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ABSTRACT 

Structural health monitoring provides sensor 

data that monitor fatigue-induced damage 

growth in service. This information may in 

turn be used to improve the characterization of 

the material properties that govern damage 

propagation for the structure being monitored. 

These properties are often widely distributed 

between nominally identical structures 

because of differences in manufacturing 

processes and aging effects. The improved 

accuracy in damage growth characteristics 

allows more accurate prediction of the 

remaining useful life (RUL) of the structural 

component. In this paper, a probabilistic 

approach using Bayesian statistics is employed 

to progressively reduce the uncertainty in 

structure-specific damage growth parameters 

in spite of noise and bias in sensor 

measurements. Starting from an initial, wide 

distribution of damage parameters that are 

obtained from coupon tests, the distribution is 

progressively narrowed using the damage 

growth between consecutive measurements. 

Detailed discussions on how to construct the 

likelihood function under given noise of 

sensor data and how to update the distribution 

are presented. The approach is applied to crack 

growth in fuselage panels due to cycles of 

pressurization and depressurization. It is 

shown that the proposed method rapidly 

converges to the accurate damage parameters 

when the initial damage size is 20mm and 

there is no bias in the measurements. Fairly 

accurate material properties can be obtained 

also with measurement errors of 5mm. Using 

the identified damage parameters, it is shown 

that the 95% conservative RUL converges to 

the true RUL from the conservative side. The 

proposed approach may have the potential of 

turning aircraft into flying fatigue 

laboratories.
*
 

1 INTRODUCTION 

Structural health monitoring (SHM) will have a 

significant impact on increasing safety as well as 

reducing the operating and maintenance costs of 

structures by providing an accurate quantification of 

degradation and damage at an early stage to reduce or 

eliminate malfunctions. Furthermore, SHM will allow 

predictions of the structure’s health status and 

remaining useful life (RUL) without intrusive and time 

consuming inspections. Continual on-line SHM is 

based on dynamic processes through the diagnosis of 

early damage detection, then prognosis of health status 

and remaining life.  

Prognosis techniques can be categorized based on 

the usage of information: (1) physics-based, (2) data-

driven, and (3) hybrid methods. The physics-based 

method, or model-based method in Luo, et al. (2003), 

assumes that the system behavior is known. Dynamic 

stochastic equation, lumped-parameter model in Li and 

Lee (2005), and functional models in Berruet, et al. 

(1999) correspond to this category. In the case of SHM, 

crack growth model in Li and Lee (2005),  Ray and 

Patankar (1999, Ray and Tangirala (1996) or spall 

growth models are often used for micro-levels, and first 

principle models in Jaw, et al. (1999) are used for 

macro-levels.  
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which permits unrestricted use, distribution, and reproduction 
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credited. 
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The data-driven method in Schwabacher (2005) 

uses information from collected data to predict future 

status of the system, and includes least-square 

regression in Montanari (1995) and Xue, et al. (2007), 

Gaussian process regression in Goebel, et al. (2008) 

and Srivastava and Das (2009), neural network in Jaw, 

et al. (1999), Goebel, et al. (2008) and Srivastava and 

Das (2009), and relevance vector machine in Goebel, et 

al. (2008) and Tipping (2000). This method has 

advantages when  the system is so complex that no 

simple physical model is available. The hybrid method 

in Yan and Lee (2007) uses the advantages from both 

methods, and includes particle filters in Orchard, et al. 

(2008) and Bayesian techniques in Sheppard, et al. 

(2005) and Saha and Goebel (2008). It is generally 

accepted that uncertainty is the most challenging part 

for prognosis in Saha and Goebel (2008) and Engel, et 

al. (2000). Sources of uncertainty are initial state 

estimation, current state estimation, failure threshold, 

measurement, future load, future environment, and 

models. In order to address the uncertainty, various 

methods have been proposed, such as confidence 

intervals in Gu, et al. (2007), relevance vector machine 

in Goebel, et al. (2008), Gaussian process regression in 

Goebel, et al. (2008) and Srivastava and Das (2009), 

and particle filers in Orchard, et al. (2008) and Orchard, 

et al. (2005). 

The current technology of diagnosis and prognosis 

using sensor-based SHM anticipates difficulties 

associated with uncertainties in sensor data, damage 

growth models, and material and geometric properties. 

The first is related to identifying the current health 

status, while the others are related to predicting the 

health status in the future. Uncertainties in sensor data 

can be classified in two categories: the systematic 

departure due to bias and the random variability due to 

noise. The former is caused by calibration error, sensor 

location and device error, while the latter is caused by 

measurement environment. Note that bias may tend to 

vary non-randomly as the crack grows due to the nature 

of the error, for example the placement of the sensor 

being focused on the growth direction of the crack, the 

bias may decrease as the crack grows. However, we 

assume the bias to be constant over the entire life of the 

structure. 

Compared to manual inspections, the accuracy of 

SHM is still poor. The minimum detectable size of 

damage using SHM is much larger than that of manual 

inspection methods. In addition, the measured data 

have the aforementioned noise and bias. Thus, the 

major challenge is how to accurately predict the 

damage growth when the measured data include both 

noise and bias. However, unlike manual inspection, 

SHM may provide frequent measurements of damage, 

allowing us to track damage growth. This in turn, 

should allow us to reduce the uncertainty in the 

material properties that govern damage growth. The 

uncertainty in these properties is normally large 

because of noise in manufacturing and aging of the 

monitored structured. The main objective of this paper 

is to demonstrate the reduction in uncertainty that may 

be achieved using abundance in data. A probabilistic 

approach using Bayesian statistics is employed to 

progressively improve the accuracy of predicting 

damage parameters under noise and bias of sensor 

measurements.  

The proposed approach is demonstrated using a 

through-thickness crack in an aircraft fuselage panel 

which grows through cycles of pressurization and de-

pressurization. A simple damage growth model, Paris 

model by Paris, et al. (1999), with two damage 

parameters is utilized. However, more advanced 

damage growth models can also be used, which usually 

comes with more parameters. Using this simple model 

we aim to demonstrate that SHM can be used to 

identify the damage parameters of each particular 

panel. This process can be viewed as turning every 

aircraft into a flying fatigue laboratory. Reducing 

uncertainty in damage growth parameters can reduce in 

turn the uncertainty in predicting remaining useful life 

(RUL), i.e. in prognosis. Improved knowledge on RUL 

can have practical consequences such as increased time 

between visual inspections based on the conservative 

estimation using actual data, or a reduction in hardware 

testing when SHM is combined with manual 

inspection. 

 The paper is organized as follows. In Section 2, a 

simple damage growth model based on Paris model is 

presented. The current paper is based on data obtained 

from a previous work from Kale et al. (2003, 2004 and 

2008), which describes the fatigue crack growth in a 

fuselage panel of 7075-T651 aluminum alloy. In 

section 3 the measurement model is introduces, it 

shows how error in measurements due to SHM is added 

to the model presented in the previous section. In 

section 4 the numerical application of the model is 

presented. In Section 5, the updating of damage 

parameter m is presented as well as the prognosis 

results resulting from it. In Section 6, results similar at 

the one presented in section 5 but obtained updating the 

other damage parameter, C. Conclusions are presented 

in Section 7 along with future plans. 

2 DAMAGE GROWTH MODEL 

The Damage in a structure starts from the 

microstructure level, such as dislocations, and they 

gradually grow to the level of detectable macro-cracks 

through nucleation and growth. Damage in the micro-

structure level grows slowly, is difficult to detect, and 

is not dangerous for structural safety. Thus, SHM often 
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focuses on macro-cracks, which grow relatively quickly 

due to fatigue loadings.  

Once the damage reaches a detectable size, various 

SHM techniques can be employed to evaluate the 

current state of structural health by measuring the size 

of damage (Wang and Yuan (2005)). In the physics-

based prognosis techniques, it is necessary to 

incorporate the measured data into a damage growth 

model to predict the future behavior of the damage. 

Since the damage growth model is not the main focus 

of the paper, the simplest model by Paris, et al. (1999) 

is used in this paper. However, more advanced models 

can also be applied using the same concept. 

In this paper, we consider a fatigue crack growth in a 

fuselage panel with initial crack size ai subjected to 

fatigue loads with constant amplitude due to 

pressurization. The hoop stress varies between a 

maximum value of σ to a minimum value of zero in one 

flight. One cycle of fatigue loading represents one 

flight. Like many other researchers (e.g., Harkness 

(1994) and Lin, et al. (2002)), we use the damage 

growth model by Paris, et al. (1999) as 

 
𝑑𝑎

𝑑𝑁
= 𝐶 𝛥𝐾 𝑚  (1)  

where a is the crack size in meters, N the number of 

cycles (flights), da/dN the crack growth rate in 

meters/cycle, and ΔK the range of stress intensity factor 

in 𝑀𝑃𝑎 𝑚𝑒𝑡𝑒𝑟𝑠. The above model has two damage 

parameters, C and m. Accurate prediction of these 

parameters is important in predicting the remaining 

useful life of a particular panel. 

The range ΔK of stress intensity factor for a center-

cracked panel is calculated as a function of the stress σ 

and the crack length a in Eq. (2), and the hoop stress 

due to the pressure differential p is given by Eq. (3)   

 𝛥𝐾 = 𝜎 𝜋
𝑎

2
   (2)  

 𝜎 =
𝑝𝑟

𝑡
 (3)  

where p is the magnitude of pressure, r is the 

fuselage radius, and t is the panel thickness. Equation 

(2) does not include a geometric correction factor due 

to finite size of the panel, and Eq. (3) does not include 

corrections due to the complexity of the fuselage 

construction, so that they are both approximate. 

The number of cycles N of fatigue loading that 

makes a crack to grow from the initial crack size ai to 

the final crack aN can be obtained by integrating Eq. (1) 

between the initial crack ai and the final crack aN.  

 

𝑁 =  
𝑑𝑎

𝐶 𝜎 𝜋𝑎 
𝑚

𝑎𝑁

𝑎0

            

=
𝑎𝑁

1−
𝑚
2 − 𝑎0

1−
𝑚
2

𝐶  1 −
𝑚
2
  𝜎 𝜋/2 

  

(4)  

 

 

Alternatively, the crack size aN after N cycles of 

fatigue loading can be obtained by solving Eq. (4) for 

aN.  

𝑎𝑁 =  𝑁𝐶  1 −
𝑚

2
  𝜎 

𝜋

2
 

𝑚

+ 𝑎0

1−
𝑚
2  

2
2−𝑚

 (5)  

 

The panel will fail when the crack reaches a critical 

crack size, aC. Here we assume that this critical crack 

size is when the stress intensity factor exceeds the 

fracture toughness KIC. This leads to the following 

expression for the critical crack size (again neglecting 

finite panel effects) 

 𝑎𝐶 =  
𝐾𝐼𝐶

𝜎 𝜋/2
 

2

 (6)  

 

3 STATISTICAL CHARACTERIZATION OF 

DAMAGE PROPERTIES USING BAYESIAN 

UPDATING 

As mentioned in the previous section, the damage 

parameters, C and m, are critical factors to determine 

the growth of damage. These parameters are normally 

measured using fatigue tests under controlled 

laboratory tests. However, uncertainty in these 

parameters is normally large because of variability in 

manufacturing and aging of the specific panel. It is 

possible to curve fit the data and obtain estimates of 

these parameters for the individual panel. However, 

curve fits do not take into account prior information on 

the distribution of these parameters, nor statistical 

information on the measurement uncertainty. We 

therefore use Bayesian statistics to identify these 

parameters. 

 As can be found in Fig. 1, the parameter C 

corresponds to y-intercept at m = 1, of the fatigue 

curve, while the exponent m is the slope of the curve in 

the log-log scale. Kale (2003, 2004 and 2008) showed 

that the effect of exponent m is more significant than 

that of C on damage growth. As a first step in 

developing a prognosis methodology, we assumed that 

the accurate value of C is known, while that of m is 

uncertain. Since the range of the exponent m is 

generally known from literature or material handbooks, 

it is possible to initially assume that the exponent is 

uniformly distributed between the lower- and upper-

bounds. Then, the goal is to narrow the distribution of 

the exponent using the Bayesian statistics with 

measured damage sizes. 

Since the Paris model is based on crack growth 

during N cycles, the fundamental idea of this paper is to 

use the measured crack growth data to characterize the 

damage parameters. Let the current cycle be N, and the 

previous measurement have been performed at 𝑁 −
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Δ𝑁. The crack growth between two measurements can 

be defined as  

 𝛥𝑎𝑁 = 𝑎𝑁 − 𝑎𝑁−1 (7)  

If the measured damage sizes are accurate, the crack 

growth calculation will be accurate. However, due to 

noise and bias of SHM system, the measured crack 

growth will have uncertainty. In the following, we will 

explain how this uncertain crack growth can be used to 

narrow the distribution of damage parameters. 

 
Figure 1. Illustration of Paris law parameter in a 

log-log plot of crack growth rate. 

Bayesian update is based on Bayes’ theorem on 

conditional probability. It is a technique commonly 

used to obtain the updated (also called posterior) 

probability of a random variable by using new 

information available for the variable. In this paper, 

since the probability distribution is of interest, we used 

the following form of Bayes’ theorem that can fit for 

our purpose (An, et al. (2008)):  

𝑓𝑢𝑝𝑑𝑡  𝑚 =
𝑃 𝛥𝑎 𝑚 𝑓𝑖𝑛𝑖  𝑚 

 𝑃 𝛥𝑎 𝑚 𝑓𝑖𝑛𝑖 𝑚 𝑑𝑚
+∞

−∞

 (8)  

where m is the variable we want to update, fini the 

assumed (or prior) probability density function (PDF) 

of m, fupdt the updated (or posterior) PDF of m and 

𝑃(Δ𝑎|𝑚) is called the likelihood function, which is the 

probability of obtaining the measured damage growth, 

a, for a given value of m. The integral in the 

denominator is required in order to make the area under 

the updated PDF to be one. 

The likelihood function is designed to integrate the 

information obtained from inspection to the knowledge 

we have about the distribution of m. In this paper, we 

choose the damage growth between two consecutive 

inspections as the measurement outcome, in other 

words the information we use to update the distribution 

of m. Thus, it is the probability to have the measured 

damage growth for a given m. In general, the measured 

damage growth includes the effect of bias and noise of 

the sensor measurement. With a large number of 

measurements, however, it is possible to narrow the 

distribution of m from its initial wide distribution. 

Let aN be the true crack size, b the bias, and v the 

noise. The measured crack size, 𝑎𝑁
𝑚𝑒𝑎𝑠

, is then given as 

 𝑎𝑁
𝑚𝑒𝑎𝑠 = 𝑎𝑁 + 𝑏 + 𝑣 (9)  

The measurement bias b reflects a deterministic 

bias, such as calibration bias, while the noise v reflects 

random noise. For subsequent measurements, the bias b 

remains constant, while the noise v will vary uniformly 

with maximum range V. Thos expression can be used to 

define the damage growth between consecutive 

inspections as follows 

Δ𝑎𝑁
𝑚𝑒𝑎𝑠 = 𝑎𝑁

𝑚𝑒𝑎𝑠 − 𝑎𝑁−Δ𝑁
𝑚𝑒𝑎𝑠 = Δ𝑎𝑁 − Δ𝑣𝑁  (10)  

 

At a given inspection, if the measured crack size is 

assumed to be uniformly distributed due to uniformly 

distributed noise, then the crack growth is triangularly 

distributed. Thus, the respective distributions can be 

found below: 

 
𝑎𝑁
𝑚𝑒𝑎𝑠 ~ 𝑈(𝑎𝑁 + 𝑏 − 𝑉 ;  𝑎𝑁 + 𝑏 + 𝑉)

𝛥𝑎𝑁
𝑚𝑒𝑎𝑠 ~ 𝑇(Δ𝑎𝑁 − 2𝑉;Δ𝑎𝑁;Δ𝑎𝑁 + 2𝑉)

  (11)  

 (1)  

The likelihood function is then defined as the 

probability for a given m  to have the measured crack 

growth. Since the measured data (crack growth) is 

different from the updated distribution (Paris exponent 

m), Monte Carlo simulation (MCS) is used to calculate 

the likelihood function. The likelihood value at the 

particular m is the value of PDF in Eq. (11) at Δ𝑎𝑁
𝑚𝑒𝑎𝑠 . 

Since this value will change due to bias and noise, the 

MCS is performed with a sample size M times. The 

MCS involves simulating an initial crack based on the 

measured crack size, calculate the crack growth using 

Paris’ law and calculate the likelihood as described 

previously and then those likelihoods are averaged to 

obtain the value that is used for the likelihood value at a 

given m. The numerical experiments showed that M = 

2,000 is enough to obtain a smooth distribution of the 

likelihood function. Note that if we have an estimate of 

the amplitude of the noise but not bias, it is more 

difficult to calculate the likelihood. Figure 2 compares 

the RULs obtained using the true bias with those 

obtained by ignoring the bias. In all cases, V = 1mm is 

used. It turns out that the effect of bias on RUL is not 

significant. 

The distribution of RUL is calculated at every 

inspection using MCS as well but with a larger sample, 

50,000 true crack sizes are estimated using the 

following distribution in Eq. (12) and the RUL is 

estimated using Eq. (13) derived from Paris’ law. This 

allows us to estimate the distribution and from there 

obtain the 95% quantile shown in Figure 2.  

𝑎𝑁
𝑡𝑟𝑢𝑒 ~ 𝑈(𝑎𝑁

𝑚𝑒𝑎𝑠 − 𝑏 − 𝑉 ;  𝑎𝑁
𝑚𝑒𝑎𝑠 − b + V) (12)  

 𝑁𝑓 =
𝑎𝐶

1−
𝑚
2 −  𝑎𝑁

𝑡𝑟𝑢𝑒  1−
𝑚
2

𝐶  1 −
𝑚
2
  𝜎 𝜋/2 

 
(13)  
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Figure 2. Effect of knowledge of bias in the 

likelihood on the 95% confidence prediction of RUL 

Figure 3 shows the cumulative density function 

(CDF) of the RUL after 1,000 and 2,000 cycles. The 

total life of the structure is about 5,000 cycles and it 

can be observed that the estimated mean RUL is about 

5,000 and 3,000 after 1,000 and 2,000 cycles 

respectively, whereas the 95% confidence estimate it 

2,300 and 2,000 cycles. Note that the first two vertical 

lines show the 5% percentile of each CDF, which 

corresponds to the 95% confidence RUL prediction. 

This shows the convergence of RUL as the distribution 

of m is updated. 

 
Figure 3. Cumulative density function of RUL for 

measurements with no bias and minimal noise  

V = 1mm 

One of the major advantages of SHM is that 

measurements can be performed frequently. Thus, the 

update in Eq. (8) can be performed as frequently as 

needed. However, since the damage grows slowly and 

the bias and noise of measurements are in general large, 

too frequent measurements may not help to narrow the 

distribution of damage parameters. 

4 SIMULATION OF FIELD SHM 

This paper presents two different kinds of results due to 

the difference between two sets of measurements 

resulting from the same true crack growth. The results 

presented previously as well as the updated distribution 

results for both m and C are obtained using a single set 

of measurement. The RUL on the other hand is actually 

the mean of the 95% confidence RUL over 100 sets of 

measurements this in order to give an estimate of the 

validity of our method. 

5 NUMERICAL APPLICATION 

Typical material properties for 7075-T651 aluminum 

alloy are presented in Table 1. The applied fuselage 

pressure differential is 0.06 MPa, obtained from Niu 

(1990) and the stress is given by Eq. (3). Paris law 

parameters m and C are obtained using a crack growth 

rate plot published by Newman, et al. (1999). Note that 

due to scatter of the crack growth rate, the exponent m 

and log(C) are assumed to be uniformly distributed 

between the lower- and upper-bounds. 

Table 1. Geometry, loading and fracture parameters 

of 7075-T651 Aluminum alloy 

Property Distribution type 

Pressure, p (MPa) 
Lognormal

†
 

(0.06,0.003) 

Fracture toughness 

KIC (MPa 𝑚𝑒𝑡𝑒𝑟𝑠) 

Deterministic 

30 

Fuselage radius 

r (meters) 

Deterministic 

3.25 

Paris law exponent, m 
Uniform

‡
 

(3.3, 4.3) 

Damage parameter, 

log(C) 

Uniform 

(log(5E-11), log(5E-10)) 

Depending on manufacturing and assembly processes, 

the actual damage parameters for individual aircraft can 

be different. For a specific panel, we assume that there 

exists a true value of deterministic damage parameters. 

In the following numerical simulation, the true damage 

will grow according to the true value of damage 

parameters. On the other hand, the measured damage 

size will have bias and noise of the measurements. As a 

first approach to the problem we consider the 

distributions of m and C separately, which means that 

when we consider one variable as being uncertain we 

consider the other one as being known. We chose a 

couple to compare the prognosis results of both 

methods, (m = 3.8 and C = 1.5E-10). 

                                                           
† Lognormal (mean, standard deviation) 
‡ Uniform (lower bound, upper bound) 
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From the preliminary damage growth analysis, it was 

found that the distribution of pressure p has negligible 

effect on damage growth because the effect of 

randomness is averaged out. Thus, in the following 

analysis, the applied pressure is assumed to be 

deterministic, 0.06 MPa, the mean of the distribution 

obtained from Niu (1990).  

In general, the minimum size of detectable damage 

using SHM is much larger than that of the manual 

inspection. Although different SHM techniques may 

have different minimum detectable size, we chose an 

initial crack size 𝑎0 = 20 𝑚𝑚, which is large enough 

to be detected by most SHM methods.  In addition, this 

size of damage will provide significant crack growth 

data between the two consecutive inspections. 

6 UPDATING OF MATERIAL PROPERTY m 

In this section, we present how the distribution of the 

damage parameters for a fuselage panel can be 

narrowed using SHM and Bayesian update. In order to 

test the updating procedure, we assume that the actual 

value m of a particular panel is deterministic, mtrue, 

which governs the crack growth. However, the 

available information is the lower- and upper-bounds of 

m. Thus, the initial distribution of m is assumed to be 

uniform to reflect minimum knowledge.  

In the example, we assume that the inspection has 

been performed at every 100 cycles (i.e., N = 100). For 

the results presented here, inspections have been 

performed on a single panel that contains a crack size 

that is initially 20 mm until failure of the given panel. 

The noise in crack detection is assumed to be between -

1mm and 1 mm and the bias to be zero. The inspections 

are conducted until the crack reaches its critical size, 

aC, defined in Eq. (6) that has a value about 93 mm.  

Figure 4 shows the updated distributions of m for 

mtrue = 3.8 and C = 1.5E-10. The initial distribution of 

m is in red, the dotted blue curves are updated 

distribution (plotted at every 2,000 cycles) and the solid 

blue curve is the final updated distribution. This is an 

illustration of the updating process with no bias and 

small noise (b = 0 and V = 1mm). It is clear that as the 

crack grows, the identified distribution of m becomes 

narrower. 

 
Figure 4. Updated distribution of material 

parameter m for mtrue = 3.8, C = 1.5E-10,  

(b = 0mm, V = 1mm) 

Figure 5 shows the effect of bias on the final 

updated distribution of m for mtrue = 3.8  the noise is set 

to the minimum amplitude, 1 mm, in order to 

emphasize the effect of bias, with for the dotted-dashed 

line a bias of +2mm and the dotted one a bias of -2mm. 

It is clear that bias shifts the maximum likelihood point 

from that of the true value.  

 
Figure 5. Effect of bias on updated distribution of m 

for mtrue = 3.8, C = 1.5E-10 

Figure 6Error! Reference source not found. 

shows the effect of noise on the distribution of m. The 

bias is set to the zero in order to emphasize the effect of 

noise, with for the dotted-dashed line a noise of 

amplitude 3mm and the dotted one a noise of amplitude 

1mm. It is obvious that noise has an effect on the 

standard deviation but it does not shift the distribution 

as the bias does. 
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Figure 6. Effect of noise on the updated distribution 

of m for mtrue = 3.8, C = 1.5E-10 

In addition, Table 2 gives the maximum likelihood, 

mean and standard deviation of m, corresponding to 

Figure 5 and Figure 6. It can be observed that the mean 

and maximum likelihood value are only minimally 

affected by the bias and noise in the data. However, the 

standard deviation is large with a large noise. As 

expected, positive bias (true crack size is smaller than 

measured) leads to underestimation of m. 

Table 2. Statistical characteristics of final 

distribution for mtrue = 3.8 and different 

combinations bias/noise 

 Effect of noise Effect of bias 

Bias, noise 

(mm) 

b = 0 

V = 1 

b = 0 

V = 3 

b = -2 

V = 1 

b = +2 

V = 1 

Maximum 

likelihood 
3.79 3.78 3.81 3.76 

Mean 3.79 3.74 3.81 3.76 

Standard 

deviation 
0.02 0.08 0.02 0.03 

 

An important motivation for updating the 

distribution of m is to improve the accuracy of 

prognosis for a specific panel. We will discuss the 

application to the calculation of the remaining useful 

life (RUL) at every inspection. In order to show the 

value of our method we compare RUL calculated using 

the actual value of m, mtrue, and the 95% quantile of the 

distribution of RUL obtained using the updated 

distribution of m at each inspection and 95% 

confidence RUL obtained using the initial distribution 

of m, this is shown in Figure 7. The figure shows the 

true remaining useful life compared to the 95% quantile 

obtained for two couples bias/noise that correspond to 

the extreme cases, most and least conservative 

estimates of RUL and the 95% confidence RUL 

obtained using the handbook distribution. 

 
Figure 7. 95% confidence RUL after inspection 

compared to true RUL 

It can be observed that the updated distribution of m 

allows us to have conservative estimate of the RUL that 

converges to the actual value. We can also observe that 

we have a significantly more accurate prognosis then 

the one obtained using the handbook distribution. 

7 UPDATING OF MATERIAL PROPERTY C 

In this section, the other Paris parameter, C, will be 

updated instead of m. Since Paris law becomes linear in 

log-log scale, log(C) will have comparable effect with 

m. Thus, we choose to actually update the distribution 

of log(C) to have a distribution of the same order as m. 

The updating process is the same as described earlier 

with the same type of likelihood function and the same 

noise and bias. 

In this case we fix m to 3.8, the true value used for 

updating earlier, and the true value C is chosen to be 

1.5E-10, the value it was fixed at in the previous 

section. Error! Reference source not found. shows 

the updated distributions of C with mtrue = 3.8. The 

initial distribution of C is in red, the dotted blue curves 

are updated distribution (plotted at every 2,000 cycles) 

and the solid blue curve is the final updated 

distribution. This is an illustration of the updating 

process with no bias and small noise (b = 0 and V = 

1mm). It is clear that as the crack grows, the identified 

distribution of C becomes narrower. 
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Figure 8. Updated distribution of material 

parameter C for Ctrue = 1.5E-10, m = 3.8,  

(b = 0mm, V = 1mm) 

The effects of noise and bias turn out to be similar to 

the case of updating m. Figure 9 shows the effect of 

bias on the final updated distribution of C for Ctrue = 

1.5E-10. As for m, the noise is set to the minimum 

amplitude, 1 mm, in order to emphasize the effect of 

bias, with for the dotted-dashed line a bias of +2mm 

and the dotted one a bias of -2mm. As for m, bias 

appears to shift the maximum likelihood point from 

that of the true value. 

 
Figure 9. Effect of bias on the updated distribution 

of C for mtrue = 3.8, C = 1.5E-10 

Figure 10 shows the effect of noise on the 

distribution of C. The bias is set to the zero in order to 

emphasize the effect of noise, with for the dotted-

dashed line a noise of amplitude 3mm and the dotted 

one a noise of amplitude 1mm. It is obvious that noise 

increases the standard deviation but it does not shift the 

distribution as the bias does. 

 

Figure 10. Effect of noise on final distribution of C 

for Ctrue = 1.5E-10, m = 3.8 

Table 3 gives the maximum likelihood, mean and 

standard deviation of, C corresponding to Figure 9 and 

Figure 10. It can be observed that the mean is only 

minimally affected by the bias and noise in the data. 

However, the standard deviation is large with large 

noise. As expected, positive bias (true crack size is 

smaller than measured) leads to underestimation of m. 

Table 3. Statistical characteristics of updated 

distribution for Ctrue = 1.5E-10 and different 

bias/noise 

 Effect of noise Effect of bias 

Bias, noise 

(mm) 

b = 0 

V = 1 

b = 0 

V = 3 

b = -2 

V = 1 

b = +2 

V = 1 

Maximum 

likelihood 
1.4E-10 1.4E-10 1.8E-10 1.4E-10 

Mean 1.5E-10 1.4E-10 1.5E-10 1.4E-10 

Standard 

deviation 
1.2E-11 2.4E-11 1.2E-11 1.0E-11 

 

We will now discuss the application of the updated 

distribution of C to the calculation of RUL at every 

inspection. In order to show the accuracy of the 

proposed method, we compare RUL calculated using 

the actual value of C, Ctrue, and the 95% quantile of the 

distribution of RUL obtained using the updated 

distribution of C at each inspection and 95% 

confidence RUL obtained using the initial distribution 

of C, which is shown in Figure 11. The figure shows 

the true RUL compared to the 95% quantile obtained 

for two couples bias/noise that correspond to the 

extreme cases, most and least conservative estimates of 

RUL and the 95% confidence RUL obtained using the 

handbook distribution. 
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Figure 11. 95% confidence RUL after inspection 

compared to true RUL 

It can be observed that the updated distribution of C 

allows us to have conservative estimate of the RUL that 

converges to the actual value. The gain in accuracy 

with respect to the handbook distribution does not vary 

much compared to what we obtained using m, the two 

variables appear to have an equivalent effect. 

8 CONCLUSION 

Although In this paper, a Bayesian updating technique 

is employed to identify a panel-specific damage growth 

parameters using damage sizes measured from SHM 

sensors. The actual measurement environment is 

modeled by introducing deterministic bias and random 

noise.  

When there is no bias, the probability distributions 

of the two Paris parameters, m and C, are effectively 

narrowed and converged to the true values. The large 

number of SHM measurements compensates the effect 

of noise, and thus, the identified damage parameters are 

relatively insensitive to the noise. However, the effect 

of bias remains and affects the identification of true 

material parameters. It is shown that the convergence is 

slow when the bias is negative and noise is large, while 

the convergence is fast when the bias is positive and the 

noise is small. However, the latter yields 

underestimation of the true parameters. 

The identified distributions of parameters are used 

to estimate the remaining useful life (RUL) with 95% 

confidence. In all combined cases with noise and bias, 

the proposed method converges to the true RUL from 

the conservative side. 
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NOMENCLATURE 

a  crack size 

a
meas

 measured crack size 
a0 initial crack size 
aC critical crack size 
aN crack size at Nth inspection 
atrue true crack size 
b bias in damage size measurement  
C Paris law parameter 
fini initial (or prior) probability density function 
 (PDF) 
fi,test likelihood function 
fupdt updated (or posterior) PDF 
KIC fracture toughness 
m Paris law exponent 
M Monte-Carlo simulation sample size 
N step between inspections 
p pressure 
r fuselage radius 
t panel thickness 
v noise in damage size measurement 
V range of noise in damage size measurement 
a crack growth 
a

meas  
measured crack growth 

K range of stress intensity factor  

 applied stress 
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