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Structural health monitoring may provide readings that follow fatigue induced damage 

growth in service. This information may in turn be used to improve the characterization of 

the material properties that govern damage propagation for the monitored structure. These 

properties are often widely distributed between nominally identical structures because of 

differences in manufacturing and aging. The improved accuracy in damage growth 

characteristics allows more accurate prediction of the remaining useful life (RUL) of the 

structural component. In this paper, a probabilistic approach using Bayesian statistics is 

employed to progressively narrow the uncertainty in damage growth parameters in spite of 

variability and error in sensor measurements. Starting from an initial, wide distribution of 

damage parameters that are obtained from coupon tests, the distribution is progressively 

narrowed using the damage growth between consecutive measurements. Detailed discussions 

on how to construct the likelihood function under given variability of sensor data and how to 

update the distribution are presented. The approach is applied to crack growth in fuselage 

panels due to cycles of pressurization and depressurization. It is shown that the proposed 

method rapidly converges to the accurate damage parameters when the initial damage size is 

20mm and the variability in sensor data is 1mm. It is observed that the distribution narrows 

down rapidly when the damage grows fast, while slows down when the damage grows slowly. 

This property works in favor because more accurate information will be obtained when the 

damage is dangerous. Using the identified damage parameters, the RUF is predicted with 

95% confidence in order to obtain conservative prediction. The proposed approach may 

have the potential of turning aircraft into flying fatigue laboratories. 

Nomenclature 

K = Range of stress intensity factor  

 = Applied stress 

a = Crack size 

a’ = Measured crack size 

a0 = Initial crack size 

aC = Critical crack size 

aN = Crack size at Nth inspection 
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atrue = True crack size 

C = Paris law parameter 

e = Error in damage size measurement 

fini = Initial (or prior) probability density function (PDF) 

fi,test = Likelihood function 

fupdt = Updated (or posterior) PDF 

g = Crack growth 

g’ = Measured crack growth 

KIC = Fracture toughness 

m = Paris law exponent 

M = Monte-Carlo simulation sample size 

N = Step between inspections 

p = pressure 

r = Fuselage radius 

t = Panel thickness 

v = Variability in damage size measurement 

 

I. Introduction 

TRUCTURAL health monitoring (SHM) will have a significant impact on increasing safety as well as reducing 

the operating and maintenance costs of structures by providing an accurate quantification of degradation and 

damage at an early stage to reduce or eliminate malfunctions. Furthermore, SHM will allow predictions of the 

structure’s health status and remaining useful life (RUL) without intrusive and time consuming inspections. 

Continual on-line SHM is based on dynamic processes through the diagnosis of early damage detection, then 

prognosis of health status and remaining life.  

  Prognosis techniques can be categorized based on the usage of information: (1) physics-based, (2) data-driven, 

and (3) hybrid methods. The physics-based method, or model-based method
1
, assumes that the system behavior is 

known. Dynamic stochastic equation, lumped-parameter model
2
, and functional models

3
 correspond to this category. 

In the case of SHM, crack growth model
2,4,5

 or spall growth models are often used for micro-levels, and first 

principle models
6
 are used for macro-levels. The data-driven method

7
 uses information from collected data to predict 

future status of the system, and includes least-square regression
8,9

, Gaussian process regression
10,11

, neural 

network
6,10,11

, and relevance vector machine
10,12

. This method has advantages when the system is so complex that no 

simple physical model is available. The hybrid method
13

 uses the advantages from both methods, and includes 

particle filters
14

 and Bayesian techniques
15,16

. It is generally accepted that uncertainty is the most challenging part for 

prognosis
16,17

. Sources of uncertainty are initial state estimation, current state estimation, failure threshold, 

measurement, future load, future environment, and models. In order to address the uncertainty, various methods 

have been proposed, such as confidence intervals
18

, relevance vector machine
10

, Gaussian process regression
10,11

, 

and particle filers
14,19

. 

 The current technology of sensor-based SHM anticipates difficulties associated with uncertainties in variability 

of sensor data, errors in damage growth models, and material and geometric properties. Compared to manual 

inspections, the accuracy of SHM is still poor. Thus, the major challenge is how to accurately predict the damage 

growth when the measured data include variability and errors. However, unlike manual inspection, SHM may 

provide frequent measurement of damage, allowing us to follow damage growth. This in turn, should allow us to 

narrow the uncertainty in the material properties that govern damage growth. The uncertainty in these properties is 

normally large because of variability in manufacturing and ageing of the monitored structured. The main objective 

of this paper is to demonstrate the reduction in uncertainty that may be achieved.  In this paper, a probabilistic 

approach using Bayesian statistics is employed to progressively improve the accuracy of predicting damage 

parameters under variability and error of sensor measurements.  

 The approach is demonstrated for a through-the thickness crack in an aircraft fuselage panel which grows 

through cycles of pressurization and de-pressurization. A simple damage growth model, Paris model, with two 

damage parameters is utilized. However, more advanced damage growth models can also be used, which usually 

comes with more parameters. Using this simple model we aim to demonstrate that SHM can be used to identify the 

damage parameters of each particular panel. This process can be viewed as turning every aircraft into a flying 

fatigue laboratory. The narrowing of uncertainty in damage growth parameters can narrow in turn the uncertainty in 

predicting remaining useful life (RUL), i.e. in prognosis. 

S 
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 The paper is organized as follows. In Section 2, a simple damage growth model based on Paris model is 

presented. The current paper is based on data obtained from a previous work from Kale et al.
20,21,22

, which describes 

the fatigue crack growth in a fuselage panel of 7075-T651 aluminum alloy. In Section 3, the probability distribution 

of damage parameters are progressively narrowed using the Bayesian technique. Detailed discussions on how to 

construct the likelihood function under given variability of sensor data and how to update the distribution are 

presented. In Section 4, the RUL of the panel is predicted using the identified damage parameters. Since the damage 

parameters are randomly distributed, the RUL is calculated using a certain level of confidence. Conclusions are 

presented in Section 5 along with future plans. 

 

II. Damage growth model 

Although damages in a structure start from the micro-structure level, such as dislocations, they are generally 

accumulated to the level of detectable macro-cracks through nucleation and growth. Damages in the micro-structure 

level grow slowly, are not dangerous in the viewpoint of structural safety, and are difficult to detect. Thus, SHM 

often focuses on macro-cracks, which grow relatively quickly in repeated loading cycles.  

 Once the damage is in the detectable size, various SHM techniques can be used to evaluate the current state of 

the damage
23

. In the physics-based prognosis techniques, it is necessary to incorporate the measured data into a 

damage growth model to predict the future behavior of the damage. Since the damage growth model is not the main 

focus of the paper, the simplest model by Paris
24

 is used in this paper. However, more advanced models can also be 

applied using the same concept. 

 We consider a fatigue crack growth in a fuselage panel with an initial crack size ai subjected to load cycles with 

constant amplitude. We assume that the main fatigue loading is due to pressurization, with stress varying between a 

maximum value of σ to a minimum value of zero in one flight. One cycle of fatigue loading consists of one flight. 

Like many other researchers (e.g., Harkness et al.
25

 and Lin et al.
26

), we use the damage growth model by Paris
24

 as 

 
𝑑𝑎

𝑑𝑁
= 𝐶 Δ𝐾 𝑚  (1)  

where a is the crack size in meters, N the number of cycles (flights), da/dN the crack growth rate in meters/cycle, 

and ΔK the range of stress intensity factor in 𝑀𝑃𝑎 𝑚𝑒𝑡𝑒𝑟𝑠. The above model has two damage parameters, C and m. 

Accurate prediction of these parameters is important in predicting the remaining useful life of a particular panel. 

 The range ΔK of stress intensity factor for a center-cracked panel is calculated as a function of the stress σ and 

the crack length a in Eq. (2), and the hoop stress due to the pressure differential p is given by Eq. (3)  

 

Δ𝐾 = 𝜎 𝜋𝑎 (2)  

 

𝜎 =
𝑝𝑟

𝑡
 (3)  

where r is the fuselage radius and t is the panel thickness.  

 The number of cycles N of fatigue loading that makes a crack to grow from the initial crack size ai to the final 

crack aN can be obtained by integrating Eq. (1) between the initial crack ai and the final crack aN.  

 

𝑁 =  
𝑑𝑎

𝐶 𝜎 𝜋𝑎 
𝑚

𝑎𝑁

𝑎0

=
𝑎𝑐

1−
𝑚
2 − 𝑎0

1−
𝑚
2

𝐶  1 −
𝑚
2
  𝜎 𝜋 

  (4)  

Alternatively, the crack size aN after N cycles of fatigue loading can be obtained by solving Eq. (4) for aN.  

 

𝑎𝑁 =  𝑁𝐶  1 −
𝑚

2
  𝜎 𝜋 

𝑚
+ 𝑎0

1−
𝑚
2  

2
2−𝑚

 (5)  
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 In SHM, the inspection is performed at a specific interval of flights; i.e., with a fixed N. If the damage size aN 

obtained from sensors does not include errors or variability, then the curve fitting technique can be used to 

determine the damage parameters of the monitored panel with at least two measured data. Due to errors and 

variability in the measurements, however, it is unclear how to estimate the damage parameters. Especially, this is 

more significant for SHM because the errors and variability in SHM is much larger than that of manual inspection. 

III. Statistical Characterization of Damage Properties using Bayesian Updating 

As mentioned in the previous section, the damage parameters, C and m, are critical factors to determine the growth 

of damage. These parameters are normally measured using fatigue tests. However, uncertainty in these parameters is 

normally large because of variability in manufacturing and ageing of the specific panel. As can be found in Fig. 1, 

the parameter C corresponds to y-intercept of the fatigue curve, while the exponent m is the slope of the curve in the 

log-log scale. Kale et al.
20,21,22

 showed that the effect of exponent m is more significant than that of C. To simplify 

the idea of the paper, we assumed that the accurate value of C is known, while that of m is uncertain. Since the range 

of the exponent m is generally known, it is possible to initially assume that the exponent is uniformly distributed 

between the lower- and upper-bounds. Then, the goal is to narrow the distribution of the exponent using the 

Bayesian statistics with measured damage sizes.  

 
Figure 1. Illustration of Paris law parameter in a log-log plot of crack growth rate. 

 Bayesian updating
27

 is a technique commonly used to obtain updated (also called posterior) distribution of a 

random variable by using new information obtained about the variable. In this paper, we used the following form of 

Bayes’ theorem that can fit for our purpose:  

 

𝑓𝑢𝑝𝑑𝑡  𝜃 =
𝑓𝑖,𝑡𝑒𝑠𝑡  𝜃 𝑓𝑖𝑛𝑖  𝜃 

 𝑓𝑖,𝑡𝑒𝑠𝑡  𝜃 𝑓𝑖𝑛𝑖  𝜃 𝑑𝜃
+∞

−∞

 (6)  

where θ is the variable (i.e., the damage exponent m here), fini the assumed (or prior) probability density function 

(PDF) of θ, fupdt the updated (or posterior) PDF of θ and fi,test is called the likelihood function, which is the 

probability of obtaining the measured damage size, given the errors and variability of sensor measurement.  

 The likelihood function is designed to integrate the information obtained from inspection to the knowledge we 

have about the distribution of m. In this paper, we choose the damage growth between two consecutive inspections 

as a likelihood function. Thus, it is the probability to have the measured damage growth for a given m. In general, 

the measured damage growth includes the effect of errors and variability of the sensor measurement. With a large 

number of measurements, however, it is possible to narrow down the distribution of m from its initial wide 

distribution. 

 We denote the damage growth between two consecutive measurements as g and the likelihood function 

as𝑃(𝑔|𝑚). Then, the Bayesian updating formula for the distribution of damage exponent m can then be written as 
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𝑓𝑢𝑝𝑑𝑡  𝑚 =
𝑃 𝑔 𝑚 𝑓𝑖𝑛𝑖  𝑚 

 𝑃 𝑔 𝑚 𝑓𝑖𝑛𝑖  𝑚 𝑑𝑚
+∞

−∞

  (7)  

 The likelihood function is constructed based on the fact that there is variability and error in the measured crack 

size. Let aN be the measured crack size, e the error, and v the variability. The true crack size, aN, is then defined as 

 

𝑎𝑡𝑟𝑢𝑒 = 𝑎𝑁 + 𝑒 + 𝑣  (8)  

The measurement error e reflects a deterministic bias, such as calibration error, while the variability v reflects 

random noise. For different measurements, the error e remains constant, while the variability v will vary. 

At a given inspection, assuming that the previous and the current crack sizes are uniformly distributed and the 

crack growth is triangularly distributed, the respective distributions can be found below: 

 

𝑎′𝑖~ 𝑈(𝑎𝑁 + 𝑒 − 𝑣 ;  𝑎𝑁 + 𝑒 + 𝑣)  (9)  

 

𝑔′𝑖~ 𝑇 𝑔 − 2𝑣 ;  𝑔 ;  𝑔 + 2𝑣  (10)  

 The likelihood function is then defined as the probability for a given m that the growth belong to that 

distribution. Since the measured data (crack growth) is different from the updated distribution (Paris exponent m), 

Monte Carlo simulation (MCS) is used to calculate the likelihood function. Let 𝑎𝑖  and 𝑎𝑖+1 be the true crack sizes at 

(i)-th and (i+1)-th inspections, respectively. In addition, let N be the interval of these two inspections. Then, the true 

crack growth during this interval is given as 𝑔 = 𝑎𝑖+1 − 𝑎𝑖 . Due to sensor error and measurement variability, the 

measured crack sizes are different from the true ones. The measured crack sizes, 𝑎𝑖
′  and 𝑎𝑖+1

′ , are determined from 

Eq. (9) and a given value of m. Then, the measured crack growth is 𝑔′ = 𝑎𝑖+1
′ − 𝑎𝑖

′ . The likelihood value at the 

particular m is the value of PDF in Eq. (10) at 𝑔′. Since this value will change due to error and variability, this 

process is repeated M times and the averaged value is used for the likelihood value at a given m. The numerical 

experiments showed that M = 1,000 is enough to obtain a smooth distribution of the likelihood function. 

One of the major advantages of SHM is that measurements can be performed frequently. Thus, the update in Eq. 

(7) can be performed as frequently as possible. However, since the damage grows slowly and the errors and 

variability of measurements are in general large, too frequent measurements may not help to narrow down the 

distribution of damage parameters. We will investigate the effect of measurement intervals on the rate of narrowing 

the distribution of damage parameters. 

IV. Numerical application 

In this section, we present how the distribution of the damage parameter for a fuselage panel can be narrowed using 

SHM and Bayesian update. Typical material properties for 7075-T651 aluminum alloy are presented in Table 1. The 

applied fuselage pressure differential is 0.06 MPa, obtained from Niu
28

 and the stress is given by Eq. (3). Paris law 

parameters m and C are obtained using a crack growth rate plot published by Paris et al.
29

. Note that due to 

scatteredness of the crack growth rate, the exponent m is assumed to be uniformly distributed between the lower- 

and upper-bounds. 

 

Table 1. Fatigue properties of 7075-T651 Aluminum alloy 

Property 
Pressure, p 

(MPa) 

Fracture toughness, 

KIC (𝑀𝑃𝑎 𝑚𝑒𝑡𝑒𝑟𝑠) 

Fuselage radius, 

r (meters) 

Paris law 

exponent, m 

Material 

parameter, C 

Distribution type 

(mean, standard 

deviation) 

Lognormal 

(0.06, 0.003) 

Deterministic  

36.58 

Deterministic 

3.25 

Uniform 

(3.2, 4.6) 

Deterministic 

3.8 × 10−11  

 

 The damage parameters and their distributions in Table 1 are for generic 7075-T651 aluminum alloy. Depending 

on manufacturing and assembly processes, the actual damage parameters for individual aircraft can be different. For 

a specific panel, we assume that there exists a true value of deterministic damage parameters. In the following 

numerical simulation, the true damage will grow according to the true value of damage parameters. On the other 
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hand, the measured damage size will have errors and variability of the measurements. As mentioned before, it is 

assumed that the y-intercept C is already known and the distribution of exponent m will be considered in the section. 

 From the preliminary damage growth analysis, it is found that the effect of variability in pressure p has 

negligible effect of damage growth because the effect of randomness is averaged out. Thus, in the following 

analysis, the applied pressure is assumed to be deterministic. (If this is the case, I suggest to delete the pressure 

column in Table 1)  
 In general, the minimum size of detectable damage using SHM is much larger than that of the manual inspection. 

Although different SHM techniques may have different minimum detectable size, we choose an initial crack size 

𝑎0 = 20 𝑚𝑚, which is large enough to be detected by most SHM methods.  In addition, this size of damage will 

provide significant crack growth data between the two consecutive inspections. 

V. Updating of material property m 

In order to test the updating procedure, we assume that the actual value m of a particular panel is deterministic, mtrue, 

which governs the crack growth. However, the available information is the initial distribution of m is assumed to be 

uniform for simplicity. The likelihood function is based on the crack growth so in order to have information we need 

for the crack to be large enough to be detectable because no detection means no crack size, so no information and 

we don’t use the absence of data as an information. This is why we choose the initial crack size to be 20 mm. 

 In the example, we assume that the inspection has been performed at every 200 cycles (i.e., N = 200). For the 

results presented here inspections have been performed on a single panel that contains a crack size that is initially 20 

mm until failure of the given panel. The variability in crack detection is assumed to be of 1 mm and the error to be 

zero. The inspection are conducted until 50,000 cycles or until the crack reaches its critical size, aC.  

 

𝑎𝐶 =  
𝐾𝐼𝐶

𝜎 𝜋
 

2

  (11)  

 Figure 2 shows the updated distributions of m for different deterministic values of mtrue. The initial distribution 

of m is in red, the dotted blue curves are updated distribution (every 2,000 cycles) and the solid blue curve is the 

final updated distribution.  
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Figure 2. Updated distribution of material parameter m for different actual values mtrue 

It can be observed that no matter the value of mTrue the updating is very accurate, the larger m is, the faster the 

crack growth, but is m is smaller the reduced crack growth rate is compensated by the fact that we have more 

inspection results. 

VI. Remaining useful life using updated distribution of m 

An interest of updating the distribution of m is to improve the accuracy of prognosis for a structure. We will here 

discuss the application to the calculation of the remaining useful life (RUL) at every inspection. In order to show the 

interest of our method we compare RUL calculated using the actual value of m, mtrue, the and the critical value for 

both the initial and the updated distributions. We define the critical value of m, mC, such that 𝑃 𝑚 ≤ 𝑚𝐶 = 0.95. 

 In order to simplify the model we use a deterministic value for the crack size, we assume the worst possible 

crack which means that we use 𝑎 = 𝑎𝑁 + 𝑣 + 𝑒. Figure 3 shows the comparison of the remaining useful life for the 

previous estimates of m. 
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Figure 3 – Remaining useful life after inspection 

 It can be observed that the updated distribution of m allows us to have conservative estimate of the RUL that 

converges to the actual value, whereas the initial distribution gives an estimate that is way too conservative and 

obviously not reasonable since after the first inspection we have a RUL of approximately 500 cycles but after 500 

cycles we can observe that the RUL has not change much. 

VII. Conclusion 

This paper shows that the amount of data obtained from SHM compensates for the uncertainties in measurements 

involved in that kind of inspection. Another observation resulting from this work is that the method presented here is 

actually insensitive to the amplitude of variability and error in damage size measurement. 

That method allows to narrow down the distribution of material parameters, in this case Paris law exponent, no 

matter what the value of the parameter is, it is here tested only for a deterministic value but the goal is to extend the 

work to be able to narrow down on a distribution for an entire aircraft, not only a single panel. 

It can be observed that the improvement in statistical knowledge of material properties improves significantly the 

estimation of remaining useful life not only it converges to the right value and is much better than the estimation 

obtained from the initial distribution, it also stays conservative even close from failure. The model presented here is 

very simplified, the actual result is a distribution instead of a deterministic value but that simplified model gives 

already a good estimation of the expected behavior and it is conservative since it is the worst possible case. 
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