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ABSTRACT: In the design considering fatigue life of mechanical components, uncertainties arising 

from the materials and manufacturing processes should be taken into account for ensuring reliability. 

In this paper, the approach based on the Bayesian technique is proposed, which incorporates the field 

failure data with the prior knowledge to obtain the posterior distribution of the unknown parameters of 

the fatigue life. Posterior predictive distributions and associated values are estimated afterwards, 

which represents the degree of our belief of the life conditional on the observed data. As more data are 

provided, the values will be updated to more confident information. In order to obtain the posterior 

distribution, Markov Chain Monte Carlo (MCMC) technique is employed.  
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1. INTRODUCTION 

Performance of mechanical components undergoes a change by uncertainties such as environmental 

effects, dimensional tolerances, loading conditions, material properties and maintenance processes. 

Fatigue life of the components in particular are significantly influenced even by small changes. In the 

design for fatigue life, it is not feasible to consider all the uncertainties of the relevant variables, since 

most of them are not characterized in the design phase. Analytical prediction of fatigue life is therefore, 

often not in agreement with the field data. Common practice in the design is then to apply proper 

“safety factor” when evaluating fatigue life. This approach, however, causes overdesign or risk of 

design, since it relies on the designer’s experience. Recently, for more reliable life prediction, the 

study using field data have been undertaken (Marahleh et al., 2006). Field data can be helpful in 

predicting fatigue life that has uncertainties due to the unknown potential inputs. This approach can be 

dealt with Bayesian technique which incorporates the field failure data with the prior knowledge to 

obtain the posterior distribution of the unknown parameters of the fatigue life (Kim et al., 2009). As 

more data are provided, the values will be updated to more confident information. In this paper, 

Markov Chain Monte Carlo (MCMC) technique is employed as an efficient means to draw samples of 

given distribution (Andrieu et al., 2003). Consequently, the posterior distribution of the unknown 

parameters of the fatigue life is obtained in light of the field data collected from the inspection of 

turbine blades. Subsequently, fatigue life of turbine blades is predicted a posteriori based on the drawn 

samples. 

2. BAYESIAN TECHNIQUE FOR LIFETIME PREDICTION 

Bayesian technique is employed to update lifetime prediction using analytical model and field data, 
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which is based on Bayes’ rule and defined as (Gelman et al., 2004) : 

     , | | , ,D Dp L p                               (1) 

where  | ,DL    is the likelihood of observed data  , ,D t y n  conditional on the given 

parameters ,  ,  ,p    is the prior distribution of ,  , and  , | Dp    is posterior 

distribution of ,   conditional on the D . The procedure to obtain posterior distribution 

 , | Dp    is outlined as follows.  

In Eq.(1), likelihood is just a multiplication of each binomial PDF, given as 
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fp f t dt   , and , , ,i i iN t y n  are given in the Table 1. Here,  life | , f t  denotes 

PDF of life of turbine blade with two parameters ,  , which can be assumed as normal, lognormal 

or weibull distribution, depending on the nature of failure data. The prior PDF is assumed as 

     2

0 0 0 0, , / 2 , / 2p N N       where 0 5169  , 0 794            (3) 

Consequently, the posterior PDF is obtained by multiplicatying Eq.(2) and Eq.(3). 

Table 1. Field data for inspected turbine blades 

Engine Hours(
it ) Failed(

iy )/Total(
in ) Engine Hours(

it ) Failed(
iy )/Total(

in ) 

1 4321 2/40 8 1456 0/40 

2 3125 1/40 9 26123 13/40 

3 1500 1/40 10 3654 0/40 

4 9152 0/40 11 8541 0/40 

5 12000 12/40 12 6542 10/40 

6 11654 3/40 13( N ) 18687 18/40 

7 6011 6/40    

3. MCMC SIMULATION 

Once the expression for posterior PDF is available, one can proceed to sample from the PDF. Primitive 

way is to compute the values at a grid of points after identifying the effective range, and sample by 

inverse cdf method. The method, however, has several drawbacks such as the difficulty finding correct 

location and scale of the grid points, spacing of the grid, and so on. MCMC simulation is an effective 

solution in this case (Andrieu et al., 2003). As an example of MCMC, in Fig. 1 is shown the sampling 

result of fictitious PDF given as  

      220.3exp 0.2 0.7exp 0.2 10p x x x                         (4) 

With only 5,000 iterations, the sampling result follows the distribution quite well. 
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Fig. 1 Results of MCMC simulation 



4. POSTERIOR DISTRIBUTION USING MCMC 

The joint posterior PDF of the unknown parameters of the fatigue life using only the first data is 

shown in Fig. 2, which represents the degree of belief on the concerned parameters in the form of PDF. 

The joint posterior PDF using grid method as well as MCMC sampling are shown in Fig. 2(a) and Fig. 

2(b), respectively. In Table 2, statistical moments by the two methods are compared. The results agree 

closely with each other. The joint PDF’s are updated as more data are added. Contour plots of the 

parameters at several stages of observed data are shown in Fig. 3. The location and range of ,   

moves and narrows down, converges to a certain point as more data are added. 
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(b) using MCMC (10
4
 iterations) 

Fig. 2 Joint posterior PDF of ,   

Table 2. Statistical moments by the two methods 

 E  E  E  E  E  

Grid 1.1476 0.1854 0.0160 0.0043 -0.0000 

MCMC 1.1498 0.1857 0.0178 0.0048 0.0000 
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Fig. 3 Contour plots with increasing data 

5. POSTERIOR PREDICTIVE DISTRIBUTION  

The drawn samples of the parameters obtained in section 4 are used for predicting the failure 

probability. Assuming the PDF of life is normal distribution, one can evaluate failure probability at a 

lifetime given each set of samples of the parameters. The predicted distribution of failure probability at 

1t =4321 with first data and 13t =18687 with 13 data are shown in Fig. 4(a) and Fig. 4(b), respectively. 

The distribution of failure probability comes from the randomness of ,  , which was originally 

caused by the insufficiency of the observed data. In view of safety, we should choose the upper bound 

of 90% confidence interval as the failure probability, which is 0.1213 and 0.6024, respectively. In this 

manner, one can construct confidence bounds of CDF which are given in Fig. 5. In the first data case, 

the gap is wider whereas it is narrow with whole 13 data. This suggests that as more data are used, 

higher reliabilities with smaller interval are gained. Obviously, we should choose the red curve, which 

is the 95% upper bound, for safety. 



6. CONCLUSIONS 

In this paper, a Bayesian updating technique is presented, which incorporates the statistical prediction 

with field data. By using MCMC simulation, samples of ,   are drawn effectively, which are 

parameters of the fatigue life distribution. After getting samples for joint posterior PDF of ,  , the 

fatigue life prediction results are obtained. From the results, failure probability at a certain lifetime is 

obtained as a probability distribution and associated confidence bounds, which have arisen from the 

insufficiency of data. As the number of observed data increases, the variance of the probability and the 

width of the confidence bounds are reduced, and reliability is improved. 
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Fig. 4 PDF of failure probability 
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Fig. 5 CDF of Fatigue life 
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