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ABSTRACT 

In this paper, Bayesian statistics is utilized to update 

uncertainty associated with the fatigue life relation. The 

distribution for fatigue strain at a constant load cycle is 

determined using the initial uncertainty from analytical 

prediction and likelihood functions associated with test 

data. The Bayesian technique is a good method to re-

duce uncertainty and at the same time provides a con-

servative estimate, given the distribution of analytical 

prediction errors and variability of test data. First, the 

distribution of analytical fatigue model error is estimated 

using Monte Carlo simulation with uniformly distributed 

parameters. Then the error distribution is progressively 

updated by using the test variability as a likelihood func-

tion, which is obtained from field test data. The sensitivity 

of estimated distribution with respect to the initial error 

distribution and the selected likelihood function is stu-

died. The proposed method is applied to estimate the 

fatigue life of turbine blade. It is found that the proposed 

Bayesian technique reduces the scatteredness of fatigue 

life by almost 50%, while maintaining the conservative 

life estimate at a given fatigue strain. In addition, a good 

conservative estimate of fatigue life prediction has been 

proposed using a knockdown factor that is obtained from 

the distribution of lowest test data. 

INTRODUCTION 

In general, there are two different life prediction models 

in fatigue analysis: stress-life and strain-life models. The 

former is often used for high-cycle fatigue analysis in 

which the stress-strain relation is in the linear region. The 

latter is frequently used for low- and medium-cycle fati-

gue in which plastic deformation contributes to the fati-

gue life. Although the basic concept in the proposed 

Bayesian approach is the same, the strain-life model will 

be investigated in this paper.  

 In strain-life fatigue analysis, the total fatigue strain 

( )t  is decomposed by elastic strain ( )e  and plastic 

strain ( )p . For this analysis, the strain-life curve is de-

fined 
[3] 

as: 
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where fe  is the coefficient of fatigue ductility, fs  the 

coefficient of fatigue strength, b  the exponent of fatigue 

strength, c  the exponent of fatigue ductility, and E  the 

Young‟s modulus.  

 The coefficients in the strain-life curve are obtained 

using curve-fitting of test data. However, due to variability 

in test and material, the results are often scattered. In the 

material handbook, for example, the standard values of 

the coefficients are available. However, a particular batch 

of material may have different properties. In addition, a 

particular machine may have different fatigue properties 

due to manufacturing process used and possibility of 

residual stresses. Thus, an important question is how to 

find more accurate life estimate for a specific machine 

when several test data are available. Traditionally, safety 

factors have been adopted as a measure to counter 

variability. But, presently, there is growing interest in 

replacing safety factor-based deterministic design with 

reliability-based design (e.g., Wirsching 
[7]

, SAE Aero-

space Information Report 5080 
[5]

).  In addition, the goal 

of test is often to find conservative estimate of the pre-

dicted life. Obviously taking the lowest test data can be a 

choice, but its variability will be high and in many cases, 

the lowest test data will not provide enough conserva-

tiveness 
[1]

. Thus, another important question is how to 

find the best way of predicting conservative fatigue life of 

a machine. 

 The objective of this paper is to investigate the possi-

bility of using the Bayesian statistics in order to reduce 

scatteredness of the fatigue life distribution when addi-

tional test data are available. In addition, a good way of 

conservatively estimating fatigue life is proposed using a 

knockdown factor a term introduced for correcting analyt-

ical predictions based on test results
[8]

)
 
 that is obtained 

from the distribution of lowest test data. The concept of 



knockdown factor has been adopted in aerospace struc-

tures. 

INPUTS AND ASSUMPTIONS 

It is important to understand the assumptions that are 

used in this paper. Some of them are for convenience, 

and others represent the lack of knowledge. If additional 

information is available, the latter can be improved. 

 It is first assumed that the coefficients in Eq. (1) are 

randomly distributed and their statistical distribution pa-

rameters are known. These distributions represent the 

prior knowledge or analytical prediction. This information 

can be obtained by studying strain-life test data and by 

estimating upper- and lower-bounds of test data from the 

mean curve. When this information is not available, it is 

possible to assume that these parameters ( fs , fe , b, 

and c) are distributed uniformly with given bounds from 

their nominal values. This will serve as a prior knowledge 

of the fatigue failure distribution. Even if input parameters 

are uniformly distributed, the fatigue failure strain will not 

be uniformly distributed. 

 The confidence interval is a measure of our confi-

dence in the analytically predicted value. It would be the 

lower and upper bounds of the strain-life test data. How-

ever, since only the distribution of each parameter is 

considered known, the bounds for life cycle value are 

determined from the distribution of all parameters. 

 Considering cases, where only one of the parameters 

varies at a time, while the rest of them are at their mean 

values, the sensitivity of life cycle value to each parame-

ter has been determined, and found to be positive for all 

parameters. Hence, the upper and lower bounds for life 

cycle would be when all parameters are simultaneously 

at their algebraic maximum and minimum values, re-

spectively. The bounds of the confidence interval are 

usually expressed as a percentage of analytical value. If 

the bounds are asymmetrically distributed about the ana-

lytical value, the maximum variation is considered.  

 The distribution of error is the distribution of life cycle 

due to the distributions of the parameters. This distribu-

tion of error is generated using the Monte Carlo Simula-

tion (MCS). In this paper, the MCS is performed by 

generating 100,000 values for each parameter, governed 

by its variability. These randomly generated numbers are 

used to calculate 100,000 values of strain life, from 

which the distribution of error can be estimated. 

 Test variability is the scatteredness of the test data. 

Distribution of test variability is the histogram of strain-life 

test data at the known constant failure fatigue strain ( )t  

value. However, for the want of test data, the distribution 

of test variability is assumed to be normal with same 

parameters as that of the distribution of error. 

 Even if there is no limitation on the number of test 

data, three test data are assumed available through the 

test of a specific component. These three test data are 

randomly chosen within the variability limits with the ana-

lytical value as the mean. 

BAYESIAN UPDATE FOR FATIGUE FAILURE 

STRAIN 

NORMALIZATION: 

Although the raw data and initial distribution can be used 

for Bayesian update, it is often more convenient to nor-

malize all data and distributions. All the factors affecting 

the Bayesian update, such as the confidence interval, 

error distribution, test variability, and test results are 

normalized with respect to the initial value of fatigue life, 

2N. Since the confidence interval is expressed as a per-

centage of analytical value, it is not affected by normali-

zation. The parameters of test variability are expressed 

as a fraction of mean value. In the normalized distribu-

tion, the standard deviation becomes identical to the 

coefficient of variance (COV). 

LIKELIHOOD FUNCTION: 

The likelihood function of a test result is the probability of 

obtaining that test result, given the value of actual fatigue 

life and the test variability. It is actually the ordinate value 

of probability distribution function (PDF) of test variability 

with the actual fatigue life as its mean, when the abscis-

sa is equal to the test result.  

 The likelihood would be a single value, if the actual 

fatigue life is known. But, since only the bounds for the 

actual fatigue life are known, the likelihood function va-

ries within that confidence interval. The likelihood of the 

given test result can be found by considering each point 

within the error bounds as the actual fatigue life. The 

likelihood function for a given test result would be the 

variation of these likelihood values with the actual fatigue 

life values. The likelihood function for each of the three 

test results can be determined in a similar fashion. 

BAYESIAN UPDATE: 

The Bayesian update is based on the theory of condi-

tional probability, which states 
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The expression for Bayesian update is very similar, i.e. 
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Here,  2testf N  is the likelihood function for the given 

test result. It could also be seen as probability of obtain-

ing the test result given the true value of fatigue life. 

 2inif N  is the initial distribution of 2N. For updating with 

the first test result, this distribution is taken as the error 

distribution. This updated distribution is used as the initial 



distribution for updating with second test result and so 

on. 

 The denominator is simply the integration of numera-

tor. This is interpreted as the normalization of PDF such 

that the area under the distribution becomes one. Differ-

ent techniques like „Trapezoidal rule‟, „Simpson‟s Rule‟, 

etc, can be used for this purpose. Trapezoidal rule has 

been used in this paper for numerical integration. 

 After the initial distribution is updated using the first 

test data,  2inif N  is replaced by  2updf N , and the 

above procedure is repeated for the next test results.  

 The mean of the distribution obtained after updating 

with final test result, is called the Updated Bayesian Life.  

KNOCKDOWN FACTOR: 

It is common in practice to take the minimum value of 

the test results as the actual fatigue life. Such considera-

tion implicitly applies a knockdown factor on average 

fatigue life value. In this paper, an explicit knockdown 

factor is calculated from test statistics and multiplied to 

the mean value of the updated Bayesian life to calculate 

a conservative estimate of the fatigue life. It is known 

that the lowest of the test results follows an extreme 

value distribution
 [6]

. The mean of this extreme value 

distribution is used for the knockdown factor. 

 Knock down factor calculation depends on material 

variability only. If „f‟ is the cumulative distribution function 

(CDF) of material variability after normalization, the ex-

treme value distribution is given by, 

3 3
1 1 (1 )F f    (4) 

The mean of this extreme value distribution 3
1( )F  is the 

knockdown factor. 
[2]

 

The conservative estimate of fatigue life is the product of 

the Updated Bayesian Life and knockdown factor. 

NUMERICAL EXAMPLE 1 – CONSTANT CYCLE 

TEST 

As a test case, the Bayesian technique is applied to steel 

4340 material, whose strain-life fatigue parameters are 

shown in Table 1 
[4]

. The strain-life curve for steel 4340 

material is shown as „Mean‟ curve in Figure 1. The un-

certainty in the parameters leads to uncertainty in strain 

amplitude ( )t . First the sensitivity of strain amplitude 

with respect to each of the parameters has been deter-

mined, and found to be positive for all parameters. The 

effect of the uncertainty in strain amplitude has been 

plotted through the „Maximum‟ and „Minimum‟ curves in 

Figure 1. These curves have been plotted considering 

each of the parameter at its algebraic maximum and 

minimum respectively, governed by its variability. 

 In the first example, it is assumed that the material is 

failed at 2N = 100,000 reversals and three test data are 

available at that reversal value. Since the crossover re-

versal for this material is in the order or 10,000, the fati-

gue strain is in the elastic region. For the material para-

meters in Table 1, the value of analytical fatigue strain is 

0.0032t  . 

 

Table 1: Strain-life fatigue parameters for steel 4340 

Parameter Value 

Elastic stiffness (E) 208,900 MPa 

Fatigue ductility coefficient (ef) 0.83 

Fatigue ductility exponent (c) -0.65 

Fatigue strength coefficient (sf) 1,713 MPa 

Fatigue strength exponent (b) -0.095 
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Figure 1: Strain-life curve for steel 4340 
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Figure 2: Histogram of fatigue strain at 2N = 100,000 
 

In order to find the initial error bounds of the fatigue 

model, all parameters affecting the fatigue strain are 

assumed to vary uniformly 10% of their nominal value. 

When all the parameters are varying simultaneously, the 

value of t  varies between 0.0024 and 0.0045. Then, the 

error bounds are calculated considering the maximum 

deviation from the mean, i.e., 0.0045 – 0.0032 = 0.0013, 

which is about 39% of the mean. Hence, the error 

bounds are 39% of the mean.  



 In addition to the error bounds, detailed distribution of 

t  can be plotted using MCS. First, 100,000 samples of 

material parameters are randomly generated according 

to uniform distribution. Then, the histogram of t  is plot-

ted by applying these samples to Eq. (1). Figure 2 shows 

the histogram of fatigue strain at 2N = 100,000 reversals. 

The solid curve connects the midpoint of each bin in the 

histogram. The PDF of fatigue strain is obtained by scal-

ing down the curve, such that the area under the curve is 

unity. It turns out that the fatigue strain distribution has 

following parameters: 

Mean 0.0033

SD 0.00033




 (5) 

 In Figure 3, the normal distribution with the same 

mean and standard deviation is plotted. It is clear that the 

histogram looks close to a normal distribution with same 

parameters. Although variability associated with fatigue 

test should be obtained from more rigorous method, it is 

assumed that the test variability is normally distributed 

with mean 0.0033 and COV 10%.  

 With error bounds and test variability, now it is possi-

ble to perform Bayesian update. Let us consider that 

three fatigue tests are performed. After normalizing by 

analytical fatigue strain, the three test data strains are 

0.85, 1.05, and 1.15. These three normalized data cor-

respond to strain values of 0.02805, 0.003465, and 

0.003795, respectively. 
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Figure 3: Fitting the distribution of fatigue strain using 
normal distribution 
 

Figure 4 shows distribution of estimated fatigue strain at 

each stage of Bayesian update. The dotted lines show 

the likelihood function for each test result, while the solid 

lines show the updated distributions. The final updated 

distribution of the fatigue strain has the following para-

meters: 

Mean 0.00327

SD 0.00017




 (6) 

Note that the mean does not change significantly, while 

the standard deviation of the updated Bayesian distribu-

tion is about 50% of that of the original distribution. Thus, 

the three test data effectively reduce the uncertainty in 

the fatigue failure strain. Table 2 tabulates the variation 

of the parameters of the distribution of fatigue failure 

strain with each stage of Bayesian update. 

 Since the fatigue strain is distributed, it is better to 

provide a conservative estimate of the fatigue strain us-

ing a knockdown factor. When the test variability is nor-

malized, the mean is shifted to 1.0, while retaining the 

COV. Hence, the knockdown factor for the normalized 

test variability, governed by N(1.0, 0.1
2
) is calculated to 

be 0.9127, using the mean value of extreme distribution 

in Eq. (4). Hence, the conservative estimate of fatigue 

failure strain at 100,000 reversals be-

comes 0.00297t  . 
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Figure 4: Bayesian update history of failure fatigue strain 
 
Table 2: Variation of parameters with each stage of 
Bayesian update 

 Mean SD 

Initial 1.0000 0.1014 

After first test 0.925 0.0724 

After second test 0.9667 0.0591 

After third test 1.0125 0.0512 

 



NUMERICAL EXAMPLE 2 – CONSTANT STRAIN 

TEST 

For the constant strain test, it is assumed that the ampli-

tude of strain applied to the machine is constant at 

0.0055. For the material properties in Table 1, the value 

of analytical fatigue life is 10,000 reversals. Since the 

crossover reversal value for this material is 4,103 rever-

sals, the assumed fatigue strain is in the elastic region.  

 Due to computational difficulties, the strain-life expres-

sion is solved for y = log10(2N), rather than for the strain 

life, 2N. Hence, the analytical value for „y‟ would be 4.00.  

 In order to find the initial error bounds of the fatigue 

model, all parameters affecting the fatigue strain are 

assumed to vary uniformly 10% of their nominal value. 

The error bounds for „y‟ have been determined to be 

16% of the mean.  

 In addition to the error bounds, detailed distribution of 

„y‟ can be plotted using MCS. First, 100,000 samples of 

material parameters are randomly generated according 

to uniform distribution. Then, the histogram of „y‟ is plot-

ted by applying these samples to Eq. (1). Figure 5 shows 

the PDF of „y‟ at fatigue strain, 0.0055t  . It turns out 

that „y‟ has the following distribution parameters: 

Mean 3.8937

SD 0.1991




 (7) 
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Figure 5: PDF of log10(2N) at fixed strain 0.0055t   

 

The PDF of log10(2N) can be modeled as a product of 

PDF of a normal distribution and a polynomial. The nor-

mal distribution that has the same parameters as that of 

the PDF of log10(2N) is shown as the curve with dotted 

lines in Figure 6. Figure 7 plots the product function de-

termined from the two curves in Figure 6. An 8th degree 

polynomial is fitted to estimate the product function. The 

dashed lines show the polynomial in Figure 7.  

 For the want of test results, the variability of the test 

results have been assumed to a normal distribution with 

mean 3.8937 and COV 5.11%  

 The three additional test cases for „y‟ have been as-

sumed to at 0.85, 1.05 and 1.15 times the analytical val-

ue. 
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Figure 6: PDF of log10(2N) and that of normal distribution 
with the same mean and standard deviation 
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Figure 7: Product function that models the difference 
between PDF of log10(2N) and that of normal distribution  
 

Figure 8 shows distribution of estimated fatigue life at 

each stage of Bayesian update. The dashed lines show 

the likelihood function for each test result, while the solid 

lines show the updated distributions. The final updated 

distribution of the „y‟ has the following parameters: 





Mean 4.0576

SD 0.1140
 (8) 

Since the fatigue life is distributed, it is better to provide a 

conservative estimate of the fatigue life using knockdown 

factor. When the test variability is normalized, the mean 

is shifted to 1.00, while retaining the COV. Hence, the 



knockdown factor for the normalized test variability, go-

verned by N(1, 0.05112) is calculated to be 0.9567. 

Hence, the conservative estimate of fatigue failure life at 

strain amplitude of 0.0055 is 2N = 10
3.8819

 = 7619 rever-

sals.  

 Table 3 tabulates the variation of the parameters of 

the distribution of fatigue failure strain with each stage of 

Bayesian update. 
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Figure 8: Bayesian update history of failure fatigue life 
 
Table 3: Variation of parameters with each stage of 
Bayesian update 

 Mean SD 

Initial 1.0000 0.0511 

After first test 0.9326 0.0252 

After second test 0.9601 0.0288 

After third test 1.0144 0.0285 

EFFECT OF INITIAL DISTRIBUTION 

The Bayesian update for the fatigue failure life has been 

performed in Example 2 above, considering the PDF of 

life as initial distribution. The importance of prior or initial 

distribution could be emphasized by performing a Baye-

sian update with prior as uniform distribution between 

error bounds and comparing results. The Bayesian up-

date history of failure fatigue life with a uniform distri-

buted prior is shown in Figure 9. Table 4 compares the 

results of these two Bayesian updates. 

 It is noted that when the actual PDF of life is used as 

prior, the mean of final distribution decreases by 0.23% 

and the standard deviation of the final distribution reduc-

es by 3.39%. This suggests that having a better know-

ledge of the prior distribution results in a better 

coefficient of variance for the distribution after update.  
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Figure 9: Bayesian update history of failure fatigue life 

with a uniform distribution for prior information 
 
 
Table 4: Comparison of parameters of distribution af-

ter Bayesian update when the prior distribution is uniform 
or the actual PDF 

Parameter 

Prior Distribution 

Uniform  

Distribution 

Actual  

Distribution 

Mean of final 
distribution  

1.0167 1.0144 

SD of final 
distribution  

0.0295 0.0285 

 



EFFECT OF TEST CASES 

The normalized test cases considered in the example 2 

above, are 0.85, 1.05 and 1.15. The Bayesian update 

performed with an altogether different set of normalized 

test results such as 1.01, 1.02 and 1.02 yields an inter-

esting result.  Figure 10 compares the distribution and 

mean of fatigue failure life after Bayesian update for the 

two cases of tests discussed above. Case 1 refers to the 

test result set of [0.85, 1.05, 1.15]. Case 2 refers to the 

test result set of [1.01, 1.02, 1.02]. It is noted that both 

the distributions are one and the same.  
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Figure 10: Strain life after Bayesian update for two differ-
ent set of test cases considered for the update 
 

 It is noted that the average of the two sets of test re-

sults is same, which is 1.0167.Now, Case 1 has two test 

results in the extremes of the error bounds, and hence, 

the likelihood function of those results are truncated. 

Case 2 has all test results centered on 1.00 and hence 

their complete likelihood function is utilized in Bayesian 

update. Yet, the strain life distribution after Bayesian 

update is one and the same for both cases. Hence, it can 

be concluded that the distribution of fatigue failure life 

after Bayesian update will depend on the average of the 

normalized test cases considered.  

 The dependence of Bayesian update on the average 

of the three test cases have been further verified by con-

sidering a set of identical test values, [1.0167, 1.0167, 

1.0167] which resulted in an identical distribution as 

shown in Figure 10. 

 It has also been verified that the changing the order in 

which the test cases are considered for the update does 

not affect the distribution of strain life after Bayesian 

update.  

 

CONCLUSIONS 

 Bayesian update has been demonstrated as a good 

method to reduce uncertainty in number of reversals 

(2N) for constant strain amplitude case and also to 

reduce uncertainty in strain amplitude for constant 

life case, with the knowledge of test cases. 

 It is seen that the standard deviation of the distribu-

tion obtained after the Bayesian update, is almost 

half of that of the initial error distribution. 

 Since only the average of the three test cases is the 

main parameter, there is no effect of having repeti-

tive values for the test cases.  

 Also, changing the order, in which the test cases are 

considered for the Bayesian update, doesn‟t affect 

the actual fatigue life.  

 Having a better knowledge for the prior leads to less 

scatteredness in distribution obtained after Bayesian 

update. 
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