is a point in the domain  . The level set 

function has the following properties 

 

( ( ), ) 0 for

( ( ), ) 0 for

( ( ), ) 0 for

x t t x

x t t x

x t t x







 

 

 

 (22) 

Therefore, the boundary of interest at any given time t  can be located by finding ( )x t  that satisfies the following 

equation: 

 ( ( ), ) 0x t t   (23) 

The boundary is commonly referred to as the zero level set of   which can be abbreviated as 
o . Equation (23) is 

commonly referred to as the level set equation. The typical approach to using the level set equation to propagate a 

moving front over time is to differentiate with respect to time which yields 

 
( )

0
( )

x t

t t x t

   
  

  
 (24) 

Equation (24) can be rewritten as 

 , 0t V     (25) 

where V  is the velocity field. This partial differential equation can then be solved numerically by discretizing and 

using a finite difference approach to approximate the gradient of  . The derivative of   with respect to the time 

t can be approximated using the forward difference method as 

 
1

0
n n

n nV
t

 


 
  


 (26) 

which can be rewritten into a more convenient form for updating   in two-dimensions as 
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  1

, ,

n n n n n n

x yt u v        (27) 

where u  and v  are the x and y components of the evolving interface velocity. The time step t  is governed by the 

Courant-Friedrichs-Lewy (CFL) condition
19

. The CFL condition ensures that the approximation of the solution to 

the partial differential equation given in Eq. (24) is convergent. The limiting parameter for the time step in two-

dimensions can be written as 

 
 

 

max ,

max ,

x y
t

u v

 
   (28) 

where x  and y  represent the grid spacing in the x and y-directions. 

 For modeling a composite material, a fiber in a matrix will be considered. The level set function associated with 

a cylindrical fiber in the composite is denoted   x  and calculated as 

      
2 2

i c i c cx x y y r     x  (29) 

where 
ix  and 

iy  are the coordinates of the thi  node in the domain, 
cx  and 

cy  are the coordinates of the center of 

the fiber and 
cr  is the fiber radius. 

The analytical form of the level set function as in Eq. (27) is limited for simple geometries. In addition, when the 

interface moves according to Eq. (23), the new interface will not have a simple analytical expression. Stolarska et al
4
 

introduced an extension of the level set method for modeling the evolution of a one-dimensional curve in a 

piecewise linear fashion with a particular focus on representing the evolution of a crack. Instead of having analytical 

expression of the level set function, a discrete value is assigned at each node of finite elements, and the location of 

zero level set is found using interpolation. 

Sukumar
6
 proposed additional enrichments via the level set method for the modeling of holes and inclusions. 

Two level set functions   and   are needed to track the growth of an open curve in this case a crack: one for the 

crack path and the other for the crack tip. In this extension the crack path is represented as the zero level set of 

( ( ), )x t t . The   level set is oriented such that its zero level set passes through the current crack tip and is oriented 

in the direction of the crack tip speed function. The zero level set of ( ( ), )x t t  is then given by the line intersecting 

the current crack tip and orthogonal to the zero level set of  . 

For the   and   level set functions, each grid point is assigned a distance from that point to the nearest point of 

that function's zero level set. The sign of the distance for the   level set function is positive on the side counter-

clockwise from the direction of the crack tip speed function and negative on the clockwise side. The sign of the 

distance function for the   function is positive on the side in the direction of crack growth and negative on the 

opposite side. The crack is defined to be the locations where the following conditions are true 

 
 

 

( ), 0

( ), 0

x t t

x t t








. (30) 

V. Crack Growth Model 

The amount of crack growth depends up on the chosen crack growth law and type of problem being solved. Paris 

crack growth law
2,4,10,20

, has been used repeatedly to determine the amount of incremental crack growth. The 

maximum circumferential stress criterion is used to evolve the crack
8
 in which the crack will propagate in the 

direction where   is a maximum. The angle of crack growth
21

 is given by  

  
2

1
2arctan 8

4

I I

c II

II II

K K
sign K

K K


 
     

  
 

 (31) 
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where 
IK  and 

IIK  are the mixed-mode stress intensity factors. 

 Thus, the direction of crack growth is a function of mixed-mode stress intensity factors. The domain forms of the 

interaction integrals
22,23

 are used to calculate the mixed-mode stress intensity factors. For a general mixed-mode 

situation the relationship between the J-integral and the stress intensity factors can be given as 

 
2 2

I II

eff eff

K K
J

E E
   (32) 

where 
effE  is defined by a state of plane stress or plane strain as 

 

2

, plane stress

, plane strain
1

eff

E

E E

v




 




 (33) 

where E  is Young's modulus and v  is Poisson's ratio. In order to calculate the mixed-mode stress intensity factors, 

an auxiliary stress state is superimposed onto the stress and displacement fields from the XFEM analysis. The 

auxiliary stress and displacement equations are chosen to be those derived by Westergaard
24

and Williams
25

 which 

are given in the Appendix. The XFEM solutions are denoted with superscript (1) as 
 1

ij , 
 1

ij  and 
 1

iu , while that 

from the auxiliary state as 
 2

ij , 
 2

ij  and 
 2

iu .  

 Recall that the J-integral
26

 takes the form of 

 k

i i jk j

i

u
J Wn n d

x




 
   

 
  (34) 

where W  is the strain energy density and i  denotes the crack tip opening direction, which is assumed to correspond 

to the global x-direction, denoted 
1x . Equation (34) can be rewritten into a more convenient form as 

 1 1

1

i

j ij j

u
J W n d

x
 



 
   

 
 . (35) 

The two stress states can be superimposed into Eq. (35) such that 

 
              

    (1 2)

1 2

1 2 1 2 1 2

1 1

1

1

2

i i

ij ij ij ij j ij ij j

u u
J n d

x
      





  
      
 
 

 . (36) 

The J-integrals for pure state 1 and auxiliary state 2 can be separated from Eq. (36), which leaves an interaction term 

such that 

 
       1 2 1 2 1,2

1 1 1J J J I


    (37) 

where 
 1,2

I  is the interaction term and is given by 

 
     

 
 

 2 1

1,2 1,2 1 2

1

1 1

i i

j ij ij j

u u
I W n d

x x
  



  
    

   
  (38) 
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where 
 1,2

W  is the interaction strain energy density 

 
         1,2 1 2 2 1

ij ij ij ijW      . (39) 

 Since we are superimposing two cracked configurations onto one another we can also write Eq. (32) as 

 
 

         
2 2

1 2 1 2

1 2

1

I I II II

eff eff

K K K K
J

E E


 

  . (40) 

Expanding and rearranging terms from Eq. (40) yields 

      

        1 2 1 2

1 2 1 2

1 1 1

2 I I II II

eff

K K K K
J J J

E




   . (41) 

Setting Eq. (37) and Eq. (41) equal leads to the relationship 

 
 

        1 2 1 2

1,2
2 I I II II

eff

K K K K
I

E


 . (42) 

The stress intensity factors for the current state can be found by separating the two modes of fracture. By selecting 
 2

1IK   and 
 2

0IIK  , we are able to solve for 
 1

IK  such that 

  
 1,Mode I

1 2
I

eff

I
K

E
 . (43) 

A similar procedure can also be followed such that 
 1

IIK  is given by 

 
 

 1,Mode II
1 2

II

eff

I
K

E
 . (44) 

The contour defining  1,2
I  is converted to an area integral by using a smoothing function q . This function takes 

a value of 1 on the innermost contour and a value of 0 on the outermost contour. At any point in A , the linear shape 

functions are used to interpolate the value of q . The divergence theorem can be used to give the following equation 

for the domain form of the interaction integral. 

 
       

2 1
1,2 1 2 1,2

1

1 1

di i

ij ij j

jA

u u q
I W A

x x x
  
   

   
   

  (45) 

VI. Results 

A. Crack in Finite Plate Under Tension 

To verify that the implementation of XFEM and the domain form of the J-integral has been completed correctly, 

a test case is chosen and the results are compared to published values. The reference values were taken from Stress 

Intensity Factors Handbook Vol. 2
27

. A finite rectangular plate with a horizontal edge crack was loaded in tension as 

shown in Fig. 2. The theoretical Mode I stress intensity factor IK  for this configuration is given as 



 

American Institute of Aeronautics and Astronautics 
 

 

10 

  IK F a    (46) 

where   is the applied nominal stress, a  is the crack length and  F   is a factor associated with the finite effect 

of the plate
28

 given by 

   2 3 41.12 0.231 10.55 21.72 30.39F           (47) 

and   is the ratio between the crack length and the width of the plate given as 

 
a

W
   (48) 

where W  is the width of the plate. To compare the calculated and theoretical values, the stress intensity factors are 

normalized such that 

 
,

,

,

i calc

i norm

i theo

K
K

K
 . (49) 

An example of the geometry and finite element mesh are shown in Fig. 2. The results for a variety of   are 

presented in Table 1. It is noted that the XFEM with enrichment functions accurately calculate stress intensity 

factors. 

 

 

 

 

 
Figure 2. The geometry and finite element mesh of the cracked body for a crack length of 0.6. 

 

 

 

H = 21 

W = 10 

a = 6 

σ = 1 

1 
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Table 1. Comparison of calculated and theoretical Mode I stress intensity factors for a finite plate. 

a W λ F(λ) KI,theo KI,calc KI,norm Percent Error 

0.1 10 0.1 1.1837 2.0981 2.1187 1.0098 0.98 
        

0.2 10 0.2 1.3707 3.4357 3.4406 1.0014 0.14 
        

0.3 10 0.3 1.6599 5.0959 5.1052 1.0018 0.18 
        

0.4 10 0.4 2.1035 7.4567 7.4780 1.0029 0.29 
        

0.5 10 0.5 2.8264 11.2018 11.1420 0.9947 0.53 
        

0.6 10 0.6 4.0264 17.4812 17.3434 0.9921 0.79 

 

B. Element-based Enrichment for a Bi-material Bar 

A simple one-dimension bar was modeled using the element-based enrichment function presented in Eq. (20) to 

ensure that the approximation was valid before extending the approximation into two-dimensions. The general case 

shown in Fig. 3 was considered. To simplify the presentation, a single element is used to model the entire bar. 

 
Figure 3. The bi-material bar to be modeled using the element-based enrichment. 

In the element-based enrichment, a single function is required for each element. The enrichment function  x  

takes the form 

  
   

0o o

o o

x x x x
x

L x L x x x L


 
 

   
. (50) 

Note that the above enrichment function is piece-wise linear.  

 The global vector of degrees-of-freedom is defined by 
1 2{ } { }u u aq  where a is the degree-of-freedom 

associated with the enrichment function. From the Bubnov-Galerkin method, the stiffness and force matrix for this 

case can be represented as 

         1 2

0

o

o

x L
T T

e e e

x

K B EA B dx B EA B dx K K      (51) 

 
1

2

2

o o

e o o

o

x x L
EA

K x x L
L

L L L x

 
 

  
 
  

 (52) 

P 

xo L-xo 

E1 E2 

A: constant 

Bar a Bar b 
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 

2

2

2

o o

e o o

o

L x x L L
EA

K x L L x L
L

L L L L x

  
 

    
   

 (53) 

    1 2, ,0
T

F F F . (54) 

The bar element should be able to accurately predict the displacement of a bar through interpolating between nodes 

using two nodal displacement values and the enriched DOF a . Once the two nodal values have been found, 

interpolation between the nodes can be found using Eq. (20). The element-based bar element should be able to 

handle the case where the materials of bars a and b shown in Fig. 3 are identical. First the single material case is 

considered. Next two cases are considered where the discontinuity is at L/2 and L/4. In all cases the theoretical 

values are compared to the element-based enrichment solution. For all examples other than the homogeneous bar, 

E1 = 1, E2 = 10, A = 1, L = 1, and P = 1 were used. The displacement plots for the single material case is shown in 

Fig. 4 and the bi-material cases are shown in Fig. 5. 
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Figure 4. Comparison of global-local approximation and theoretical values for a single material. 
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Figure 5. Comparison of global-local approximation and theoretical values for a middle (right) and offset 

(left) discontinuity. 
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A closed-form solution of the enriched degree of freedom a  for this case takes the form 

 
1 2

1 1
1o ox xPL

a
A E E L L

   
     

   
. (55) 

The same bi-material bar problem can be solved using a single element in XFEM. If the enrichment from Eq. (1) 

is used the interpolation between nodes is not piecewise linear without the additional constraint 
1 2a a . If the 

shifted enrichment function from Eq. (3) is used the piecewise linear behavior is recovered, but additional degrees of 

freedom are needed when compared to the element-based formulation. 

C. Element-based Enrichment for a Circular Inclusion 

The global-local approximation was extended into two-dimensions. In this case the enrichment function  x  is 

created using the constant strain triangle approach where  x  satisfies Eq. (21). A plate with a circular inclusion in 

plane strain was modeled using the element-based enrichment in two-dimensions. The finite element mesh and 

stress plots for a bi-material case where the plate has E = 50 GPa and the inclusion has E = 70 GPa and equivalent 

Poisson's ratio of 0.33 are shown in Fig. 6. These results match very well with that from commercial finite element 

software. Note that some of the apparent stress irregularities around the location of the material interface are 

introduced by the plotting routine and may not be representative of the calculated stresses at all points. 

 

 
Figure 6. The finite element mesh and stress plots for a circular inclusion in a plate with hole location 

superimposed on all plots. 
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VII. Conclusion 

The modeling of crack growth is a challenge in the conventional finite element method. The difficulties 

associated with remeshing as a crack grows in FEM can be eliminated by the use of XFEM. XFEM uses enrichment 

functions and additional degrees of freedom to include information about strong and weak discontinuities 

independent of the mesh. Formulations for crack interfaces in the XFEM were presented as well as an element-based 

enrichment formulation for modeling bi-material interfaces. A convenient method to calculate the mixed-mode 

stress intensity factors was discussed as well as an algorithm for crack growth. 

It was shown that the combined XFEM and element-based enrichment can accurately calculate the Mode I stress 

intensity factor for a pure Mode I crack. It has also been shown that the implementation can accurately handle 

domains cut by a crack. In the future the implementation will be expanded to include crack growth criteria as a crack 

approaches an interface with a specific goal of accurately predicting whether the crack will penetrate or deflect 

around a fiber reinforcement causing debonding to occur in the composite material. 

Appendix 

The auxiliary stresses derived by Westergaard
24

 and Williams
25

 are 

 11

1 3 3
cos 1 sin sin sin 2 cos cos

2 2 2 2 2 22
I IIK K

r

     




    
       

    
 (A1) 

 22

1 3 3
cos 1 sin sin sin cos cos

2 2 2 2 2 22
I IIK K

r

     




  
    

  
 (A2) 

  33 11 22v     (A3) 

 23

1
cos

22
IIIK

r





  (A4) 

 31

1
sin

22 r







  (A5) 

 12

1 3 3
sin cos cos cos 1 sin sin

2 2 2 2 2 22
I IIK K

r

     




  
    

  
 (A6) 

 

and the auxiliary displacements are 

    1

1
cos cos sin 2 cos

2 2 2 2
I II

r
u K K

 
   

 

 
     

 
 (A7) 

    2

1
sin sin cos 2 cos

2 2 2 2
I II

r
u K K

 
   

 

 
     

 
 (A8) 

 3

2
sin

2 2
III

r
u K



 
  (A9) 

where   is the shear modulus and   is the Kosolov constant. 
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