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ABSTRACT
In this paper, efficient design sensitivity analysis (DSA) and

optimization methods are presented to support reliability-based
design for a hyper-elastic structure with frictional contact using a
meshfree method.  For the structural reliability analysis, the first-
order reliability method (FORM) is utilized.  The continuum-based
DSA method is employed to search the most probable point (MPP)
in the standard normal random variable space for structural
reliability analysis.  To develop the continuum-based DSA for the
hyper-elastic constitutive relation and penalized contact
formulation, the material derivative of continuum mechanics is
utilized.  The sensitivity equation is solved at each converged load
step using the same tangent stiffness of response analysis due to
the path dependency of the frictional contact problem.  For the
reliability-based structural DSA and optimization method,
analytical reliability-based DSA is used to calculate the design
sensitivity of reliability indices with respect to probabilistic design
variables.  A numerical result is presented to validate the proposed
method.

NOMEMNCLATURE
X Random system parameter; X = [Xi]

T (i = 1, 2,…,n)
x Outcomes of the random system parameter; x = [xi]

T

(i = 1, 2,…,n)
xL , xU Lower and upper tolerance limits of the system

parameter; x x xL U≤ ≤
Φ( )• Standard normal cumulative distribution function

(CDF)
G(x) System performance function; system fails if G(x) <

0

FG g( ) CDF of the system performance function G(x);
FG(g) = P(G(x) < g)

Pf Failure probability; Pf = FG(0) = P(G(x) < 0)
Pf Prescribed failure probability limit

βG General probability index; βG(g) = −Φ−1(FG(g))
βs Reliability index; βs = −Φ−1(FG(0))

g* Target probabilistic performance measure; P(G(x) <

g*) = Pf

u* MPP corresponding to G(u) = 0 in the u-space; βs

= ||ug=0
* ||

gn Normal gap function for contact
gt Tangential slip function for contact
aΩ( , )z z Structural variational form
′aV ( , )z z Structural fictitious load form

aΩ ∆* ( ; , )z z z Linearized structural variational form
�Ω( )z External load form
′�V ( )z External fictitious load form

bΓ ( , )z z Contact variational form
bN ( , )z z Normal contact variational form
bT ( , )z z Tangential slip variational form

bΓ ∆* ( ; , )z z z Linearized contact variational form
′bV ( , )z z Contact fictitious load form

INTRODUCTION
In engineering design, the traditional deterministic design

optimization model (Arora, 1989; Haftka and Gurdal, 1991) has
been successfully applied to systematically reduce the cost and
improve quality.  However, the existence of uncertainties in either
engineering simulations or manufacturing processes requires a



reliability-based design optimization (RBDO) model for robust and
cost-effective designs.  In the RBDO model for robust system
parameter design, the mean values of random system parameters
are chosen as design variables, and the cost function is minimized
subject to prescribed probabilistic constraints.  The probabilistic
constraint can be directly prescribed by the reliability index
evaluated in the traditional first-order reliability analysis
(Enevoldsen, 1994; Enevoldsen and Sorensen, 1994; Chandu and
Grandi, 1995; Frangopol and Corotis, 1996; ; Wu and Wang, 1996;
Yu et al., 1997; Grandhi and Wang, 1998).  The probabilistic
constraint can also be evaluated using the performance measure
approach (Tu et al., 1999).

The first-order reliability method (FORM) which introduces
the first-order approximation at the most probable point (MPP) to
obtain structural reliability is practically very efficient.  However,
for FORM, the first-order sensitivities of the structural
performance with respect to random variables are required.
Therefore, an accurate and efficient approach for sensitivity
analysis of failure functions is highly desirable for the general
application of FORM for structural problems.

In this paper, the frictional contact problem for hyper-elastic
structural systems using the meshfree method is considered for
RBDO.  For nonlinear analysis of the hyper-elastic material, an
effective numerical method, which can handle material
incompressibility under large deformation, is highly desirable for
the analysis of rubber components.  The meshfree method is an
ideal choice since, unlike the conventional FEA method, it is not
affected by the mesh distortion problem.  To accelerate
computations for FORM and RBDO, a continuum-based DSA
method was employed to perform an accurate and efficient
sensitivity analysis of the failure function.  A continuum-based
shape design sensitivity formulation for a hyper-elastic structure
with frictional contact has been developed using the material
derivative of continuum mechanics and penalized contact
formulation (Kim et al., 2000) and is utilized in this paper.  For
numerical analysis of the frictional contact problem, the
reproducing kernel particle method (RKPM) (Liu et al., 1995;
Chen et al., 1998) is utilized, and, thus, sensitivity calculation.  To
handle material incompressibility under large deformation, a
pressure projection method (Chen et al., 1996) which is a
generalization of the B-bar method (Hughes, 1987) for linear
problems to avoid volumetric locking for nearly incompressible
materials is used.

GENERAL DEFINITION OF THE RBDO MODEL
For the random system parameter X = [Xi]

T (i = 1, 2,…, n),
the system performance criteria are described by the system
performance functions G(x) such that the system fails if G(x) < 0.
The statistic description of G(x) is characterized by its cumulative
distribution function (CDF) FG(g) as

FG(g) = P(G(x) < g) = ... ...f dxX ( )
G( )

x 1 dxn
g �� <x

,

x x xL U≤ ≤ (1)

where fX( )x  is the joint probability density function (JPDF) of all
random system parameters and g is named the probabilistic
performance measure.  The probability analysis of the system
performance function is to evaluate the non-decreasing FG(g)~g
relationship (Tu et al., 1999), which is performed in the probability
integration domain bounded by the system parameter tolerance
limits given in Eq. (1).

A generalized probability index βG, which is a non-increasing
function of g, is introduced (Madsen et al., 1986) as

FG(g) = Φ(−βG) (2)

which can be expressed in two ways using the following inverse
transformations (Rubinstein, 1981; Tu et al., 1999), respectively,
as

βG(g) = −Φ−1(FG(g)) (3a)
g(βG) = FG

−1 (Φ(−βG)) (3b)

Thus, the non-increasing βG~g relationship represents a one-to-one
mapping of FG(g)~g and also completely describes the probability
distribution of the performance function.

In the robust system parameter design, the RBDO model
(Enevoldsen and Sorensen, 1994; Chandu and Grandi, 1995; Wu
and Wang, 1996; Yu et al., 1997; Grandhi and Wang, 1998) can
generally be defined as

minimize Cost(d) (4a)
subject to Pf,j=P(Gj(x) < 0) ≤ Pf, j ,  j = 1, 2,…, np (4b)

dL  ≤ d ≤ dU (4c)

where the cost can be any function of the design variable d= [di ]T

≡ [µ i ]
T (i = 1, 2, …, n), and each prescribed failure probability

limit Pf  is often represented by the reliability target index as βt =

−Φ−1(Pf ).  Hence, any probabilistic constraint in Eq. (4b) can be
rewritten using Eq. (1) as

FG(0) ≤ Φ(−βt) (5)

which can also be expressed in two ways through inverse
transformations as

βs = −Φ−1(FG(0)) ≥ βt (6a)
g* = FG

−1 (Φ(−βt)) ≥ 0 (6b)

where βs is traditionally called the reliability index and g* is named
the target probabilistic performance measure.

To date, most researchers have used the reliability index
approach (RIA) of Eq. (6a).  In this paper, RIA is used to directly
prescribe the probabilistic constraint as

βs(d) ≥ βt (7a)

At a given design dk = [di
k ]T ≡ [µ i

k ]T, the evaluation of reliability

index βs(dk ) for RIA is performed using the well-developed
reliability analysis (Madsen et al., 1986) as

βs(dk ) = − −

< ��Φ 1( ... f dx ...dxnX ( ) )
G( ) 0

x 1
x

,

x x xL U≤ ≤ (7b)

FORM FOR APPROXIMATE PROBABILITY
INTEGRATION

The evaluation of Eq. (7a) requires reliability analysis where
the multiple integration is involved as shown in Eq. (7b), and the
exact probability integration is in general extremely complicated to
compute.  The Monte Carlo simulation (MCS) (Rubinstein, 1981)
provides a convenient approximation for reliability because it



directly approximates the βG~g relationship.  However, MCS
becomes prohibitively expensive for many engineering
applications.

Some approximate probability integration methods have been
developed to provide efficient solutions (Breitung, 1984; Madsen
et al., 1986; Tvedt, 1990), such as FORM or the asymptotic
SORM.  The FORM often provides adequate accuracy and is
widely accepted for RBDO applications.  The RIA can be used
effectively with FORM or SORM in the probabilistic constraint
evaluation.  This paper focuses on RBDO using FORM for
approximate probability integration.

General Interpretation of FORM
In FORM, the transformation (Hohenbichler and Rackwitz,

1981; Madsen et al., 1986) from the nonnormal random system
parameter X (x-space) to the independent and standard normal
variable U (u-space) is required.  If all system parameters are
mutually independent, the transformations can be simplified as

ui = Φ−1(FXi
(xi)),  i = 1, 2, …, n (8a)

xi = FXi

−1 (Φ(ui)),  i = 1, 2, …, n (8b)

The performance function G(x) can then be represented as GU(u) in
the u-space.  The point on the hypersurface GU(u) =0 with the
maximum joint probability density is the point with the minimum
distance from the origin and is named the most probable point
(MPP) ug=0

* .  The minimum distance, named the first-order

reliability index βs,FORM, is an approximation of the generalized
probability index corresponding to ga as

βs,FORM ≈ βs = βG(0) (9)

Thus, the first-order reliability analysis is to find the MPP on the
hypersurface GU(u) = 0 in the u-space, and MPP ug=0

*  is found by

performing first-order reliability analysis in RIA.

First-Order Reliability Analysis
In traditional first-order reliability analysis (Madsen et

al., 1986), the first-order reliability index βs,FORM is the solution of a
nonlinear optimization problem

minimize ||u|| (10a)
subject to GU(u) =0 (10b)

where the optimum is the MPP ug=0
*  and thus βs,FORM = ||ug=0

* ||.

Many MPP search algorithms (such as HL-RF, Modified HL-RF,
AMVFO) and general optimization algorithms (such as SLP, SQP,
MFD, augmented Lagrangian method, etc.) can be used to find the
MPP (Wu and Wirsching, 1987; Wu et al., 1990; Wang and
Grandhi, 1994).

DESIGN SENSITIVITY ANALYSIS OF MULTIBODY
FRICTIONAL CONTACT PROBLEM

Response Analysis of Contact Problem
For the multibody contact problem, the contact point depends

on the motion of a slave body and a master body together since the
second body also moves as it deforms.  The normal contact
condition prevents penetration of one body into another and the
tangential slip represents frictional behavior of the contact surface.
A regularized Coulomb friction law proposed by Wriggers et al.
(1990) is utilized in this paper.

Contact Condition
Figure 1 shows a general contact condition between two

bodies in R2.  Body 1 is referred to as the slave body and body 2 as
the master body.  The surface coordinate of the master body
xc c∈Γ2  can be represented by a natural coordinate ξ along the

master surface.  As the point x ∈Γc
1  on the slave surface is in

contact with the point xc c∈Γ2  on the master surface, xc can be

represented using the natural coordinate ξc at the contact point as
xc c( )ξ .  The contact point moves as the slave body is deformed by

the change of ξc in addition to the deformation of the master body.
The tangential vector at xc(ξc) along the master surface can be
obtained by t x( ) ,ξ ξc c=  where comma represents the partial

derivative.
The normal contact condition can be imposed on the structure

by measuring the distance between parts of the boundaries
Γ Γc cand1 2 .  The impenetration condition can be defined, using the
normal gap function gn which measures the normal distance, as

gn c c
T

n c≡ − ≥( ( )) ( )x x eξ ξ 0 , x x∈ ∈Γ Γc c c
1 2, (11)

where e e en c t( )ξ = ×3  is the unit outward normal vector of the

master surface at the contact point, e t tt = /  is the unit tangential
vector, and e3 is the unit vector out of plane direction fixed in R2.
The contact point xc c∈Γ2  corresponding to the slave surface point

x ∈Γc
1  is determined by solving the following contact consistency

condition

ϕ ξ ξ ξ( ) ( ( )) ( )c c c
T

t c= − =x x e 0 (12)

Note that, in Eq. (12), xc c( )ξ  is the closest projection point of

x ∈Γc
1  onto the master surface.  As the contact point moves along

the master surface, a frictional force that resists the tangential
relative movement exists along the tangential direction of the
surface of the master body.  The tangential slip function gt is the
measure of the relative movement of the contact point along the
master surface as

gt c c≡ −t0 0( )ξ ξ (13)

where t0 0and cξ  are the tangential vector and natural coordinate of
the previous converged time step, respectively.

If there exists a region Γc which violates the impenetration
conditions of Eq. (11), it is penalized by the penalty function.
Similarly, the tangential movement of Eq. (13) can also be
penalized.  Define the contact penalty function for the violated
region by

P = +� �1

2

1

2
2 2ω ωn n t tg d g d

C C

Γ Γ
Γ Γ

(14)

where ωn and ωt are the penalty parameters for normal contact and
tangential slip, respectively.  The contact variational form can be
obtained by taking the first-order variation of P as

b g g d g g dn n n t t t
C C

( , )z z ≡ = +� �P ω ωΓ Γ
Γ Γ

(15)



where ωngn and ωtgt correspond to the compressive normal force
and tangential traction force, respectively.

For the variational equation, the contact variational form in
Eq. (15) needs to be expressed in terms of the displacement
variation.  For the convenience of the derivations to follow, define
several scalar symbols

α ξξ≡ e xn
T

c, ,β ξξ≡ e xt
T

c, ,γ ξξξ≡ e xn
T

c, ,c gn≡ −t 2 α ,

ν ≡ t t0 / c (16)

The variations of the normal gap and tangential slip functions can
be obtained by considering the variation of the contact consistency
condition in Eq. (12) as

gn c
T

n
T

n( ; ) ( ) �z z z z e z e= − = (17a)

g g ct c
T

t n c
T

n= = +t z e t z e0 0ξ ν ξ
$ ( / ) , (17b)

where $z z z= − c  is the relative displacement between the slave and
master contact points.

Using Eqs. (17a) and (17b), the contact variational form of
Eq. (15) can be rewritten in terms of the variation of the
displacement as

b b bN T( , ) ( , ) ( , )z z z z z z= + (18a)
where

b g dN n n
T

n
C

( ) �z z, z e= �ω Γ
Γ

(18b)

b g g c dT t t
T

t n c
T

n
C

( ) � ( / ) ,z z, z e t z e= +�ω ν ξ
0� � Γ

Γ
(18c)

are the normal contact and tangential slip variational form,
respectively.  Note that the frictional effect in Eq. (18a) also acts in
the normal direction by the displacement variation of the master
surface

Figure 2 shows a friction curve used in this paper.  The stick
condition occurs when the frictional traction force generated by the
tangential slip and the penalty parameter is less than the normal
force multiplied by the frictional coefficient

ω µωt t n ng g≤ (19)

Otherwise, it becomes a slip condition.  In Eq. (19), µ is the
Coulomb friction coefficient.  For the case of the slip condition,
the tangential slip variational form of Eq. (18c) is written as

b g g g c dT n t n
T

t n c
T

n
C

( , ) sgn( ) � ( / ) ,z z = − +�µω ν ξz e t z e0� � Γ
Γ

(20)

Variational Principle for Finite Deformation with
Frictional Contact Problem

The Mooney-Rivlin type material model with nearly
incompressible constraint is used in this paper.  The nearly
incompressibility constraint can be formulated using a perturbed
Lagrangian formulation (Chang et al., 1991) or a penalty method
on conjunction with a pressure projection (Chen et al., 1996) as a
generalization of the perturbed Lagrangian formulation.

For the case of hyper-elastic material with a frictional contact
problem, the variational principle for virtual work can be written as

a(z z z z z, ) +  b( , ) =  ( )� , ∀ ∈ Zz (21)

where a(z z,  )  is the variational form for the structural part and
�( )z  is a work done by an external force through variational
displacement, and Z is the space of kinematically admissible
virtual displacement.  The variational form and linearized form for
structure are provided in the reference (Kim et al., 2000).  Let the
current configuration be tn and k is the last iteration counter.
Assuming that the external force is independent of the
displacement, the linearized incremental equation of Eq. (21) is
obtained as

a (   ,  )  b (   ,  )n k k 1 n k k 1∗ + ∗ ++z z z z z z; ;∆ ∆
=�( ) a( ,  )  b( ,  ),      Zn k n kz z z z z z− − ∀ ∈ (22)

which is linear in incremental displacement for a given
displacement variation.  The linearized system Eq. (22) is solved
iteratively for the incremental displacement until the residual
forces (right side of Eq. (22)) become zero at each load step.  The
path dependency of the problem comes from the tangential slip
function.

Design Sensitivity Analysis of Frictional Contact
Problem

Consider the governing variational equation at tn for the
perturbed shape design Ωτ as

a b
CΩ Γ Ωτ τ ττ τ τ τ τ τ τ( , ) ( , ) ( ),z z z z z z+ = ∀ ∈l     Z (23)

The derivative of the normal contact variational form in Eq. (23) at
the perturbed boundary Γτ  can be obtained as

d
d N N Nb b bτ [ ( , )] ( ; &, ) ( , )*z z z z z z z= + ′ (24a)

where bN
* ( ; &, )z z z  is the linearized normal contact bilinear form

(Kim et al., 2000),

b g c d

g c d

g c d

N n
T

n n
T

n
T

t t
T

n n
T

t n
T

c c
T

n t
T

n n c
T

n n
T

c

C

C

C

*

, ,

, ,

( ; �, ) ( � �� ( )� ��)

( )( � � ��)

( ) �

z z z ≡ −

− +

−

�
�
�

ω α

ω

ω

ξ ξ

ξ ξ

z e e z z e e z

t z e e z z e e z

z e e z

Γ

Γ

Γ

Γ

Γ

Γ

2

(24b)

and ),(b N zz′  is the normal contact fictitious load form

′ = + �b b g dN N n n
T

n
T

C

( , ) ( , ) � ( )*z z z; zV z e V nω κ Γ
Γ

(24c)

which depends explicitly on the design velocity field.  The material
derivative of the tangential stick variational form in Eq. (18c) at
the perturbed configuration becomes

d
d T T Tb b bτ [ ( , )] ( ; &, ) ( , )*z z z z z z z= + ′ (25a)

where bT
* ( ; &, )z z z  is the linearized tangential stick bilinear form

(Kim et al., 2000),
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and ),(bT zz′  is the tangential stick fictitious load form defined as

′ =

+ +

+ − +

+ + +

�
�
�

b b

g c d

g d

g g cc d

T T

t t
T

t t

T

c c

t t
T

t t

T

t n t
T

t n

T

c c

C

C

C

( , ) ( ; , )

( )� ( � )

( ( ))� ( � �� )

( ) / � ( � )

*

, ,
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t z e e V z
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The material derivative of the tangential slip variational form
of Eq. (20) can be taken using the similar procedure as in the stick
condition, except the normal gap function, to obtain Eq. (25a)
where bT

* ( ; &, )z z z  is obtained from the linearized tangential slip
bilinear form (Kim et al., 2000)
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and ′bT ( , )z z  is the tangential slip fictitious load form defined as
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Note that the same symbol ′bT ( , )z z  is used for stick and slip
conditions.  Thus, the material derivative of the contact variational
form can be obtained by combining Eqs. (24a), (25a), (25b) and
(25c) for the stick condition and Eqs. (24a), (26a), and (26b) for
the slip condition,

d
d Vb b b

C C
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),(b),(b),(b TNV zzzzzz ′+′=′ (27c)

By collecting all the terms, the following linear system of
equations can be obtained
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The left side of Eq. (28) is the same form as in Eq. (22).  Thus, the
same decomposed stiffness matrix can be used for computation of
the material derivative of the displacement with the fictitious load.
Since the tangent stiffness operator in Eq. (22) is not symmetric,
the direct differentiation method is more suitable.  Since the
tangential slip fictitious load depends on the material derivative of
the previous converged configuration, the linear system Eq. (28) is
solved at each load step.  Sensitivity computation does not require
convergence iterations; only the stiffness matrix at the converged
configuration of each load step is used for linear analysis.

RBDO PROCESS
Solving an RBDO problem is computationally expensive

since it requires reliability analysis for each constraint functions,
and within each RBDO design iteration, many constraint functions
may have to be evaluated.  In this paper, an approximated method
and active constraint set strategy are used to develop an efficient
RBDO by reducing the number of reliability index evaluation.

Two-Point Approximation Method
To improve efficiency of RBDO process, the two-point

approximation (TPA) method (Wang and Grandhi, 1994) is
employed using the nonlinearity index.  To use TPA, the
intermediate random variables yi are introduced as

y xi  =  i
pi ,  i=1,2, ..., n  (29)

where pi is the nonlinearity index for the ith random variable which
is different from the uniform index used by Wang and Grandi
(1994).

Let m x  and m y  be the current MPP point and the
corresponding intermediate random vector, respectively.  Taking
the first-order Taylor approximation of the G function at m y ,
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where y is the intermediate random vector of the random vector x.
Substituting Eq. (29) to Eq. (30),
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where ∂ ∂y xi i/  at mx can be evaluated as,
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substituting Eq. (32) into Eq. (31),
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Thus, using Eq. (33a), the derivatives at any point x can be
expressed as
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Since the derivatives at the previous MPP m−1x have been
calculated during the MPP search process, Eq. (33a) should be
equal to this value, i.e.,
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From Eq. (34), value of pi can be calculated for each random
variable xi, i.e.,
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then, the TPA function is Eq. (31).

RBDO Algorithm

The main steps of the proposed RBDO algorithm, as shown in
Fig. 3, are summarized as:

(1) Perform reliability analysis at the current design dk using the
mean value first-order second moment reliability method
(MVFO) for all constraints functions.

(2) Identify the set of critical constraints using normalized form,
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Since βs i  is obtained from MVFO and may not be accurate, to

make the proposed RBDO algorithm robust, it is desirable to
choose a relatively larger positive value ξ compared with
deterministic structural optimization, e.g., 0 25 1 5. .≤ ≤ξ

(3) For the critical constraints identified in Step 2, compute
accurate critical reliability indices using FORM.

(4) The reliability-based DSA can be obtained as
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where ug=
∗

0  is the MPP in u-space and T is the transformation

in FORM between the x-space and the u-space at design dk

(5) In the second-level approximation process, the nonlinearity
index of the jth critical reliability constraints with respect to
the ith design variable can be obtained as
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where J is the set of critical constraints.  The jth approximate
reliability index can be obtained using TPA,
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An approximate problem of the RBDO problem
corresponding to Eqs. (4a) to (4c) is obtained as
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where ∆di
k  is positive move limits used to improve robustness of

RBDO.

Numerical Example
Figure 4 shows the initial geometry of a rubber plate punch

problem with a cylindrical rigid punch.  The radius of the rigid
punch is 8.0 cm.  The lower right rigid wall is fixed and the upper
left punch moves downward 9.0 cm.  The domain is discretized
using 93 RKPM particles and 40 piecewise linear master segments.
The Mooney-Rivlin type hyper-elastic material is used with a
pressure projection formulation for nearly incompressibility
constraints.  Material constants C10 = 80 kPa, C01 = 20 kPa and bulk
modulus K = 80 MPa are used.  Frictional contact constraints are
imposed between the rubber plate and rigid wall with a friction
coefficient of µ =0.2.

The random variables and their statistical distributions are
listed in Table 1.  The design sensitivity analysis starts from
choosing design parameters and computing design velocity fields
for shape design parameters.  First design parameter d1 is the mean
value of the upper boundary movement (x1) of the plate, and
second design parameter d2 is the mean value of the radius (x2) of
the right lower rigid wall.

Then design sensitivities of reliability indices with respect to
design variable di are shown in the fifth column in Table 2.  The
finite differece results are shown in the fourth column for 1%
perturbation of each design variable di.  The sixth column is the
agreement between ∆Ψ  and ′Ψ .  The results obtained by the
proposed method agree very well with those obtained by the finite
difference method.

The objective of the design problem is to reduce the
maximum von Mises stress at Element 2 of the plate by changing
design variables.  The stress failure functions are defined at
Elements 4, 57, and 59 as gi(X)=σi(X)−σti where σt1=85.1,
σt2=85.2, and σt3=80.3.  The probabilistic constraints are the
failure probability of the von Mises stresses at Elements 4, 57, and
59 with upper bound β β βt t t1 2 3 3 096= = = .  (i.e., Pf=0.1%, or the
required reliability is 99.9%) as shown in Table 3.  The design
optimization problem is

min
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Table 3 shows that the initial design is an infeasiable design since
the first and second constraints are violated.  A feasible design is
obtained using the proposed RBDO method as shown in the fourth
column in Table 3.  The modified feasible direction method (MFD)
is employed in the second-level approximation process during

RBDO.  The deformed shape of the optimal design at the final time
step with von Mises stress countour is shown in Fig. 5.

CONCLUSION
An efficient method was developed for reliability-based shape

design optimization for a hyper-elastic structure with frictional
contact using the meshfree method.  The first-order reliability
method was utilized for reliability analysis.  For overall RBDO,
reliability indices are used to represent the probabilistic
constraints.  To develop the continuum-based DSA for the hyper-
elastic constitutive relation and penalized contact formulation, the
material derivative of continuum mechanics is utilized. A
numerical result is presented to validate the proposed method.
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Table 1.  Sensitivity Analysis Results and Comparison with Finite Difference Method

Randon Variables Mean Value Standard Deviation Distribution

x1 0.0 0.01 Normal

x2 8.0 0.01 Normal

Table 2.  Random Variable Description

Performance DV Ψ ∆Ψ ′Ψ ( / )∆Ψ Ψ′ × 100%

βs1 d1 2.3339 − ×9.966 102 − ×9.966 102 100.0%

βs2 d1 2.3054 − ×9.974 102 − ×9.974 102 100.0%

βs1 d2 2.3339 8.227 101× 8.235 101× 99.9%

βs2 d2 2.3054 7.238 101× 7.228 101× 99.9%

Table 3.  Cost and Constraint Function Values at Initial and Optimum Design

Fucntion Decsription initial Pf=Φ(−β) optimum Pf=Φ(−β) change

Cost stress at element 2 119.179 120.502 1.1 %

Constraint (g1) stress at element 59 0.98 % 0.09 % −90.8 %

Constraint (g2) stress at element 57 1.06 % 0.10 % −90.6 %

Constraint (g3) stress at element 4 5 569 13. × −10  %  101 246 11. × −  % 2137.4 %



Figure 1.  Multibody Contact Condition Figure 2.  Frictional Interface Model

Figure 3.  RBDO Algorithm
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Figure 4.  Geometry and Design Parameterization of Plate Punch Problem

Figure 5.  Deformed von Mises Stress Contour Plot for Optimal Design
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